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The Goodness-of-Fit and the Two-Sample Problems

Let Xm = {X1, X2, . . . , Xn} be i.i.d. samples from a densiy f in Rd. The
goodness-of-fit problem is to test

H0 : f = f0 versus H1 : f 6= f0,

where f0 is some specified density in Rd.

Let Xm = {X1, X2, . . . , Xm} and Yn = {Y1, Y2, . . . , Yn} be i.i.d. samples
from densities f and g in Rd, respectively. The two-sample problem is to
test

H0 : f = g versus H1 : f 6= g.

Parametric Analogues: Suppose {Pθ}θ∈Θ is a parametric family of
distributions in Rd, where Θ ⊆ Rp is the parameter space.

Goodness-of-fit problem: For a specified value θ0 ∈ Θ consider

H0 : θ = θ0 versus H1 : θ 6= θ0.

Two-sample problem:

H0 : θ1 = θ2 versus H1 : θ1 6= θ2.

Throughout we will consider the asymptotic regime where m,n→∞,
such that m

m+n
→ p ∈ (0, 1), and the dimension is fixed.
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(Asymptotically) Distribution-Free Tests

What are (asymptotically) distribution-free tests?

Goodness-of-fit problem: The (asymptotic) null distribution of the
test statistic does not depend on null distribution f0.

Classical univariate tests: Kolmogorov-Smirnov test.
We will discuss multivariate analogues: Bickel-Brieman
spacings test.

Two-sample problem: The (asymptotic) null distribution of the test
statistic does not depend on the unknown null distribution f = g.

Classical univariate tests: Wald-Wolfowitz runs test, Mann-Whitney
test.
We will discuss multivariate analogues: Friedman-Rafsky test,
nearest-neighbor based tests, cross-match test, among others.

Most (if not all) distribution-free goodness-of-fit/two-sample tests
are based on geometric graphs, like nearest-neighbor graphs,
minimum spanning trees, matchings, etc.
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Two-Sample Tests: An Overview

Paramteric Tests

• Hotelling’s T 2-test

• Score Test

• Likelihood Ratio Test (GLR)

Nonparamteric Tests

Two-Sample Tests

Univariate

• Kolmogorov-Smirnov (1933)

• Mann-Whitney (1947)

• Wald-Wolfowitz (1943)

Multivariate

Geometric Graphs Depth-based (Kernel Methods)
• Tukey Depth (1975)

• Mahalanobis Depth

• Simplicial Depth (1992)

• Projection Depth (2003)

Multivariate generalization

• Friedman-Rafsky (1979)

• K-NN (1986)

• Rosenbaum (2005)

• TSP (2014)

• Chen-Friedman (2015)

Multivariate generalization

• Hall and Tajvidi (2002)
• Rousson (2002)

• Oja rank sum test (1998)

Inter-point distances

(Asymp.) Distribution Free
• Gretton et al. (2012)
• Baringhaus-Franz (2004)
• Szekely and Rizzo (2004)
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Test Based on Nearest Neighbors Graphs

Bivariate normal data. Location shift. 3-NN graph.
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Graph Based Two-Sample Tests

Let G be a graph functional in Rd.

For any finite S ⊂ Rd, G (S) is a graph
with vertex set S.

The 2-sample test statistic based on the graph functional G is defined as

T (G (Xm ∪ Yn))︸ ︷︷ ︸
T (G )

:=

m∑
i=1

n∑
j=1

111{(Xi, Yj) ∈ E(G (Xm ∪ Yn))}

= # edges across the two samples.

Reject when T (G ) is small. Calibrate using asymptotic distribution.
Reject when {T (G ) < Cm,n}, where Cm,n is such that

lim
m,n→∞

PH0(T (G ) < Cm,n) = α.

In dimension 1: The Wald-Wolfowitz runs test (1940) counts the number
of runs. This is a graph based test where G = PN is the path.

X(1)
X(2) Y(1) X(3)Y(2)
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Friedman-Rafsky Test (1979)

Definition (Minimal Spanning Tree (MST))

Given a finite set S ⊂ Rd, a spanning tree of S is a connected graph with
vertex-set S and no cycles.

A minimal spanning tree (MST) of S, denoted by T (S), is a spanning tree
with the smallest length, sum of Euclidean lengths of the edges.

The FR-test rejects H0 for small values of∑m
i=1

∑n
j=1 111{(Xi, Yj) ∈ E(T (Xm ∪ Yn))}

N − 1
.

When two distributions are different, the number edges across samples 1
and 2 should be small. This is precisely the Wald-Wolfowitz runs test in
d = 1.

Other geometric graphs are often used:

K-NN Test: G is the K-nearest neighbor graph (Henze (1988), Schilling
(1989)).

Cross Match Test: G is the minimum non-bipartite matching
(Rosenbaum (2005)).

Nonparametric Inference and Geometric Probability
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Properties of Tests on Geometric Graphs

Asymptotic normality under the null of the centered statistic

R(G (ZN )) :=
√
N

(
T (G (ZN ))

|E(G (ZN ))| −
mn

N(N − 1)

)
D→ N(0, σ2

G ).

as N := m+ n→∞ such that m
N
→ p ∈ (0, 1).

Asymptotically distribution free: σ2
G does not depend on f .

The level α test based on G has rejection region

{R(G (ZN )) < −zασG },

where zα is the (1− α)-th quantile of the standard normal.

Consistent against fixed alternatives. Power goes to 1 whenever the two
distributions differ on a set of positive measure (for parametric models,
when θ1 − θ2 = ∆, where ∆ 6= 0 is fixed).

How can we compare these tests? Power against local alternatives.
Asymptotic (Pitman) efficiency.

H0 : θ2 − θ1 = 0, versus H1 : θ2 − θ1 = h√
N

, for h ∈ Rp.
The performances of the different tests can be compared using these
limiting power functions.

Nonparametric Inference and Geometric Probability
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Asymptotic Efficiency of Graph-Based Tests

(Informal) Theorem (B. (2019))

The asymptotic efficiency of the two-sample test based on an undirected
graph functional G is

AE(G ) =
|C(r)

´
〈h,∇f(z|θ0)〉λ(z)dz|√

{γ0(1− r) + (γ1 − 2)(1− 2r)}
,

where

C(r) is a constant that only depends on
r := 2p(1− p),
for VN := {V1, V2, . . . , VN} i.i.d. with
density f(·|θ0),

N

|E(G (VN ))|
P→ γ0, and

N

2−stars︷ ︸︸ ︷
|T2(G (VN ))|
|E(G (VN ))|2

P→ γ1.

K1,2
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Asymptotic Efficiency of Graph-Based Tests

The function λ(·)

λ(z) = lim
N→∞

E
d(z,G (VzN ))

|E(G (VzN ))|/N

= lim
N→∞

E
degree of vertex z in G (VN ∪ {z})

average degree of the graph
.

V1

V2

V3

V4

V5

V6

z 2
9/7

The function λ is like a ‘centrality’
measure. Small values of λ
correspond to extreme points.

If G = MST ,

d(z,G (VzN ))

|E(G (VzN ))|/N � d(z,G (VzN )).

Nonparametric Inference and Geometric Probability



Preliminaries
Two-Sample Tests Based on Geometric Graphs

More Examples

Definitions and Properties
Asymptotic Efficiency of Graph-Based Tests
Detection Thresholds

Asymptotic Efficiency of Graph-Based Tests

The function λ(·)

λ(z) = lim
N→∞

E
d(z,G (VzN ))

|E(G (VzN ))|/N

= lim
N→∞

E
degree of vertex z in G (VN ∪ {z})

average degree of the graph
.

V1

V2

V3

V4

V5

V6

z 2
9/7

The function λ is like a ‘centrality’
measure. Small values of λ
correspond to extreme points.

If G = MST ,

d(z,G (VzN ))

|E(G (VzN ))|/N � d(z,G (VzN )).

Nonparametric Inference and Geometric Probability



Preliminaries
Two-Sample Tests Based on Geometric Graphs

More Examples

Definitions and Properties
Asymptotic Efficiency of Graph-Based Tests
Detection Thresholds

Asymptotic Efficiency of Graph-Based Tests

The function λ(·)

λ(z) = lim
N→∞

E
d(z,G (VzN ))

|E(G (VzN ))|/N

= lim
N→∞

E
degree of vertex z in G (VN ∪ {z})

average degree of the graph
.

V1

V2

V3

V4

V5

V6

z 2
9/7

The function λ is like a ‘centrality’
measure. Small values of λ
correspond to extreme points.

If G = MST ,

d(z,G (VzN ))

|E(G (VzN ))|/N � d(z,G (VzN )).

Nonparametric Inference and Geometric Probability



Preliminaries
Two-Sample Tests Based on Geometric Graphs

More Examples

Definitions and Properties
Asymptotic Efficiency of Graph-Based Tests
Detection Thresholds

Example: Friedman-Rafsy Test (MST)

In this case, γ0 = 1
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Example: Friedman-Rafsy Test (MST)

In this case, γ0 = 1 and

γ1 = lim
N→∞

T2(G (VN ))

N
= lim
N→∞

1

N

N∑
i=1

(
d(Vi,G (VN ))

2

)
P→ 1

2
Var(Dd)+1.
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Example: Friedman-Rafsy Test (MST)

In this case, γ0 = 1 and

γ1 = lim
N→∞

T2(G (VN ))

N
= lim
N→∞

1

N

N∑
i=1

(
d(Vi,G (VN ))

2

)
P→ 1

2
Var(Dd)+1.

What is Dd?

Aldous and Steele (1992) defined the MSF for infinite point sets
which are locally finite, using the Prim’s algorithm.
Look at the MSF on a Poisson process of rate 1 with point 0 added to
it. Dd is the degree of the vertex 0 in this graph.
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Example: Friedman-Rafsy Test (MST)

In this case, γ0 = 1 and

γ1 = lim
N→∞

T2(G (VN ))

N
= lim
N→∞

1

N

N∑
i=1

(
d(Vi,G (VN ))

2

)
P→ 1

2
Var(Dd)+1.

Aldous and Steele (1992) showed that

λ(z) = lim
N→∞

E(d(z,G (ZN ))) = 2,

is independent of z.
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= lim
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1

N

N∑
i=1

(
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2
Var(Dd)+1.

Aldous and Steele (1992) showed that

λ(z) = lim
N→∞

E(d(z,G (ZN ))) = 2,

is independent of z. Therefore, the numerator is

ˆ
〈h,∇f(z|θ0)〉λ(z)dz = 0.
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Example: Friedman-Rafsy Test (MST)

In this case, γ0 = 1 and

γ1 = lim
N→∞

T2(G (VN ))

N
= lim
N→∞

1

N

N∑
i=1

(
d(Vi,G (VN ))

2

)
P→ 1

2
Var(Dd)+1.

Aldous and Steele (1992) showed that

λ(z) = lim
N→∞

E(d(z,G (ZN ))) = 2,

is independent of z. Therefore, the numerator is

ˆ
〈h,∇f(z|θ0)〉λ(z)dz = 0.

Theorem

The asymptotic (Pitman) efficiency of the test based on the MST is zero.
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Stabilizing Graphs

Convergence to the limiting Poisson graph.

Local dependence.

Definition (Penrose and Yukich (2003))

A translation and scale invariant graph functional G stabilizes on Pλ if
there exists a random but almost surely finite variable R such that

E(0,G (Pλ,0)) = E(0,G (Pλ,0 ∩B(0, R) ∪A )),

for all finite A ⊂ Rd\B(0, R).

Includes MST, K-NN, Delaunay graphs, etc.

Nonparametric Inference and Geometric Probability



Preliminaries
Two-Sample Tests Based on Geometric Graphs

More Examples

Definitions and Properties
Asymptotic Efficiency of Graph-Based Tests
Detection Thresholds

Stabilizing Graphs

Convergence to the limiting Poisson graph.

Local dependence.

Definition (Penrose and Yukich (2003))

A translation and scale invariant graph functional G stabilizes on Pλ if
there exists a random but almost surely finite variable R such that

E(0,G (Pλ,0)) = E(0,G (Pλ,0 ∩B(0, R) ∪A )),

for all finite A ⊂ Rd\B(0, R).

Includes MST, K-NN, Delaunay graphs, etc.

Nonparametric Inference and Geometric Probability



Preliminaries
Two-Sample Tests Based on Geometric Graphs

More Examples

Definitions and Properties
Asymptotic Efficiency of Graph-Based Tests
Detection Thresholds

Stabilizing Graphs

Convergence to the limiting Poisson graph.

Local dependence.

Definition (Penrose and Yukich (2003))

A translation and scale invariant graph functional G stabilizes on Pλ if
there exists a random but almost surely finite variable R such that

E(0,G (Pλ,0)) = E(0,G (Pλ,0 ∩B(0, R) ∪A )),

for all finite A ⊂ Rd\B(0, R).

Includes MST, K-NN, Delaunay graphs, etc.

Nonparametric Inference and Geometric Probability



Preliminaries
Two-Sample Tests Based on Geometric Graphs

More Examples

Definitions and Properties
Asymptotic Efficiency of Graph-Based Tests
Detection Thresholds

Efficiency of Tests Based on Stabilizing Graphs

Theorem (B. (2019))

Let G be any translation and scale invariant graph functional which
stabilizing P1, such that

max degree︷ ︸︸ ︷
∆(G (ZN ))

|E(G (ZN ))|/N︸ ︷︷ ︸
average degree

= OP (1)

︸ ︷︷ ︸
normality condition

, and sup
N∈N

E (d(Z1,G (ZN ))s) <∞︸ ︷︷ ︸
moment condition

,

for some s > 4. Then the asymptotic efficiency of the two-sample test
based on G is zero.

Corollary

The asymptotic efficiencies of the tests based on the MST or the K-NN
graphs are zero.
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What Next?

How can we compare these tests? For what sequence {εN}N≥1 going
to zero, can graph-based two-sample tests detect the hypothesis:

H0 : θ2 − θ1 = 0, versus H1 : θ2 − θ1 = εN .

The above result shows εN = h√
N

is too hard: zero Pitman efficiency.
What is the detection threshold? A sequence aN → 0, such that when{

||εN || � aN the limiting power of the test is less than α,
||εN || � aN the limiting power of the test is 1.
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A Heuristic Calculation

Consider the hypothesis

H0 : θ2 − θ1 = 0 versus H1 : θ2 − θ1 = εN ,

such that ||εN || → 0.
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A Heuristic Calculation

Consider the hypothesis

H0 : θ2 − θ1 = 0 versus H1 : θ2 − θ1 = εN ,

such that ||εN || → 0.
Guessing the detection threshold:

N−
1
2 {T (G (ZN ))− EH0

(T (G (ZN )))}
=N−

1
2 {T (G (ZN ))− EH1

(T (G (ZN )))}+N−
1
2 {EH1

(T (G (ZN ))− EH0
(T (G (ZN )))}

=T1 + T2.
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A Heuristic Calculation

Consider the hypothesis

H0 : θ2 − θ1 = 0 versus H1 : θ2 − θ1 = εN ,

such that ||εN || → 0.
Guessing the detection threshold:

N−
1
2 {T (G (ZN ))− EH0

(T (G (ZN )))}
=N−

1
2 {T (G (ZN ))− EH1

(T (G (ZN )))}+N−
1
2 {EH1

(T (G (ZN ))− EH0
(T (G (ZN )))}

=T1 + T2.

(CLT under alternative) Under H1, T1
D→ N(0, σ2(θ1, θ2, p))?
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A Heuristic Calculation

Consider the hypothesis

H0 : θ2 − θ1 = 0 versus H1 : θ2 − θ1 = εN ,

such that ||εN || → 0.
Guessing the detection threshold:

N−
1
2 {T (G (ZN ))− EH0

(T (G (ZN )))}
=N−

1
2 {T (G (ZN ))− EH1(T (G (ZN )))}+N−

1
2 {EH1(T (G (ZN ))− EH0(T (G (ZN )))}

=T1 + T2.

(CLT under alternative) Under H1, T1
D→ N(0, σ2(θ1, θ2, p))?

(Mean difference) Derive the limit of T2, when θ2 − θ1 = εN → 0.
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A Heuristic Calculation

Consider the hypothesis

H0 : θ2 − θ1 = 0 versus H1 : θ2 − θ1 = εN ,

such that ||εN || → 0.
Guessing the detection threshold:

N−
1
2 {T (G (ZN ))− EH0(T (G (ZN )))}

=N−
1
2 {T (G (ZN ))− EH1

(T (G (ZN )))}+N−
1
2 {EH1

(T (G (ZN ))− EH0
(T (G (ZN )))}

=T1 + T2.

(CLT under alternative) Under H1, T1
D→ N(0, σ2(θ1, θ2, p))?

(Mean difference) Derive the limit of T2, when θ2 − θ1 = εN → 0. If
θ2 − θ1 = h√

N
,

T2 = N−
1
2 ( δN (θ1, θ2, p)︸ ︷︷ ︸

EH1
(T (G (ZN ))

− δN (θ1, θ1, p)︸ ︷︷ ︸
EH0

(T (G (ZN ))

) ≈ N−
1
2 (〈θ2 − θ1,∇δN (θ1, θ1, p)〉)

≈ 1

N
(〈h,∇δN (θ1, θ1, p)〉)→ 0.
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(T (G (ZN ))
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N
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CLT Under Alternative: The K-NN Graph

(Informal) Theorem (B. (2020))

For the two-sample test based on the directed K-NN graph functional NK , in
the Poissonized setting,

N−
1
2
{
T (NK(Z ′N ))− EH1(T (NK(Z ′N )))

} D→ N(0, σ2
K(f, g, p)).

Proved for the Wald’s run test (d = 1) by Lehmann (1953).

It is also known that (Henze and Penrose (1999))

1

N
EH1T (G (Z ′N ))→

ˆ
pqf(x)g(x)

(pf(x) + qg(x))
dx︸ ︷︷ ︸

δ(f,g,p)

.

Can we say

N
1
2

{
1

N
T (NK(Z ′N ))− δ(f, g, p)

}
D→ N(0, σ2

K(f, g, p))?

Need to show
√
N
(

1
N
ET (NK(Z ′N ))− δ(f, g, p)

)
→ 0?

In dimension 1, R. Savage pointed out an issue in Lehmann’s original
proof.
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The Mean Difference

For dimension 1, 1
N
ET (NK(Z ′N ))− δ(f, g, p) = o(1/

√
N), and the

Lehmann claim can be easily validated.

Is this true for dimension d? If yes, then the test will have power against

O(N−
1
4 ) alternatives, and the heuristic would be correct. Otherwise, the

rate of convergence competes with the Hessian term to determine the
scaling for local power.
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Case 1: Dimension Less or Equals 8

Theorem (B. (2020))

Suppose dimension d ≤ 8. Then the limiting power of the directed K-NN
test is given by

α if ||N 1
4 εN || → 0,

Φ (zα + cK,θ1(h)) if N
1
4 εN → h,

1 if ||N 1
4 εN || → ∞.

The heuristic is correct: The detection threshold is at O(N−
1
4 ) and

is driven by the Hessian term (second-order efficiency).

What is cK,θ1(h)?

cK,θ1(h) =


r2K
2σK

E
[
h>∇θ1f(X|θ1)

f(X|θ1)

]2
if d ≤ 7,

r2K
2σK

E
[
h>∇θ1f(X|θ1)

f(X|θ1)

]2
+ bK,θ1(h)︸ ︷︷ ︸

correction term

if d = 8.
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Case 1: Simulations
For a fixed direction h ∈ Rp, consider the hypothesis

H0 : θ2 = θ1 versus H1 : θ2 = θ1 +
h

Nb
,

as b varies from (0, 1).

b = 0: Corresponds to fixed alternatives.
b = 0.5: Parametric detection rate.
b = 0.25: Predicted rate of detection for the K-NN test.
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Case 2: Dimension Greater Than 8

Consider dimension d = 10. For a fixed direction h ∈ Rp, consider
the hypothesis, as b varies from (0, 1),

H0 : θ2 = θ1 versus H1 : θ2 = θ1 +
h
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Threshold moves closer to b = 0.5.

The detection threshold might not be universal: Depends on the
distribution of the data and the sign of the alternative.
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Case 2: Dimension Greater Than 8

Theorem (Continued) (B. (2020))

Suppose dimension d ≥ 9. Then the limiting power of the K-NN test is
given by

α if ||N 1
2−

2
d εN || → 0,

Φ (zα + bK,θ1(h)) if N
1
2−

2
d εN → h,

1/0 if ||N 1
2−

2
d εN || → ∞ and ||N 2

d εN || → 0,

1 if ||N 2
d εN || → ∞,

where bK,θ1(h) := −λ(p,K)
´
h>∇θ1

(
tr(Hxf(x|θ1))

f(x|θ1)

)
f
d−2
d (x|θ1)dx.

The heuristic is incorrect for dimensions greater than 8: The
detection threshold is driven by the rate of convergence of the
gradient term.

The detection threshold might not be universal: Depends on the
distribution of the data and the sign of the alternative.
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Summarizing the Result: Critical Exponents

In general, there are two critical exponents,

βd =

{
1
4

1
2 − 2

d ,
γd =

{
1
4 if d ≤ 8
2
d if d ≥ 9.
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Theorem (Restated) (B. (2020))

Consider testing H0 : θ2 − θ1 = 0 versus H1 : θ2 − θ1 = εN , based on the
directed K-NN graph functional. Then

• If ||NβdεN || → 0, the limiting power of the test is α.

• If ||NγdεN || → ∞, the limiting power of the test is 1.
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Goodness-of-Fit Tests

Let Xm = {X1, X2, . . . , Xn} be i.i.d. samples from a distribution F in Rd.
The goodness-of-fit problem is to test

H0 : F = F0 versus H1 : F 6= F0.

Well-known asymptotically distribution-free univariate tests:

Chi-squared test: Fix cells and compare the observed frequencies in
each cell with the expected frequency under H0.
Spacings Test: For each Xi, define its 1-step spacing as

Di = F0(X(i+1))− F0(X(i)).

Consider tests based on {nDi}1≤i≤n. For example, for a (known)
function u : [0,∞)→ R, reject H0 for large values of∣∣∣∣∣ 1√

n

n∑
i=1

{
u(nDi)− E0[u(nDi)]

}∣∣∣∣∣ .
Common choices of functions are u(x) = e−x or u(x) = log x. (Pyke

(1965), Hall (1986))
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The Multivariate Spacings Test

How to define multivariate spacings?

Use “nearest-neighbor” balls (Bickel

and Breiman (1983)).

For each point Xi, define its multivariate spacing as

µF0(Xi) := F0(B(Xi, Ri)) =

ˆ
B(Xi,Ri)

f0(z)dz,

where B(x, r) is the ball of radius r around x, and Ri
is the the nearest-neighbor distance from Xi.

Xi

Ri

B(Xi, Ri)

Multivariate Spacings Test: For a (known) function u : [0,∞)→ R, reject
H0 for large values of∣∣∣∣∣ 1√

n

n∑
i=1

{u(nµF0(Xi))− E0[u(nµF0(Xi))]}

∣∣∣∣∣ .
The Bickel-Breiman Approximation: Replace µF0(Xi) by

Di = Vol(B(0, 1))f0(Xi)R
d
i .
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Properties of the Spacings Test

Asymptotically distribution free: Under H0,

Tn(u) :=
1√
n

n∑
i=1

{u(nµF0(Xi))− E0[u(nµF0(Xi))]}
D→ N(0, σ2(u)),

where σ2(u) does not depend on F0.

The level α test has rejection region {|Tn(u)| > zα
2
σ(u)}.

Consistent against fixed alternatives. Power goes to 1 whenever θ 6= θ0.

How can we compare these tests? What sequence {εn}n≥1 going to zero is
detectable:

H0 : θ = θ0, versus H1 : θ = θ0 + εn.

As before, can be shown that εn = h√
n

is too hard: zero Pitman efficiency.
What is the detection threshold?

Dimension 1: O(N−
1
4 ). (Holst and Rao (1981))

Higher dimensions: O(N−
1
4 ), if d < 8. (Zhou and Rao (1993))

Dimension 8 or higher: Threshold changes. Curious case of
dimension 8 appears again. (B. (2022+))
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Graph Based Independence Tests

Suppose {(X1, Y1), (X2, Y2), . . . , (Xn, Yn)} be i.i.d. samples from a
distribution F in Rd1+d2 .

Denote the marginal distributions of X1 and Y1

by F1 and F2, respectively.

The independence testing problem is the following hypotheses:

H0 : F = F1 ⊗ F2 versus H1 : F 6= F1 ⊗ F2.

Chatterjee’s Correlation Coefficient: A measure of correlation between 2
variables in dimension 1. (Chatterjee (2020))

Based on the relative ranks of data points. Has several attractive
properties.
This has been generalized to higher-dimensions using geometric
graphs (Deb, Ghosal, and Sen (2020)).
Has zero Pitman efficiency in dimension 1. (Shi, Drton, and Han (2022))

What is the detection threshold?

Dimension 1: O(N−
1
4 ). (Auddy, Deb, and Nandy (2021))

Curious case of dimension 8 is expected to appear in higher
dimensions.
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Summary

Random geometric graphs are important tools for constructing
non-parametric tests.

These tests are usually distribution-free but are often Pitman inefficient.

Rate of detection at O(N−
1
4 ) for dimension up to 8 (second-order

efficiency).

The rate of detection has a curious phase transition in dimension 8.

The uniform spanning forest changes its geometry at dimension 8
(Pemantle (1991), Benjamini, Kesten, Peres, and Schramm (2003)).

Connections?
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Parsing the Theorem: The Good and the Bad

(Fix an alternative direction h ∈ Rp and suppose εN = δNh, such that δN → 0.)
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bK,θ1 (h) > 0: These are the ‘good’
directions. Detection threshold improves with
dimension. Blessing of dimensionality.
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Zooming in at Thresholds: Spherical Normal

We can zoom in at the two thresholds O(N−
1
2 + 2

d ) and O(N−
2
d ), and

observe the phase transitions of the power function.

σ1 +
h

N
1
2−

2
d

σ1 − h

N
2
d

σ1 = 2
(h ∈ [−10, 0])

(h ∈ [0, 15])
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Degenerate Directions: Normal Location

What about bK,θ(h) = 0? These are the “degenerate directions”.

Consider the normal location family Pθ ∼ N(θ, I), and suppose

H0 : θ2 − θ1 = 0 versus H1 : θ2 − θ1 = εN .

Here, bK,θ(h) = 0, that is, all directions are degenerate.

Direct calculations show that the two-sample test based on the
directed K-NN graph satisfies

If ||N
1
4 εN || → 0, the limiting power of the test is α.

If ||N
1
4 εN || → ∞, the limiting power of the test is 1.

If εN = hN−
1
4 , for some h ∈ Rp\{0}, the limiting power of the test is

Φ

(
zα +

r2K

2σK
Eµ1(h>X)2

)
,

where Vd = |B(0, 1)| is the volume of the unit ball in Rd, and σK is
the null variance.

The rate is same across all dimensions (second-order efficiency).
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directed K-NN graph satisfies

If ||N
1
4 εN || → 0, the limiting power of the test is α.

If ||N
1
4 εN || → ∞, the limiting power of the test is 1.

If εN = hN−
1
4 , for some h ∈ Rp\{0}, the limiting power of the test is

Φ

(
zα +

r2K

2σK
Eµ1(h>X)2

)
,

where Vd = |B(0, 1)| is the volume of the unit ball in Rd, and σK is
the null variance.

The rate is same across all dimensions (second-order efficiency).
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Implications

Which test should we use?

Can we get
distribution-free tests with non-zero
Pitman efficiency?

Consider K-NN graphs with
K = KN →∞.

In this case, O(N−
1
2 ) detection

thresholds (Pitman efficiency) can be
attained, when K grows with N
sufficiently fast.

How fast is fast enough? Trade-off
with computation time.
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Case 1: Dimension Less or Equals 8

Theorem (Zhou and Rao (1993), B. (2019+))

Suppose dimension d ≤ 8. Then the limiting power of the multivariate spacings
test, for a fixed function u : [0,∞)→ R, is given by

α if ||n
1
4 εn|| → 0,

Φ
(
−zα

2
+ cθ0(u, h)

)
+ Φ

(
−zα

2
− cθ0(u, h)

)
if ||n

1
4 εn|| → h,

1 if ||n
1
4 εn|| → ∞.

What is cθ0(u, h)?

cθ0 (u, h) =


1

σ(u)
E
[
h>∇θ1f(X|θ1)

f(X|θ1)

]2 ´∞
0
e−t( t

2

2 − t)u
′(t)dt if d ≤ 7,

1
σ(u)

E
[
h>∇θ1f(X|θ1)

f(X|θ1)

]2 ´∞
0
e−t( t

2

2 − t)u
′(t)dt+ bθ0 (u, h)︸ ︷︷ ︸

correction term

if d = 8.

Can be optimized over u to obtain the “optimal” test among the
class of tests Tn(u): Global test for uniformity, irrespective of the
alternative.
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Case 1: Simulations

For a fixed direction h ∈ Rp, consider the hypothesis

H0 : θ = θ0 versus H1 : θ = θ0 +
h

N b
,

as b varies from (0, 1).
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Case 2: Dimension Greater Than 8

Again, there are two critical exponents,

βd =

{
1
4 if d ≤ 8

1
2 − 2

d if d ≥ 9,

and the constant 1
4 .
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Theorem (B. (2019+))

The limiting power of the multivariate spacings test, for a fixed function
u : [0,∞)→ R, satisfies:

• If ||NβdεN || → 0, the limiting power of the test is α.

• If ||N 1
4 εN || → ∞, the limiting power of the test is 1.
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