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Gaussian fields are everywhere: Oceanography
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Gaussian fields are everywhere: Cosmology

The cosmic microwave background (CMB, CMBR)



Gaussian fields are everywhere: Laplace eigenfunctions

In 1977 M. Berry conjectured that high energy eigenfunctions in
the chaotic case have statistically the same behaviour as random
plane waves. (Figures from Bogomolny-Schmit paper)

Figure: Nodal domains of an eigenfunction (left) of a stadium and of a
random plane wave (right)



Gaussian functions and fields

Two different perspectives

Analytic: Random series A field is the white noise in some
Hilbert space. Take any orthonormal basis {φi} in some
functional Hilbert space H and define

f =
∑

aiφi , ai i.i.d. N(0, 1)

Probabilistic: Collection of random variables A field f (x) is a
collection of jointly Gaussian random variables indexed by x .
Could be defined by its covariance function
K (x , y) = E [Ψ(x)Ψ(y)].

Covariance function

K (x , y) =
∑

φi (x)φi (y)



Examples: Gaussian Free Field

Gaussian Free Field (GFF). Hilbert space is the Sobolev space
H1
0 (Ω). The covariance kernel is the Green’s function.

Note: GFF is not a function!



Examples: Bargmann-Fock

The space is the Bargmann-Fock space. Orthonormal basis

ψn,m(x) =
1√
n!m!

xn1 x
m
2 e−

|x|2
2 .

Covariance kernel

K (x , y) = e−
|x−y|2

2 .



Examples: Random Plane Wave

The space is F−1L2(T, dθ). Orthonormal basis

ψn(re iθ) = cos(nθ)Jn(r), φn(re iθ) = sin(nθ)Jn(r)

Covariance kernel
K (x , y) = J0(|x − y |).



Stationary Gaussian fields

If the field is stationary i.e. K (x , y) = K (x − y) then by Bochner’s
Theorem

K (x) =

∫
e2πix ·tdρ(t)

where ρ is a symmetric probability measure. It is called the
spectral measure of the field.

Properties of f , H, K , and ρ are closely related. In particular,
smoothness of K at zero or finite moments of ρ imply smoothness
of f .



Main questions

What can we say about large scale geometry and topology of level
sets {f (x) = `} and excursion sets {f (x) ≥ `}?

Observables:
Length

Area

Number

Homology
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Length
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Number
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Questions:
Expectation

Variance

Central Limit Theorem



Local quantities

Many quantities like length, area and Euler characteristic are local.
They are easy.
Kac-Rice formula:

#{x ∈ [a, b] : f (x) = 0} = lim
ε→0

1

2ε

∫ b

a
|f ′(x)|1|f (x)|≤εdx



Local quantities

Many quantities like length, area and Euler characteristic are local.
They are easy.
Kac-Rice formula:

E#{x ∈ [a, b] : f (x) = 0} =

∫ b

a
φf (0)E[|f ′(x)| | f (x) = 0]dx

where φf (0) is the probability density of f .
This expectation is explicitly computable for Gaussian fields!



Non-local quantities are hard!

The main example of a non-local quantity is the number of
components. There is no integral formula!

Theorem (Nazarov-Sodin)

Under mild regularity conditions (smoothness, non-degeneracy,
ergodicity) for a stationary field f in Rn

N(f ,R · Ω)

RnVol(Ω)
→ c , R →∞

where N(f ,Ω) is the number of level/excursion sets of f inside Ω.

Similar statements are true for the number of nodal domains of
given area, perimeter, topological type etc (B., Sarnak,
Wigman . . . )



Bogomolny-Schmit Percolation Model

Bogomolny-Schmit proposed that the nodal lines of the random
plane wave form a perturbed square lattice

Picture from Bogomolny-Schmit paper.



Bogomolny-Schmit Percolation Model

Using this analogy we can think of the nodal domains as
percolation clusters on the square lattice.

This leads to the conjecture that

E(N(f ,RΩ)) = R2Area(Ω)
3
√

3− 5

4π2

Var(N(f ,Ω)) ≈ constR2.



Critical Square Lattice Bond Percolation

Each edge of the lattice is preserved with probability pc = 1/2. If
an edge is preserved, then the dual edge is removed and vice versa.
Primal and dual clusters create an loop model of interfaces.
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Critical Square Lattice Bond Percolation

Each edge of the lattice is preserved with probability pc = 1/2. If
an edge is preserved, then the dual edge is removed and vice versa.
Primal and dual clusters create an loop model of interfaces.



Off-critical Percolation

Off-critical percolation is a model for excursion and level sets

Figure: Excursion sets for levels 0 (nodal domains) and level 0.1
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Generalized Bogomolny-Schmit conjecture

For a wide class of Gaussian fields the nodal domains behave like
the critical percolation. Other excursion sets behave like off-critical
percolation.

Assumptions:

Smooth (nodal lines are nice curves)

Stationary (percolation is almost stationary)

Isotropic or symmetric enough (uniform conformal structure)

Weakly correlated (percolation is local)



A Good Example: Bargmann-Fock field

Bargmann-Fock field heat-map



A Good Example: Bargmann-Fock field

Nodal domains



A Good Example: Bargmann-Fock field

Nodal domains with highlighted largest domain



A Bad Example: discrete white noise

Nodal domains are exactly Bernoulli site percolation clusters
with p = 1/2 which is not critical.
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Back to the number of level/excursion sets

Morse theory caricature

Local minimum

Local maximum



Back to the number of level/excursion sets

Morse theory caricature

Lower connected saddle

Upper connected saddle



Number of level/excursion sets

Theorem (B.-McAuley-Muirhead)

Under minimal assumptions

cES(`) =

∫ ∞
`

pm+(x)− ps−(x)dx ,

cLS(`) =

∫ ∞
`

pm+(x)− ps−(x) + ps+(x)− pm−(x)dx

where cES(`) and cLS(`) are the densities (per volume) of the
number of excursion/level sets, pm+(`), pm−(x), ps+(`) and ps−(`)
are densities of the number of local maxima, minima, upper and
lower connected saddles at level `.



Leveel/excursion set functionals



Back to the number of level/excursion sets

Theorem (B.-McAuley-Muirhead)

If we additionally assume positive ‘one-arm’ exponent and
non-vanishing spectral density in a neighbourhood of the origin
then pm+(`) and ps−(`) are continuous and

c ′ES(`) = pm+(`)− ps−(`).

Note: assumptions hold for BF but not for RPW

Under other assumptions (which include RPW) we show that
continuous differentiability of cES is equivalent to ‘no infinite four
arm saddle’.

Proof is based on analysis of the field conditioned to have a critical
point at a given point at given level and Morse theory type
perturbation analysis.



Back to the number of level/excursion sets

Theorem (B.-McAuley-Muirhead)

If we assume mild regularity of f , decay of correlations and
non-vanishing spectral density in a neighbourhood of the origin
then Var[NES(B(R), `)] & R2 provided c ′ES 6= 0. Similar result
holds for NLS(`).

Note: assumptions hold for BF but not for RPW.
Note: c ′LS(0) = 0. Result is not applicable for nodal domains.

Theorem (B.-McAuley-Muirhead)

For the random plane wave field Var[NES(B(R), `)] & R3 provided
c ′ES 6= 0 and ` 6= 0. Similar result holds for NLS(`).



Complementary result

Theorem (Nazarov-Sodin 2020)

Let f be a sufficiently smooth stationary Gaussian field with
polynomial decay of correlations, then there is σ > 0 such that

Var(N(B(R), 0) & Rσ.



Thank you!




