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Preliminaries

The Goodness-of-Fit and the Two-Sample Problems

@ Let Zm = {X1,X2,...,Xn} be iid. samples from a densiy f in R%. The
goodness-of-fit problem is to test

Ho:f=fo versus Hi:f# fo,

where fo is some specified density in RY.
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Preliminaries

The Goodness-of-Fit and the Two-Sample Problems

@ Let Zm = {X1,X2,...,Xn} be iid. samples from a densiy f in R%. The
goodness-of-fit problem is to test

Ho: f=/fo versus Hi: f# fo,
where fo is some specified density in RY.
o Let 25, ={X1,X2,..., X} and %, = {Y1,Y>,...,Y,} be i.id. samples
from densities f and g in ]Rd, respectively. The two-sample problem is to

test
Ho:f=g versus Hi:f#g.

Nonparametric Inference and Geometric Probability



Preliminaries

The Goodness-of-Fit and the Two-Sample Problems

@ Let Zm = {X1,X2,...,Xn} be iid. samples from a densiy f in R%. The
goodness-of-fit problem is to test

Ho: f=/fo versus Hi: f# fo,
where fo is some specified density in RY.
o Let 25, ={X1,X2,..., X} and %, = {Y1,Y>,...,Y,} be i.id. samples

from densities f and g in R?, respectively. The two-sample problem is to
test

Ho:f=g versus Hi:f#g.
@ Parametric Analogues: Suppose {Pg}oco is a parametric family of
distributions in R?, where © C RP is the parameter space.
o Goodness-of-fit problem: For a specified value 6y € © consider

HO 29:9() versus H1 29#9(].
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Preliminaries

The Goodness-of-Fit and the Two-Sample Problems

@ Let Zm = {X1,X2,...,Xn} be iid. samples from a densiy f in R%. The
goodness-of-fit problem is to test

Ho: f=/fo versus Hi: f# fo,
where fo is some specified density in RY.
o Let 25, ={X1,X2,..., X} and %, = {Y1,Y>,...,Y,} be i.id. samples

from densities f and g in R?, respectively. The two-sample problem is to
test

Ho:f=g versus Hi:f#g.
@ Parametric Analogues: Suppose {Pg}oco is a parametric family of
distributions in R?, where © C RP is the parameter space.

o Goodness-of-fit problem: For a specified value 6y € © consider
HO 29:9() versus H1 29#9(].
o Two-sample problem:

H() : 91 = 02 versus H1 : 01 7& 92.
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Let 25, = {X1,Xa,...,X,} be iid. samples from a densiy f in R?. The
goodness-of-fit problem is to test

Ho: f=/fo versus Hi: f# fo,
where fo is some specified density in RY.
Let 2 = {X1,X2,..., X} and %, = {Y1,Y2,...,Y,} be i.i.d. samples
from densities f and g in R?, respectively. The two-sample problem is to
test
Ho:f=g versus Hi:f#g.

Parametric Analogues: Suppose {Pg}oco is a parametric family of
distributions in R?, where © C RP is the parameter space.

o Goodness-of-fit problem: For a specified value 6y € © consider

HO : 9 = 9() versus H1 : 9 75 9(].
o Two-sample problem:
H() : 91 = 02 versus H1 : 01 7& 92.

Throughout we will consider the asymptotic regime where m,n — oo,
such that -2~ — p € (0, 1), and the dimension is fixed.

m-+n
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Preliminaries

(Asymptotically) Distribution-Free Tests

e What are (asymptotically) distribution-free tests?
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Preliminaries

(Asymptotically) Distribution-Free Tests

e What are (asymptotically) distribution-free tests?
o Goodness-of-fit problem: The (asymptotic) null distribution of the
test statistic does not depend on null distribution fo.

o Classical univariate tests: Kolmogorov-Smirnov test.
o WE WILL DISCUSS MULTIVARIATE ANALOGUES: Bickel-Brieman
spacings test.
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Preliminaries

(Asymptotically) Distribution-Free Tests

e What are (asymptotically) distribution-free tests?
o Goodness-of-fit problem: The (asymptotic) null distribution of the
test statistic does not depend on null distribution fo.
o Classical univariate tests: Kolmogorov-Smirnov test.
o WE WILL DISCUSS MULTIVARIATE ANALOGUES: Bickel-Brieman
spacings test.
o Two-sample problem: The (asymptotic) null distribution of the test
statistic does not depend on the unknown null distribution f = g.

o Classical univariate tests: Wald-Wolfowitz runs test, Mann-Whitney
test.
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Preliminaries

(Asymptotically) Distribution-Free Tests

e What are (asymptotically) distribution-free tests?
o Goodness-of-fit problem: The (asymptotic) null distribution of the
test statistic does not depend on null distribution fo.
o Classical univariate tests: Kolmogorov-Smirnov test.
o WE WILL DISCUSS MULTIVARIATE ANALOGUES: Bickel-Brieman
spacings test.
o Two-sample problem: The (asymptotic) null distribution of the test
statistic does not depend on the unknown null distribution f = g.
o Classical univariate tests: Wald-Wolfowitz runs test, Mann-Whitney
test.
o WE WILL DISCUSS MULTIVARIATE ANALOGUES: Friedman-Rafsky test,
nearest-neighbor based tests, cross-match test, among others.

netric Inference and Geometric Probability



Preliminaries

(Asymptotically) Distribution-Free Tests

e What are (asymptotically) distribution-free tests?
o Goodness-of-fit problem: The (asymptotic) null distribution of the
test statistic does not depend on null distribution fo.
o Classical univariate tests: Kolmogorov-Smirnov test.
o WE WILL DISCUSS MULTIVARIATE ANALOGUES: Bickel-Brieman
spacings test.
o Two-sample problem: The (asymptotic) null distribution of the test
statistic does not depend on the unknown null distribution f = g.

o Classical univariate tests: Wald-Wolfowitz runs test, Mann-Whitney
test.

o WE WILL DISCUSS MULTIVARIATE ANALOGUES: Friedman-Rafsky test,
nearest-neighbor based tests, cross-match test, among others.
e Most (if not all) distribution-free goodness-of-fit/two-sample tests
are based on geometric graphs, like nearest-neighbor graphs,
minimum spanning trees, matchings, etc.
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Definitions and Properties
Two-Sample T Based on Geometric Graphs Asymptotic Efficiency of Graph-Basc
Detection Threshold

Outline

© Two-Sample Tests Based on Geometric Graphs
@ Definitions and Properties
o Asymptotic Efficiency of Graph-Based Tests
@ Detection Thresholds




Definitions and Properties
Two-Sample Tests Based on Geometric Graphs Asymptotic Efficiency of Graph-Based
Detection Threshold

Two-Sample Tests: An Overview

| Two-Sample Tests |

|
| |

| Paramteric Tests | | Nonparamteric Tests |

o Hotelling’s T2-test ‘

o Oja rank sum test (1998)
| Univariate | | Multivariate I— o Hall and Tajvidi (2002)

o Rousson (2002)

e Score Test
e Likelihood Ratio Test (GLR)

o Kolmogorov-Smirnov (1933)
o Mann-Whitney (1947)

5 e Wald-Wolfowitz (1943)

Multivariate geperalizatjon

Muld

variate generaliz ‘ ‘

Inter-point distances
| Dl (Kernel Methods)

o Tukey Depth (1975) =) 101y and Rizzo (2004)
e Mahalanobis Depth e Baringhaus-Franz (2004)
o Simplicial Depth (1992) * Gretton et al. (2012)

e Projection Depth (2003)

|Geometric Graphs |

o Friedman-Rafsky (1979)
o K-NN (1986)

e Rosenbaum (2005)

o TSP (2014)

o Chen-Friedman (2015

(Asymp.) Distribution Free|




Defi nd Properties
Two-Sample Tests Based on Geometric Graphs Asym ¢ Efficiency of Graph-Based Tests
Detection Threshold

Test Based on Nearest Neighbors Graphs

Bivariate normal data. Location shift. 3-NN graph.




and Properties
Two-Sample Tests Based on Geometric Graphs Asy Efficiency of Graph-Based Tests
Detection Threshold

Test Based on Nearest Neighbors Graphs

Bivariate normal data. Location shift. 3-NN graph.
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Definitions and Proper
mple Tests Based on Geometric Graphs Asymptotic Efficiency of G
Detection Threshold

Graph Based Two-Sample Tests

@ Let 4 be a graph functional in R?.




Two-Sample Tests Based on Geometric Graphs Ayt DEfeiomey f ComphBo
Detection Threshold

Graph Based Two-Sample Tests

@ Let ¢4 be a graph functional in R?. For any finite S C RY, 4(S) is a graph
with vertex set S.




Definitions and Properties
Two-Sample Tests Based on Geometric Graphs Asympto Efficiency of Graph-Based Tests
Detection Threshold,

Graph Based Two-Sample Tests

@ Let ¢4 be a graph functional in R?. For any finite S C RY, 4(S) is a graph
with vertex set S.

@ The 2-sample test statistic based on the graph functional ¢ is defined as

T(%(%:;)U D)) = ;;1{(&%) € E(@(Zm U %))}

= # edges across the two samples.
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Definitions and Properties
Two-Sample Tests Based on Geometric Graphs Asympto Efficiency of Graph-Based Tests
Detection Threshold,

Graph Based Two-Sample Tests

@ Let ¢4 be a graph functional in R?. For any finite S C RY, 4(S) is a graph
with vertex set S.

@ The 2-sample test statistic based on the graph functional ¢ is defined as

T(%(%:;)U D)) = ;;1{(&%) € E(@(Zm U %))}

= # edges across the two samples.

@ Reject when T'(¢) is small. Calibrate using asymptotic distribution.
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and Properties
Two-Sample Tests Based on Geometric Graphs Asy Efficiency of Graph-Based Tests
ection Threshold

Graph Based Two-Sample Tests

@ Let ¢4 be a graph functional in R?. For any finite S C RY, 4(S) is a graph
with vertex set S.

@ The 2-sample test statistic based on the graph functional ¢ is defined as

T(%(%:;)U D)) = ;;1{(&%) € E(@(Zm U %))}

= # edges across the two samples.

@ Reject when T'(¢) is small. Calibrate using asymptotic distribution.
Reject when {T'(¥) < Cpn,n}, where C,,p, is such that

lim Py, (T(9) < Cmn) = a.

m,n— oo
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and Properties
Two-Sample Tests Based on Geometric Graphs Asy Efficiency of Graph-Based Tests
ection Threshold

Graph Based Two-Sample Tests

@ Let ¢4 be a graph functional in R?. For any finite S C RY, 4(S) is a graph
with vertex set S.
@ The 2-sample test statistic based on the graph functional ¢ is defined as

m n

TG 200 %)) = 33 UXLY;) € B (2 U %)

e
(%) =

= # edges across the two samples.

@ Reject when T'(¢) is small. Calibrate using asymptotic distribution.
Reject when {T'(¥) < Cpn,n}, where C,,p, is such that

lim Py, (T(9) < Cmn) = a.

m,n— oo

@ In dimension 1: The Wald- Wolfowitz runs test (1940) counts the number
of runs.

Nonparametric Inference and Geometric Probability



Definitions and Properties
Two-Sample Tests Based on Geometric Graphs Asympto Efficiency of Graph-Based Tests
Detection Threshold,

Graph Based Two-Sample Tests

@ Let ¢4 be a graph functional in R?. For any finite S C RY, 4(S) is a graph
with vertex set S.
@ The 2-sample test statistic based on the graph functional ¢ is defined as

m n

TG 200 %)) = 33 UXLY;) € B (2 U %)

e
(%) =

= # edges across the two samples.

@ Reject when T'(¢) is small. Calibrate using asymptotic distribution.
Reject when {T'(¥) < Cpn,n}, where C,,p, is such that
lim Py, (T(9) < Cmn) = a.

m,n— oo

@ In dimension 1: The Wald- Wolfowitz runs test (1940) counts the number
of runs. This is a graph based test where ¢ = P is the path.

O < ® o O
Xy @ Yo) Yiz) X@)
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and Properties
ed Tests

Two-Sample Tests Based on Geometric Graphs Asy Efficiency of Graph-Ba

Friedman-Rafsky Test (1979)

ection Threshold

Definition (Minimal Spanning Tree (MST))
o Given a finite set S C R?, a spanning tree of S is a connected graph with
vertex-set S and no cycles.

© A mianimal spanning tree (MST) of S, denoted by T(S), is a spanning tree
with the smallest length, sum of Euclidean lengths of the edges.
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and Properties
Two-Sample Tests Based on Geometric Graphs Asy Efficiency of Graph-Based Tests
ection Threshold

Friedman-Rafsky Test (1979)

Definition (Minimal Spanning Tree (MST))

o Given a finite set S C R?, a spanning tree of S is a connected graph with
vertex-set S and no cycles.

© A mianimal spanning tree (MST) of S, denoted by T(S), is a spanning tree
with the smallest length, sum of Euclidean lengths of the edges.

@ The FR-test rejects Ho for small values of

i1 22— H{(Xi,Y)) € B(T(Zm U%h))}
N1 '

@ When two distributions are different, the number edges across samples 1
and 2 should be small.
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Friedman-Rafsky Test (1979)

Definition (Minimal Spanning Tree (MST))

o Given a finite set S C R?, a spanning tree of S is a connected graph with
vertex-set S and no cycles.

© A mianimal spanning tree (MST) of S, denoted by T(S), is a spanning tree
with the smallest length, sum of Euclidean lengths of the edges.

@ The FR-test rejects Ho for small values of

i1 22— H{(Xi,Y)) € B(T(Zm U%h))}
N1 '

@ When two distributions are different, the number edges across samples 1
and 2 should be small. This is precisely the Wald-Wolfowitz runs test in
d=1.

Nonparametric Inference and Geometric Probability



and Properties
Efficiency of Graph-Based Tests
ection Threshold

o Given a finite set S C R?, a spanning tree of S is a connected graph with
vertex-set S and no cycles.

© A mianimal spanning tree (MST) of S, denoted by T(S), is a spanning tree
with the smallest length, sum of Euclidean lengths of the edges.

@ The FR-test rejects Ho for small values of

im1 2251 H(X:, Y)) € B(T(Zm U %))}
N-1 '

@ When two distributions are different, the number edges across samples 1
and 2 should be small. This is precisely the Wald-Wolfowitz runs test in
d=1.

@ Other geometric graphs are often used:

o K-NN Test: ¢ is the K-nearest neighbor graph (Henze (1988), Schilling
(1989)).

e Cross Match Test: ¢ is the minimum non-bipartite matching
(Rosenbaum (2005)).
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Two-Sample Tests Based on Geometric Graphs Asy Bfficiency of Graph-Basec
Detection Threshold

Properties of Tests on Geometric Graphs

@ Asymptotic normality under the null of the centered statistic

(9 (2y) = mn
|[E(9(Zn))] NIV -1)

R(Y(ZN)) = VN < > B N(0,0%).

as N :=m+n — oo such that % — p € (0,1).
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Properties of Tests on Geometric Graphs

@ Asymptotic normality under the null of the centered statistic

(9 (2y) = mn
|[E(9(Zn))] NIV -1)

R(Y(ZN)) = VN < > B N(0,0%).

as N :=m+n — oo such that % — p € (0,1).

o Asymptotically distribution free: 0% does not depend on f.
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Properties of Tests on Geometric Graphs

@ Asymptotic normality under the null of the centered statistic

(9 (2y) = mn
|[E(9(Zn))] NIV -1)

R(Y(ZN)) = VN < > B N(0,0%).

as N :=m+n — oo such that % — p € (0,1).
o Asymptotically distribution free: 0% does not depend on f.

@ The level a test based on ¢ has rejection region
{R(¥(2n)) < —2a09},

where z, is the (1 — a)-th quantile of the standard normal.

Nonparametric Inference and Geometric Probability



and Properties
Two-Sample Tests Based on Geometric Graphs Asy Bfficiency of Graph-Basec
ection Threshold

Properties of Tests on Geometric Graphs

@ Asymptotic normality under the null of the centered statistic

(9 (2y) = mn
|[E(9(Zn))] NIV -1)

R(Y(ZN)) = VN < > B N(0,0%).

as N :=m+n — oo such that % — p € (0,1).
o Asymptotically distribution free: 0% does not depend on f.

@ The level a test based on ¢ has rejection region
{R(¥(2n)) < —2a09},

where z, is the (1 — a)-th quantile of the standard normal.

@ Consistent against fized alternatives. Power goes to 1 whenever the two
distributions differ on a set of positive measure (for parametric models,
when 61 — 02 = A, where A # 0 is fixed).
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and Properties
Two-Sample Tests Based on Geometric Graphs Asy Bfficiency of Graph-Basec
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Properties of Tests on Geometric Graphs

@ Asymptotic normality under the null of the centered statistic

(9 (2y) = mn
|[E(9(Zn))] NIV -1)

R(Y(ZN)) = VN < > B N(0,0%).

as N :=m+n — oo such that % — p € (0,1).
o Asymptotically distribution free: 0% does not depend on f.

@ The level a test based on ¢ has rejection region
{R(¥(2n)) < —2a09},

where z, is the (1 — a)-th quantile of the standard normal.

@ Consistent against fized alternatives. Power goes to 1 whenever the two
distributions differ on a set of positive measure (for parametric models,
when 61 — 02 = A, where A # 0 is fixed).

@ How can we compare these tests? Power against local alternatives.
Asymptotic (Pitman) efficiency.

o Hy:0:—0, =0, versus Hi:0;—0;, = JLN, for h € RP.
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Properties of Tests on Geometric Graphs

@ Asymptotic normality under the null of the centered statistic

(9 (2y) = mn
|[E(9(Zn))] NIV -1)

R(Y(ZN)) = VN < > B N(0,0%).

as N :=m+n — oo such that % — p € (0,1).
o Asymptotically distribution free: 0% does not depend on f.

@ The level a test based on ¢ has rejection region
{R(¥(2n)) < —2a09},

where z, is the (1 — a)-th quantile of the standard normal.

@ Consistent against fized alternatives. Power goes to 1 whenever the two
distributions differ on a set of positive measure (for parametric models,
when 61 — 02 = A, where A # 0 is fixed).

@ How can we compare these tests? Power against local alternatives.
Asymptotic (Pitman) efficiency.

o Hy:02—6, =0, versus H;:0;— 6, = \/LN’ for h € RP.
o The performances of the different tests can be compared using these
limiting power functions.

Nonparametric Inference and Geometric Probability
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Detection Threshold

Asymptotic Efficiency of Graph-Based Tests

Normal Location in d=4 Spherical Normal in d=10
R Bl
H H
T T T T T T T T T T T T T
00 05 10 15 20 25 30 05 10 15 20 25 30
Local Sqrt Separation Local Sart Separation

Py ~ N(6,1) Py ~ N(0,c2I)

Hp:0, —03=0 vs H1:91—02:\i—1ﬁ Hp:01 —02=0 vs H1101—02:\/%~
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Two-Sample Tests Based on Geometric Graphs Asymptotic y of Graph-Based Tests
Dete on Th

Asymptotic Efficiency of Graph-Based Tests

(Informal) Theorem (B. (2019))

The asymptotic efficiency of the two-sample test based on an undirected
graph functional ¢ is

AE(®) = |C(r) [(h, V f(2|60))\(2)dz|
V@ =)+ —2)(1—2r)}
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Two-Sample Tests Based on Geometric Graphs y of Graph-Based Tests

Asymptotic Efficiency of Graph-Based Tests

(Informal) Theorem (B. (2019))

The asymptotic efficiency of the two-sample test based on an undirected
graph functional ¢ is

AE(®) = |C(r) [(h, V f(2|60))\(2)dz|
V@ =)+ —2)(1—2r)}

where

e C(r) is a constant that only depends on
r:=2p(l—p),

1 for VN = {Vl, VYQ, ooog VN} 1.1.d. with
density £(-16o),

N N |T<£4<v s>>|
= 2 N 2
E@v)] " " T TE@n)P
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ie

Two-Sample Tests Based on Geometric Graphs y of Graph-Based Tests

Asymptotic Efficiency of Graph-Based Tests

(Informal) Theorem (B. (2019))

The asymptotic efficiency of the two-sample test based on an undirected
graph functional ¢ is

AE(®) = |C(r) [(h, V f(2|60))\(2)dz|
V@ =)+ —2)(1—2r)}

where

e C(r) is a constant that only depends on

r:=2p(l —p), Ko
1 for VN = {V17‘/§,...7VN} 1.1.d. with L
density f(-[6o),
2—stars
N N|T2(¢(Vn))|
P 2 N P

—————— 0, ONd
E@OVM) " |E(& (VN))I? . .

Nonparametric Inference and Geometric Probability
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Two-Sample Tests Based on Geometric Graphs Asymptoti. ncs of Graph-Based Tests
Detection Th E

Asymptotic Efficiency of Graph-Based Tests

d(z,9(Vy))
|E(&(VR))I/N
degree of vertex z in ¥(Vy U {z})
average degree of the graph

Nonparametric Inference and Geometric Probability
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Two-Sample Tests Based on Geometric Graphs Asymptotic BEfficiency of Graph-Based Tests
Detection Threshold

Asymptotic Efficiency of Graph-Based Tests

: d(z,9 (VX))
M = B @ N
degree of vertex z in ¥(Vy U {z})
N—+c0 average degree of the graph

e The function X is like a ‘centrality’
measure. Small values of A
correspond to extreme points.

Nonparametric Inference and Geometric Probability



>roperties

Definitions:
ncx of Graph-Based Tests

Asymptoti

»d on Geometric Graphs
Detection Th

Two-Sample Tests Ba

Asymptotic Efficiency of Graph-Based Tests

: d(z,9 (VX))
M = B @ N
degree of vertex z in ¥(Vy U {z})
"~ Nooo average degree of the graph

e The function X is like a ‘centrality’
measure. Small values of A
correspond to extreme points.

o If 9 = MST,

ATV o e
E@ )N - V)

and Geometric Probability

Nonparametric Inference a



Definitions and Properties
Two-Sample Tests Based on Geometric Graphs Asymptotic BEfficiency of Graph-Based Tests
Detection Threshold

Example: Friedman-Rafsy Test (MST)

o In this case, vg =1




Definitions and Properties
Two-Sample Tests Based on Geometric Graphs Asymptotic BEfficiency of Graph-Based Tests
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Example: Friedman-Rafsy Test (MST)

o In this case, 79 = 1 and

N
71 = lim w = lim iz (d(Vi’%(VN))) £ 1Var(Dd)Jrl.

N —o00 N—oc0 — 2
1=

Nonparametric Inference and Geometric Probability



Definitions and operties
Two-Sample Tests Based on Geometric Graphs Asymptotic BEfficiency of Graph-Based Tests
Detection Threshold

Example: Friedman-Rafsy Test (MST)

o In this case, 79 = 1 and

N
v1 = lim w = lim iz (d(\/;,%(VN))) ER 1Var(Dd)—H.

N —o00 N—o0 1 2
i=

o What is Dy?
o Aldous and Steele (1992) defined the MSF for infinite point sets
which are locally finite, using the Prim’s algorithm.
e Look at the MSF on a Poisson process of rate 1 with point 0 added to
it. Dq 1s the degree of the vertex 0 in this graph.

Nonparametric Inference and Geometric Probability
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Two-Sample Tests Based on Geometric Graphs Asymptoti ncs of Graph-Based Tests
Detection Th

Example: Friedman-Rafsy Test (MST)

@ In this case, 7o = 1 and

vy = A}gnoo w - A}gnoo % Z (d(w’%(vN))) EiS 1Var(D )+1.

e Aldous and Steele (1992) showed that

Az) = lim E(d(z,9(Zn))) =2,

N—o00

is independent of z.

Nonparametric Inference and Geometric Probability



Definitions >roperties
Two-Sample Tests Based on Geometric Graphs Asymptoti ncs of Graph-Based Tests
Detection Th

Example: Friedman-Rafsy Test (MST)

@ In this case, 7o = 1 and

N
TEWN) _ 1 d(Vi, 9(Vn))\ £ 1
= g PO = 3 () 5 v,
e Aldous and Steele (1992) showed that

Az) = lim E(d(z,9(2x))) = 2,

N—o00

is independent of z. Therefore, the numerator is

/(h, V £(2100))A()dz = 0.

Nonparametric Inference and Geometric Probability



Definitions >roperties
Two-Sample Tests Based on Geometric Graphs Asymptoti ncs of Graph-Based Tests
Detection Th

Example: Friedman-Rafsy Test (MST)

@ In this case, 7o = 1 and

N
= lim 2EON) _ g iz (d(v’”g(w))) B Ivar(pay+1.

N—oc0 N—oc0

e Aldous and Steele (1992) showed that
Mz) = lim E(d(z,9(2N))) = 2,

N—o00

is independent of z. Therefore, the numerator is

/(h, V£ (2100))A(2)d = 0.

The asymptotic (Pitman) efficiency of the test based on the MST is zero. I

Nonparametric Inference and Geometric Probability
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Detection Threshold

Stabilizing Graphs

e Convergence to the limiting Poisson graph.

e Local dependence.




Definitions and
Two-Sample Tests Based on Geometric Graphs Asymptotic Effi y of Graph-Based Tests
Detection Thresholds

Stabilizing Graphs

e Convergence to the limiting Poisson graph.

e Local dependence.

Definition (Penrose and Yukich (2003))

A translation and scale invariant graph functional ¥ stabilizes on & if
there exists a random but almost surely finite variable R such that

E(O,g(g)\’o)) = E(O,g(g@)\,o N B(O, R) U %))7

for all finite o7 C R4\ B(0, R).

Nonparametric Inference and Geometric Probability



Definitions and Properties
Two-Sample Tests Based on Geometric Graphs Asymptotic Efficiency of Graph-Based Tests

Detection Thresholds

Stabilizing Graphs

e Convergence to the limiting Poisson graph.

e Local dependence.

Definition (Penrose and Yukich (2003))

A translation and scale invariant graph functional ¥ stabilizes on & if
there exists a random but almost surely finite variable R such that

E(O,g(g)\’o)) = E(O,g(g@)\,o N B(O, R) U %))7

for all finite o7 C R4\ B(0, R).

e Includes MST, K-NN, Delaunay graphs, etc.

Nonparametric Inference and Geometric Probability
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Efficiency of Tests Based on Stabilizing Graphs

Theorem (B. (2019))

Let &4 be any translation and scale invariant graph functional which
stabilizing &1, such that

mazx degree

A(Y(ZnN))
N
———2— = 0Op(1), and sup E (d(Z1,9%(Zn))°) < oo,
E@(Zn)|/N p(1) Ne% (d(Z1,9(2n))°)
—_——

average degree moment condition

normality condition

for some s > 4. Then the asymptotic efficiency of the two-sample test
based on 9 is zero.

Nonparametric Inference and Geometric Probability
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operties
Asymptotic Effi

Two-Sample Tests Based on Geometric Graphs ncy of Graph-Based Tests

Detection Thresholds

Efficiency of Tests Based on Stabilizing Graphs

Theorem (B. (2019))

Let &4 be any translation and scale invariant graph functional which
stabilizing &1, such that

mazx degree

A(%(2x))

N = an su 1 s 00
FE@Emn =~ 0rW: and sup E(d(Z1,9(2n))") < oo,
—_————

average degree moment condition

normality condition

for some s > 4. Then the asymptotic efficiency of the two-sample test
based on 9 is zero.

The asymptotic efficiencies of the tests based on the MST or the K-NN
graphs are zero.

Nonparametric Inference and Geometric Probability




Definitions and Properties
Two-Sample Tests Based on Geometric Graphs Asymptotic BEfficiency of Graph-Based Tests
Detection Threshold

What Next?

nd Geomet



Definitions and Properties
Two-Sample T Based on Geometric Graphs Asymptotic BEfficiency of Graph-Based Tests
Detection Threshold

What Next?

e How can we compare these tests? For what sequence {en}n>1 going
to zero, can graph-based two-sample tests detect the hypothesis:

Hy:05—0, =0, versus Hi:0,—60; =¢ep.
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What Next?

e How can we compare these tests? For what sequence {en}n>1 going
to zero, can graph-based two-sample tests detect the hypothesis:

Hy:05—0, =0, versus Hi:0,—60; =¢ep.

o The above result shows ex = —= is too hard: zero Pitman efficiency.
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What Next?

e How can we compare these tests? For what sequence {en}n>1 going
to zero, can graph-based two-sample tests detect the hypothesis:

Hy:05—0, =0, versus Hi:0,—60; =¢ep.

o The above result shows ey = \/—hﬁ is too hard: zero Pitman efficiency.
o What is the detection threshold? A sequence any — 0, such that when

{ [len|| < an  the limiting power of the test is less than «,




Definitions and Properties
Two-Sample Tests Based on Geometric Graphs Asymptotic BEfficiency of Graph-Based Tests
Detection Threshold

What Next?

e How can we compare these tests? For what sequence {en}n>1 going
to zero, can graph-based two-sample tests detect the hypothesis:

Hy:05—0, =0, versus Hi:0,—60; =¢ep.

o The above result shows ey = \/—hﬁ is too hard: zero Pitman efficiency.
o What is the detection threshold? A sequence any — 0, such that when

llen|] < an  the limiting power of the test is less than a,
llen]| > an the limiting power of the test is 1.

nce and Geometric Probability
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Two-Sample Tests 1ised on Geometric Graphs Asymptotic Efficiency of Graph-Basc
D “tion Thresholds

A Heuristic Calculation

o Consider the hypothesis

Hy:0,— 60, =0 versus Hj:0,— 0, =eyp,

such that ||len|] — 0.




Definitic
Two-Sample Tests Based on Geometric Graphs Asymptc i
Dctu,tun T]ncsthds

A Heuristic Calculation

o Consider the hypothesis
Hy:0,—60, =0 versus Hj:0,—0; =¢cp,

such that ||len|] — 0.
o Guessing the detection threshold:

N~} {T(9(Zx)) - En,(T(%(Zx)))}

=N"3{T(9(Zx)) — En,(T(9(2x))} + N2 {Egy, (T(¥(2n)) — g, (T(9(Zn)))
=T, + T5.

Nonparametric Inference and Geometric Probability



Definitic
Two-Sample Tests Based on Geometric Graphs Asymptc i
Dctu,tun T]ncsthds

A Heuristic Calculation

o Consider the hypothesis
Hy:0,—60, =0 versus Hj:0,—0; =¢cp,

such that ||len|] — 0.
o Guessing the detection threshold:

N~} {T(H(Zx)) - En,(T(%(Zx)))}

=N"3{T(9(Zx)) — En,(T(9(2x))} + N2 {Egy, (T(%(2n)) — Ep, (T(9(Zn)))
=T, + T5.

(CLT under alternative) Under Hy, Ty i N(0,02(61,02,p))?
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Definitions and Properties
Two-Sample Tests Based on Geometric Graphs Asymptotic Efficiency o
Detection Thresholds

A Heuristic Calculation

o Consider the hypothesis
Hy:0,—60, =0 versus Hj:0,—0; =¢cp,

such that ||len|] — 0.
o Guessing the detection threshold:

N~} {T(9(Zx)) - En,(T(%(Zx)))}
—NHT(H(2N)) — Eu, (T (20))} + N~} {E, (T (Zn) - Eay(T(F ()
:Tl + TZ'

(CLT under alternative) Under Hy, Ty 2 N(0,02(61,02,p))?
(Mean difference) Derive the limit of T>, when 6 — 61 = eny — 0.

Nonparametric Inference and Geometric Probability



Definitions and Properties
Two-Sample Tests Based on Geometric Graphs Asymptotic Efficiency o
Detection Thresholds

A Heuristic Calculation

o Consider the hypothesis
Hy:0,—60,=0 versus Hj:0,—0; =¢cp,

such that ||len|] — 0.
o Guessing the detection threshold:
N"H{T(#(2n)) ~ Eny(T(#(2n)))}

=N"H{T(@(2w)) = Em, (T (2n)} + N2 {En, (T(# (2n)) ~ Emy (T(F(2)))

=T, + T5.
(CLT under alternative) Under Hy, Ty 2 N(0,02(61,02,p))?
(Mean difference) Derive the limit of T>, when 62 — 61 = eny — 0. If
by — 0, = 1,

Ty = N7 (6x5(61,02,p) — 6n(01,601,0)) ~ N2 ({02 — 61, Vén (61,61.1)))

Ep, (T(9(2N)) Eny(T(9(2nN))

~ %((h, Vo (61,601, p))) = 0.

Nonparametric Inference and Geometric Probability
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Two-Sample Tests Based on Geometric Graphs Asymptotic Efficiency ¢

Detection Thresholds

A Heuristic Calculation

o Consider the hypothesis

Hy:60:—60, =0 versus
such that ||len|] — 0.

Guessing the detection threshold:

Hy:0;—-0, =¢p,

N~} {T(H(Zx)) - En,(T(%(Zx)))}

=N"3{T(9(Zx)) — En,(T(9(2x))} + N~% {Egy, (T(%(2n)) — Ep, (T(9(Zn)))
=T, + T5.

(CLT under alternative) Under Hy, Ty i N(0,02(61,02,p))?

(Mean difference) Derive the limit of T>, when 62 — 61 = eny — 0.
If 0 — 01 = o,

N_%(éN(Gl,é?z,p) — 6N(91,91,p) ) ~ N_% (<(92 - 91),H5N(91,91,p)(92 - 01)>)

Epry (T(4(Zn))

Eno (T(9(2N))

= % ((h,Hon (01,01, p)h)) .

Nonparametric Inference and Geometric Probability
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Dctu,tun T]ncsthds

CLT Under Alternative: The K-NN Graph

(Informal) Theorem (B. (2020))

For the two-sample test based on the directed K-NN graph functional Nk, in
the Poissonized setting,

N™3 {T(Nx(24)) — Eay (TWNx (Za)} 2 N(0,0%(f, 9,p))-

@ Proved for the Wald’s run test (d = 1) by Lehmann (1953).

Nonparametric Inference and Geometric Probability
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CLT Under Alternative: The K-NN Graph

(Informal) Theorem (B. (2020))

For the two-sample test based on the directed K-NN graph functional Nk, in
the Poissonized setting,

N™3 {T(Nx(24)) — Eay (TWNx (Za)} 2 N(0,0%(f, 9,p))-

@ Proved for the Wald’s run test (d = 1) by Lehmann (1953).
@ It is also known that (Henze and Penrose (1999))

1 qu
—E Z ) —
NEmT#(2x) / + qg 1’))
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Definitic
Two-Sample Tests Based on Geometric Graphs Asymptc i
Dctu,tun T]ncsthds

CLT Under Alternative: The K-NN Graph

(Informal) Theorem (B. (2020))

For the two-sample test based on the directed K-NN graph functional Nk, in
the Poissonized setting,

N™3 {T(Nx(24)) — Eay (TWNx (Za)} 2 N(0,0%(f, 9,p))-

@ Proved for the Wald’s run test (d = 1) by Lehmann (1953).
@ It is also known that (Henze and Penrose (1999))

1 qu _paf(z)g(z)

—E G(ZN)) — /

NEmT(@(2N) + q9(x))

5(f,9,p)
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CLT Under Alternative: The K-NN Graph

(Informal) Theorem (B. (2020))

For the two-sample test based on the directed K-NN graph functional Nk, in
the Poissonized setting,

N™3 {T(Nx(24)) — Eay (TWNx (Za)} 2 N(0,0%(f, 9,p))-

@ Proved for the Wald’s run test (d = 1) by Lehmann (1953).

@ It is also known that (Henze and Penrose (1999))

1 qu
—E G(ZN)) —
NEmT#(2x) / + qg 1’))

5(f,9,p)

o Can we say
N T2k ~ 37,00 ) B N0,k (.02

o Need to show VN (FET(Nk (2x)) — 8(f,g,p)) — 07
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CLT Under Alternative: The K-NN Graph

(Informal) Theorem (B. (2020))

For the two-sample test based on the directed K-NN graph functional Nk, in
the Poissonized setting,

N™3 {T(Nx(24)) — Eay (TWNx (Za)} 2 N(0,0%(f, 9,p))-

@ Proved for the Wald’s run test (d = 1) by Lehmann (1953).

@ It is also known that (Henze and Penrose (1999))

1 qu
—E G(ZN)) —
NEmT#(2x) / + qg 1’))

5(f,9,p)

o Can we say
N T2k ~ 37,00 ) B N0,k (.02

o Need to show VN (xET(Nk (Zy)) — 6(f,9,p)) — 0?
e In dimension 1, R. Savage pointed out an issue in Lehmann’s original
proof.

Nonparametric Inference and Geometric Probability
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The Mean Difference

this manner. Since then it has been pointed out to me by R. Savage that when

the limit result for
(_ —E <L>)/¢ <_)
m m m

E(W/m)

we replace
by
1
2 [ v@/a + 0@ a,
the error is of the order

v [E(W/m) ~2 [ ¢@/tr+ o) dz}l,

as is seen from (5.4). Thus (5.3) is not enough to guarantee the validity of this
substitution. However, the numerical results obtained seemed sufficiently inter-
esting to leave them in, in the hope that a proof of their validity will soon be
forthcoming.
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The Mean Difference

this manner. Since then it has been pointed out to me by R. Savage that when

the limit result for
(_ —E <L>)/¢ <_)
m m m

E(W/m)

we replace
by
1
2 [ v@/a + 0@ a,
the error is of the order

Vi [E/m = 2 [ 9@/ + o @) |

as is seen from (5.4). Thus (5.3) is not enough to guarantee the validity of this
substitution. However, the numerical results obtained seemed sufficiently inter-
esting to leave them in, in the hope that a proof of their validity will soon be
forthcoming.

@ For dimension 1, +ET'(Nk(Zy)) — 0(f,9,p) = o(1/VN), and the
Lehmann claim can be easily validated.
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The Mean Difference

this manner. Since then it has been pointed out to me by R. Savage that when

the limit result for
(_ —E <L>)/¢ <_)
m m m

E(W/m)

we replace

by
2 [ 0@/ +¢@) iz,
{]
the error is of the order
Vi [E/m = 2 [ 9@/ + o @) |

as is seen from (5.4). Thus (5.3) is not enough to guarantee the validity of this
substitution. However, the numerical results obtained seemed sufficiently inter-
esting to leave them in, in the hope that a proof of their validity will soon be
forthcoming.

@ For dimension 1, +ET'(Nk(Zy)) — 0(f,9,p) = o(1/VN), and the
Lehmann claim can be easily validated.

@ Is this true for dimension d?
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The Mean Difference

this manner. Since then it has been pointed out to me by R. Savage that when

the limit result for
(_ —E <L>)/¢ <_)
m m m

E(W/m)

we replace

by
2 [ ¢@/t + @) d,
the error is of the order
Vi [E/m = 2 [ 9@/ + o @) |
as is seen from (5.4). Thus (5.3) is not enough to guarantee the validity of this
substitution. However, the numerical results obtained seemed sufficiently inter-

esting to leave them in, in the hope that a proof of their validity will soon be
forthcoming.

@ For dimension 1, +ET'(Nk(Zy)) — 0(f,9,p) = o(1/VN), and the
Lehmann claim can be easily validated.

@ [s this true for dimension d? If yes, then the test will have power against
1
O(N™17) alternatives, and the heuristic would be correct.
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The Mean Difference

this manner. Since then it has been pointed out to me by R. Savage that when

the limit result for
(_ —E (L))/.r <_)
m m m

E(W/m)

we replace

by
2 [ 0@/ +¢@) iz,
{]
the error is of the order
v [E(W/m) —2 [ ¢@/t+ o) dz}l,

as is seen from (5.4). Thus (5.3) is not enough to guarantee the validity of this
substitution. However, the numerical results obtained seemed sufficiently inter-
esting to leave them in, in the hope that a proof of their validity will soon be
forthcoming.

@ For dimension 1, +ET'(Nk(Zy)) — 0(f,9,p) = o(1/VN), and the
Lehmann claim can be easily validated.

@ [s this true for dimension d? If yes, then the test will have power against

O(N _%) alternatives, and the heuristic would be correct. Otherwise, the
rate of convergence competes with the Hessian term to determine the
scaling for local power.
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Two-Sample Tests Based on Geometric Graphs Asymptotic Effic
Detection Thresholds

Case 1: Dimension Less or Equals 8

Theorem (B. (2020))

Suppose dimension d < 8. Then the limiting power of the directed K-NN
test is given by

o if ||N%5N||—>0,
® (2o + cip, (b)) if Niey —h,
1 if ||Nien|| = oo.

Nonparametric Inference and Geometric Probability
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Case 1: Dimension Less or Equals 8

Theorem (B. (2020))

Suppose dimension d < 8. Then the limiting power of the directed K-NN
test is given by

o if ||N%5N||—>0,
® (2o + cip, (b)) if Niey —h,
1 if ||Nien|| = oo.

e The heuristic is correct: The detection threshold is at O(N *i) and
is driven by the Hessian term (second-order efficiency).
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Case 1: Dimension Less or Equals 8

Theorem (B. (2020))

Suppose dimension d < 8. Then the limiting power of the directed K-NN
test is given by

o if ||N%5N||—>0,
® (2o + cip, (b)) if Niey —h,
1 if ||Nien|| = oo.

e The heuristic is correct: The detection threshold is at O(N *i) and
is driven by the Hessian term (second-order efficiency).

o What is cx g, (h)?

2K [h Vo, F(X100)]° ,
QO'KE|: f?}XQ\Gl) l] if d<7,
cix9,(h) = -2 TV, F(X|0 .
wo( =Y ga MU () if d=8.
N——

correction term

Nonparametric Inference and Geometric Probability
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Case 1: Simulations

@ For a fized direction h € R?, consider the hypothesis
yp

h
H0:02:91 versus H1:92:91+m,

as b varies from (0, 1).
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Case 1: Simulations

@ For a fized direction h € R?, consider the hypothesis
h
Ho:02 =0, versus Hip:0; =0+ m,

as b varies from (0, 1).

e b= 0: Corresponds to fixed alternatives.
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Two-Sample Tests Based on Geometric Graphs Asymptotic Efficiency of Graph-Ba
Detection Thresholds

Case 1: Simulations

@ For a fized direction h € R?, consider the hypothesis

h
Ho : 60y =01 versus H1:92:91+Nb,

as b varies from (0, 1).

e b= 0: Corresponds to fixed alternatives.
o b =0.5: Parametric detection rate.

o b =0.25: Predicted rate of detection for the K-NN test.
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Asymptotic Efficiency of Graph-Base
Detection Thresholds

Two-Sample Tests Based on Geometric Graphs

Case 1: Simulations

@ For a fized direction h € R?, consider the hypothesis

h

Ho:02 =0, versus Hip:0; =0+ No
as b varies from (0,1).
e b= 0: Corresponds to fixed alternatives.
o b = 0.5: Parametric detection rate.

o b =0.25: Predicted rate of detection for the K-NN test.

Normal Location in d=4

Power

T
1 075 0s 025 o

Separaton (Exponent b)

Pg ~ N(0,1)
H0:01762:0 vs H1:917927L




Definitions and Properties
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D “tion Thresholds

Case 1: Simulations

@ For a fized direction h € R?, consider the hypothesis
h

Ho:02 =0, versus Hip:0; =0+ No
as b varies from (0,1).
e b= 0: Corresponds to fixed alternatives.
o b = 0.5: Parametric detection rate.

o b =0.25: Predicted rate of detection for the K-NN test.

Normal Location in d=4
s{—

NN

[CE

™

‘Spherical Normalin d=4

10

Power

H
H
kL T T T T L T T T T
1 015 0s 025 o 1 075 0s 025 3
Separation (Exporent ) Negatve Separason (Exponent b)
Py ~ N(8,1) P, ~ N(0,c°1)
H0:01762:0 vs Hllelfegiﬁ H0:0‘170'2:O Vs leo'lfo'gzﬁ‘
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Case 2: Dimension Greater Than 8

o Consider dimension d = 10. For a fixed direction h € R?, consider
the hypothesis, as b varies from (0, 1),

h
H0:02=91 versus H1:02 201+ﬁ.
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Detection Thresholds

Case 2: Dimension Greater Than 8

o Consider dimension d = 10. For a fixed direction h € R?, consider
the hypothesis, as b varies from (0, 1),

H0:02=91 versus H1:02 201+ﬁ.

Normal Location in d=10

Power

T T
1 o7 05 025 o

Separaton (Exponent )
Py ~ N(0,1)
H0191792:0 vs H1:01702:#
Threshold still around at b = 0.25.




Definitions and Properties
Two-Sample T Based on Geometric Graphs Asymptotic Efficiency of Graph-Base
Detection Thresholds

Case 2: Dimension Greater Than 8

o Consider dimension d = 10. For a fixed direction h € R?, consider
the hypothesis, as b varies from (0, 1),

h
H0:02=91 versus H1:02 201+ﬁ.

Normal Location in d=10 ‘Spherical Normal in d=10

Power
Power

L T T T T Y
1 o075 0s 025 o 1 09 08 07 05 05 04 03 02 01 0
Separation (Exporent ) Positve Separation (Exponent b)
Po ~ N(6,1) P, ~ N(0,0%1)
H0191792:0 VS H1:01702:# H020'170'2:0 VS H1:0‘170'2 %

Threshold still around at b = 0.25. Threshold moves closer to b = 0.5.
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Two-Sample T Based on Geometric Graphs Asymptotic Efficiency of Graph-Basc
Detection Thresholds

Case 2: Dimension Greater Than 8

o Consider dimension d = 10. For a fixed direction h € R?, consider
the hypothesis, as b varies from (0, 1),

h
H0:02=91 versus H1:02 201+ﬁ.

Normal Location in d=10 ‘Spherical Normal in d=10

Power
Power

T T — T T T T T T T T T
1 o7 05 025 o 1 09 08 07 06 05 04 03 02 01 0

Separaton (Exponent ) Posive Separason Exponent )
Po ~ N(6,1) P, ~ N(0,0%1)
H0191792:0 vs Hltelfezzﬁ H010'170'2:0 vs H1:01702:%‘
Threshold still around at b = 0.25. Threshold moves closer to b = 0.5.

@ The detection threshold might not be universal: Depends on the
distribution of the data and the sign of the alternative.

Non ic In
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Case 2: Dimension Greater Than 8

Theorem (Continued) (B. (2020))

Suppose dimension d > 9. Then the limiting power of the K-NN test is
given by

o if IN2~Fen|| =0,
® (2o + brco, (h) if Nz~degy — h,
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Two-Sample Tests Based on Geometric Graphs

Case 2: Dimension Greater Than 8

Theorem (Continued) (B. (2020))
Suppose dimension d > 9. Then the limiting power of the K-NN test is

given by
a if IN2=Zen]|| — O,
® (2o + brco, (h) if Nz~degy — h,
1/0 if |IN2-dey|| — oo and |[Niey|| — 0,
1 if |[Nien]|| = oo,
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Two-Sample Tests Based on Geometric Graphs D nc
Thresholds

Case 2: Dimension Greater Than 8

Theorem (Continued) (B. (2020))
Suppose dimension d > 9. Then the limiting power of the K-NN test is

given by
o if IN2~Fen|| =0,
® (2o + brco, (h) if Nz~degy — h,
1/0 if |IN2-dey|| — oo and |[Niey|| — 0,
1 if |[Nien]|| = oo,

where by g, (h) := —A(p, K) [ h' V,, (W) £ (2)6)d.

Nonparametric Inference and Geometric Probability
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Detection Thresholds

Case 2: Dimension Greater Than 8

Theorem (Continued) (B. (2020))
Suppose dimension d > 9. Then the limiting power of the K-NN test is
given by

o if IN2=depn|| = O,

® (20 + bro, (h) if Ni2~iey — h,
1/0 if |IN2-dey|| — oo and |[Niey|| — 0,
1 if |[Nien]|| = oo,

where by g, (h) := —A(p, K) [ h' V,, (W) 7 (x|01)dx.

o The heuristic is incorrect for dimensions greater than 8: The
detection threshold is driven by the rate of convergence of the
gradient term.

o The detection threshold might not be universal: Depends on the
distribution of the data and the sign of the alternative.

Nonparametric Inference and Geometric Probability
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Summarizing the Result: Critical Exponents

In general, there are two critical exponents,

1 1 J
1 Y od<s L
Bd_{ %7%7 ’Yd_{ % lf dzg S \

nce and Geometric Probability
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Summarizing the Result: Critical Exponents

In general, there are two critical exponents,

5 1 [ it dss =
AT L2, T i a0 T

Theorem (Restated) (B. (2020))

Consider testing Hy : 05 — 01 = 0 versus Hy : 65 — 01 = e, based on the
directed K-NN graph functional. Then

o If|[NPicy|| — 0, the limiting power of the test is c.
o If||[N7Vepn|| — oo, the limiting power of the test is 1.

Nonparametric Inference and Geometric Probability
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© More Examples
@ Goodness-of-Fit Tests Based on Geometric Graphs
@ Independence Tests Based on Geometric Graphs
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Goodness-of-Fit Tests

@ Let Zm = {X1,X2,..., X} be iid. samples from a distribution F in RY.
The goodness-of-fit problem is to test

Ho: F=F, versus H;:F # Fp.




sed on Geometric Graphs
d on Geometric Graphs
More Examples -

Goodness-of-Fit Tests

@ Let Zm = {X1,X2,..., X} be iid. samples from a distribution F in RY.
The goodness-of-fit problem is to test

Ho: F=F, versus H;:F # Fp.

@ Well-known asymptotically distribution-free univariate tests:

o Chi-squared test: Fix cells and compare the observed frequencies in
each cell with the expected frequency under Hy.
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@ Let Zm = {X1,X2,..., X} be iid. samples from a distribution F in RY.
The goodness-of-fit problem is to test

Ho: F=F, versus H;:F # Fp.

@ Well-known asymptotically distribution-free univariate tests:

o Chi-squared test: Fix cells and compare the observed frequencies in
each cell with the expected frequency under Hy.
o Spacings Test: For each X;, define its 1-step spacing as

Di = Fo(X(i+1)) — Fo(X(i))-

Consider tests based on {nD;}i<i<n.
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Goodness-of-Fit Tests

@ Let Zm = {X1,X2,..., X} be iid. samples from a distribution F in RY.
The goodness-of-fit problem is to test

Ho: F=F, versus H;:F # Fp.

@ Well-known asymptotically distribution-free univariate tests:

o Chi-squared test: Fix cells and compare the observed frequencies in
each cell with the expected frequency under Hy.
o Spacings Test: For each X;, define its 1-step spacing as

Di = Fo(X(i+1)) — Fo(X(i))-

Consider tests based on {nD;}i<;<n. For example, for a (known)
function u : [0,00) — R, reject Hy for large values of

{ Eo[u(nD; )]}‘

Common choices of functions are u(z) = e~ or u(z) = logz. (Pyke

(1965), Hall (1986))
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The Multivariate Spacings Test

@ How to define multivariate spacings? Use “nearest-neighbor” balls (Bickel
and Breiman (1983)).

@ For each point X;, define its multivariate spacing as

pro(X) = Fo(BOGR) = [ pade .
B(X;,R;)
B(X;, R;)
where B(z,r) is the ball of radius r around z, and R; . .
is the the nearest-neighbor distance from X;. .
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The Multivariate Spacings Test

@ How to define multivariate spacings? Use “nearest-neighbor” balls (Bickel
and Breiman (1983)).

@ For each point X;, define its multivariate spacing as

pro(X) = Fo(BOGR) = [ pade .
B(X;,R;)
B(X;, R;)
where B(z,r) is the ball of radius r around z, and R; . .
is the the nearest-neighbor distance from X;. .

® Multivariate Spacings Test: For a (known) function u : [0, 00) — R, reject
Hy for large values of

’\/lﬁ Z {u(npr, (Xi)) — Eolu(npr (X))} -
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The Multivariate Spacings Test

@ How to define multivariate spacings? Use “nearest-neighbor” balls (Bickel
and Breiman (1983)).

@ For each point X;, define its multivariate spacing as

pro(X) = Fo(BOGR) = [ pade .
B(X;,R;)
B(X;, R;)
where B(z,r) is the ball of radius r around z, and R; . .
is the the nearest-neighbor distance from X;. .

® Multivariate Spacings Test: For a (known) function u : [0, 00) — R, reject
Hy for large values of

1 n
’\/ﬁ > A{ulnpr, (X3)) = Bolu(npr, (X))} -
i=1
@ The Bickel-Breiman Approzimation: Replace ur,(X;) by
D; = Vol(B(0,1)) fo(X,)RY.
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Properties of the Spacings Test

o Asymptotically distribution free: Under Hy,
1 < D
Tow) 1= = 3 {ulnpry (X0)) = Eolulniar, (X))} B N(0.0%(),
i=1

where o2 (u) does not depend on Fp.
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o Asymptotically distribution free: Under Hy,
1 < D
Tow) 1= = 3 {ulnpry (X0)) = Eolulniar, (X))} B N(0.0%(),
i=1

where o2 (u) does not depend on Fp.

@ The level o test has rejection region {|T5 (u)| > za o(u)}
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Properties of the Spacings Test

o Asymptotically distribution free: Under Hy,
1 < D
Tow) 1= = 3 {ulnpry (X0)) = Eolulniar, (X))} B N(0.0%(),
i=1

where o2 (u) does not depend on Fp.
@ The level o test has rejection region {|T5 (u)| > za o(u)}

o Consistent against fized alternatives. Power goes to 1 whenever 6 # 6.
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Properties of the Spacings Test

o Asymptotically distribution free: Under Hy,
1 < D
Tow) 1= = 3 {ulnpry (X0)) = Eolulniar, (X))} B N(0.0%(),
i=1

where o2 (u) does not depend on Fp.
@ The level o test has rejection region {|T5 (u)| > za o(u)}
o Consistent against fized alternatives. Power goes to 1 whenever 6 # 6.

@ How can we compare these tests? What sequence {e, }n>1 going to zero is
detectable:
Hy:0=106y, versus Hi:0=00+c¢cn,.
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Properties of the Spacings Test

o Asymptotically distribution free: Under Hy,
1 < D
Tow) 1= = 3 {ulnpry (X0)) = Eolulniar, (X))} B N(0.0%(),
i=1

where o2 (u) does not depend on Fp.
@ The level o test has rejection region {|T5 (u)| > za o(u)}
o Consistent against fized alternatives. Power goes to 1 whenever 6 # 6.

@ How can we compare these tests? What sequence {e, }n>1 going to zero is
detectable:
Hy:0=106y, versus Hi:0=00+c¢cn,.

@ As before, can be shown that ¢, = % is too hard: zero Pitman efficiency.
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Properties of the Spacings Test

o Asymptotically distribution free: Under Hy,
1 < D
Tow) 1= = 3 {ulnpry (X0)) = Eolulniar, (X))} B N(0.0%(),
i=1

where o2 (u) does not depend on Fp.
@ The level o test has rejection region {|T5 (u)| > za o(u)}
o Consistent against fized alternatives. Power goes to 1 whenever 6 # 6.

@ How can we compare these tests? What sequence {e, }n>1 going to zero is
detectable:

Hy:0=106y, versus Hi:0=00+c¢cn,.

@ As before, can be shown that ¢, = Ln is too hard: zero Pitman efficiency.
What is the detection threshold?

Nonparametric Inference and Geometric Probability



More Examples

Properties of the Spacings Test

o Asymptotically distribution free: Under Hy,
1 < D
Tow) 1= = 3 {ulnpry (X0)) = Eolulniar, (X))} B N(0.0%(),
i=1

where o2 (u) does not depend on Fp.
@ The level o test has rejection region {|T5 (u)| > za o(u)}
o Consistent against fized alternatives. Power goes to 1 whenever 6 # 6.

@ How can we compare these tests? What sequence {e, }n>1 going to zero is
detectable:

Hy:0=106y, versus Hi:0=00+c¢cn,.

@ As before, can be shown that ¢, = Ln is too hard: zero Pitman efficiency.
What is the detection threshold?

o Dimension 1: O(N*i). (Holst and Rao (1981))
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Properties of the Spacings Test

o Asymptotically distribution free: Under Hy,
1 < D
Tow) 1= = 3 {ulnpry (X0)) = Eolulniar, (X))} B N(0.0%(),
i=1

where o2 (u) does not depend on Fp.
@ The level o test has rejection region {|T5 (u)| > za o(u)}
o Consistent against fized alternatives. Power goes to 1 whenever 6 # 6.

@ How can we compare these tests? What sequence {e, }n>1 going to zero is
detectable:
Hy:0=106y, versus Hi:0=00+c¢cn,.
@ As before, can be shown that ¢, = Ln is too hard: zero Pitman efficiency.
What is the detection threshold?
o Dimension 1: O(N*i). (Holst and Rao (1981))
o Higher dimensions: O(N*ﬁ)., if d < 8. (Zhou and Rao (1993))
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Properties of the Spacings Test

o Asymptotically distribution free: Under Hy,
1 < D
Tow) 1= = 3 {ulnpry (X0)) = Eolulniar, (X))} B N(0.0%(),
i=1

where o2 (u) does not depend on Fp.
@ The level o test has rejection region {|T5 (u)| > za o(u)}
o Consistent against fized alternatives. Power goes to 1 whenever 6 # 6.

@ How can we compare these tests? What sequence {e, }n>1 going to zero is
detectable:

Hy:0=106y, versus Hi:0=00+c¢cn,.
@ As before, can be shown that ¢, = Ln is too hard: zero Pitman efficiency.
What is the detection threshold?
o Dimension 1: O(N*i). (Holst and Rao (1981))

o Higher dimensions: O(N*ﬁ)., if d < 8. (Zhou and Rao (1993))
o Dimension 8 or higher: Threshold changes. Curious case of
dimension 8 appears again. (B. (2022+))

Nonparametric Inference and Geometric Probability



Goodness

More Examples Independence T

Graph Based Independence Tests

@ Suppose {(X1,Y1), (X2,Y2),...,(Xn,Yn)} be iid. samples from a
distribution F' in R%17%2,

aphs




on Geometri

More Example on Geometric
ore Examples

Graph Based Independence Tests

@ Suppose {(X1,Y1), (X2,Y2),...,(Xn,Yn)} be iid. samples from a
distribution F in R %2 Denote the marginal distributions of X1 and Y1
by F1 and F», respectively.
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Graph Based Independence Tests

@ Suppose {(X1,Y1), (X2,Y2),...,(Xn,Yn)} be iid. samples from a
distribution F in R %2 Denote the marginal distributions of X1 and Y1
by F1 and F», respectively.

@ The independence testing problem is the following hypotheses:

Hoy:F=FL®F, versus Hi:F # Fi1 ® Fs.
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Graph Based Independence Tests

@ Suppose {(X1,Y1), (X2,Y2),...,(Xn,Yn)} be iid. samples from a
distribution F in R %2 Denote the marginal distributions of X1 and Y1
by F1 and F», respectively.

@ The independence testing problem is the following hypotheses:
Hoy:F=FL®F, versus Hi:F # Fi1 ® Fs.

@ Chatterjee’s Correlation Coefficient: A measure of correlation between 2
variables in dimension 1. (Chatterjee (2020))

o Based on the relative ranks of data points. Has several attractive
properties.
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Graph Based Independence Tests

@ Suppose {(X1,Y1), (X2,Y2),...,(Xn,Yn)} be iid. samples from a
distribution F in R %2 Denote the marginal distributions of X1 and Y1
by F1 and F», respectively.

@ The independence testing problem is the following hypotheses:
Hoy:F=FL®F, versus Hi:F # Fi1 ® Fs.

@ Chatterjee’s Correlation Coefficient: A measure of correlation between 2
variables in dimension 1. (Chatterjee (2020))

o Based on the relative ranks of data points. Has several attractive
properties.

o This has been generalized to higher-dimensions using geometric
graphs (Deb, Ghosal, and Sen (2020)).
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Graph Based Independence Tests

@ Suppose {(X1,Y1), (X2,Y2),...,(Xn,Yn)} be iid. samples from a
distribution F in R %2 Denote the marginal distributions of X1 and Y1
by F1 and F», respectively.

@ The independence testing problem is the following hypotheses:
Hoy:F=FL®F, versus Hi:F # Fi1 ® Fs.

@ Chatterjee’s Correlation Coefficient: A measure of correlation between 2
variables in dimension 1. (Chatterjee (2020))

o Based on the relative ranks of data points. Has several attractive
properties.

o This has been generalized to higher-dimensions using geometric
graphs (Deb, Ghosal, and Sen (2020)).

o Has zero Pitman efficiency in dimension 1. (Shi, Drton, and Han (2022))
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Graph Based Independence Tests

@ Suppose {(X1,Y1), (X2,Y2),...,(Xn,Yn)} be iid. samples from a
distribution F in R %2 Denote the marginal distributions of X1 and Y1
by F1 and F», respectively.

@ The independence testing problem is the following hypotheses:
Hoy:F=FL®F, versus Hi:F # Fi1 ® Fs.

@ Chatterjee’s Correlation Coefficient: A measure of correlation between 2
variables in dimension 1. (Chatterjee (2020))

o Based on the relative ranks of data points. Has several attractive
properties.

o This has been generalized to higher-dimensions using geometric
graphs (Deb, Ghosal, and Sen (2020)).

o Has zero Pitman efficiency in dimension 1. (Shi, Drton, and Han (2022))

@ What is the detection threshold?

. . _1
e Dimension 1: O(N™4). (Auddy, Deb, and Nandy (2021))
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Graph Based Independence Tests

@ Suppose {(X1,Y1), (X2,Y2),...,(Xn,Yn)} be iid. samples from a
distribution F in R %2 Denote the marginal distributions of X1 and Y1
by F1 and F», respectively.

@ The independence testing problem is the following hypotheses:
Hoy:F=FL®F, versus Hi:F # Fi1 ® Fs.

@ Chatterjee’s Correlation Coefficient: A measure of correlation between 2
variables in dimension 1. (Chatterjee (2020))

o Based on the relative ranks of data points. Has several attractive
properties.
o This has been generalized to higher-dimensions using geometric
graphs (Deb, Ghosal, and Sen (2020)).
o Has zero Pitman efficiency in dimension 1. (Shi, Drton, and Han (2022))
@ What is the detection threshold?

) ) 1

e Dimension 1: O(N™4). (Auddy, Deb, and Nandy (2021))

o Curious case of dimension 8 is expected to appear in higher
dimensions.
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@ Rate of detection at O(Nfi) for dimension up to 8 (second-order
efficiency).
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@ Rate of detection at O(Nfi) for dimension up to 8 (second-order
efficiency).

The rate of detection has a curious phase transition in dimension 8.
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Summary

o

@ Random geometric graphs are important tools for constructing
non-parametric tests.

@ These tests are usually distribution-free but are often Pitman inefficient.

@ Rate of detection at O(Nfi) for dimension up to 8 (second-order
efficiency).

@ The rate of detection has a curious phase transition in dimension 8.

@ The uniform spanning forest changes its geometry at dimension 8
(Pemantle (1991), Benjamini, Kesten, Peres, and Schramm (2003)).




More Examples

Summary

o

@ Random geometric graphs are important tools for constructing
non-parametric tests.

@ These tests are usually distribution-free but are often Pitman inefficient.

@ Rate of detection at O(Nfi) for dimension up to 8 (second-order
efficiency).
@ The rate of detection has a curious phase transition in dimension 8.

@ The uniform spanning forest changes its geometry at dimension 8
(Pemantle (1991), Benjamini, Kesten, Peres, and Schramm (2003)).

@ Connections?
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Parsing the Theorem: The Good and the Bad

(Fix an alternative direction h € R? and suppose ey = dnh, such that 6y — 0.)

@ by ,9,(h) > 0: These are the ‘good’
directions. Detection threshold improves with
dimension. Blessing of dimensionality.

H
1_2
a N2~ 36y — 0,
1 2
@ (2o + Abi,9, () >a N2 déy = A >0,
1 2 N
1 N2 35y — oo. :

1 03 08 07 05 05 04 03 02 01 0

Posiove Separaon (Expon b

Hy:01— 02 = 2.
1 1 2 ~b
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Parsing the Theorem: The Good and the Bad

(Fix an alternative direction h € R? and suppose ey = dnh, such that 6y — 0.)

® bk, (h) > 0: These are the ‘good’
directions. Detection threshold improves with
dimension. Blessing of dimensionality.

1 2
e N2 36y — 0,
1 2
@ (2o + Abi,9,(h)) >a N2 déy — A >0,
1 2
1 N2 36y —

@ b9, (h) <O:

Spherical Normal in d=10

1 03 08 07 05 05 04 03 02 01 o

Positve Separaon (Exponer )

Hy:01—0p = 2.
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Parsing the Theorem: The Good and the Bad

(Fix an alternative direction h € RP and suppose ey = dnh, such that éy — 0.)

‘Spherical Normal in d=10

@ by 9, (h) > 0: These are the ‘good’ R
directions. Detection threshold improves with
dimension. Blessing of dimensionality. N
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5N — 0,
1
® (20 + Ao, () >a NZ- a6y = A >0,
) N

o

2
ddn — 0.
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. _ _ 2
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@ bx 9, (h) <0: These are the ‘bad’ Sonerca Normat 10
directions. Detection threshold worsens 2
with dimension.

o N%~ 35y =0, L
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0 N2~ 46y - ooand Naoy —0,
1 Naon — oo. o
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Parsing the Theorem: The Good and the Bad

(Fix an alternative direction h € RP and suppose ey = dnh, such that éy — 0.)

‘Spherical Normal in d=10

@ by 9, (h) > 0: These are the ‘good’ R
directions. Detection threshold improves with
dimension. Blessing of dimensionality. N

[SY[N)

1
2

=

5N — 0,
1
® (20 + Ao, () >a NZ- a6y = A >0,
) N

o

2
ddn — 0.

E

. _ _ 2
Hy:0q g2 = -

@ bx 9, (h) <0: These are the ‘bad’ ol Nornal =10
directions. Detection threshold worsens with 3
dimension. Non-monotonicity of power.

o N%~ 35y =0, L
P (20 + Moy () <o QN%—%(SN —A>0, :
0 N2~ 46y - ooand Naoy —0,
1 Naon — oo. o
Hi:or—op=— 2.
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Zooming in at Thresholds: Spherical Normal

o We can zoom in at the two thresholds O(N~2+3) and O(N~4), and
observe the phase transitions of the power function.

Spherical Normal in d=10
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Degenerate Directions: Normal Location

e What about by g(h) = 07 These are the “degenerate directions”.
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Degenerate Directions: Normal Location

e What about by g(h) = 07 These are the “degenerate directions”.

e Consider the normal location family Py ~ N(6,1), and suppose
H0202—91 =0 versus H1292—91:EN.

e Here, bk o(h) = 0, that is, all directions are degenerate.
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More Bxamples Independence Test 0 metric Graphs

Degenerate Directions: Normal Location

e What about by g(h) = 07 These are the “degenerate directions”.

e Consider the normal location family Py ~ N(6,1), and suppose
H0202—91 =0 versus H1292—91:EN.

e Here, bk o(h) = 0, that is, all directions are degenerate.

@ Direct calculations show that the two-sample test based on the
directed K-NN graph satisfies

o If HNiENH — 0, the limiting power of the test is a.
o If HNiaNH — 00, the limiting power of the test is 1.
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More Bxamples Independence Test : metric Graphs

Degenerate Directions: Normal Location

e What about by g(h) = 07 These are the “degenerate directions”.

e Consider the normal location family Py ~ N(6,1), and suppose
H0202—91 =0 versus H1292—91:EN.

e Here, bk o(h) = 0, that is, all directions are degenerate.
@ Direct calculations show that the two-sample test based on the
directed K-NN graph satisfies
o If HNiENH — 0, the limiting power of the test is a.
o If HNiaNH — 00, the limiting power of the test is 1.
o Ifey = hN ™1, for some h € RP\{0}, the limiting power of the test is

r’K

(T) age’ o
(7 + 20K

20 07x).

where V; = |B(0,1)| is the volume of the unit ball in R¢, and o is
the null variance.
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More Bxamples Independence Test : metric Graphs

Degenerate Directions: Normal Location

e What about by g(h) = 07 These are the “degenerate directions”.

e Consider the normal location family Py ~ N(6,1), and suppose
H0202—91 =0 versus H1292—91:EN.

e Here, bk o(h) = 0, that is, all directions are degenerate.
@ Direct calculations show that the two-sample test based on the
directed K-NN graph satisfies
o If HNiENH — 0, the limiting power of the test is a.
o If HNiaNH — 00, the limiting power of the test is 1.
o Ifey = hN ™1, for some h € RP\{0}, the limiting power of the test is

r’K

(T) age’ o
(7 + 20K

20 07x).

where V; = |B(0,1)| is the volume of the unit ball in R¢, and o is
the null variance.

o The rate is same across all dimensions (second-order efficiency).
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distribution-free tests with non-zero
Pitman efficiency?
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Implications

ometric Graphs
aetric Graphs

o Which test should we use? Can we get
distribution-free tests with non-zero
Pitman efficiency?

o Consider K-NN graphs with
K= KN — OQ.

o In this case, O(Nfé) detection
thresholds (Pitman efficiency) can be
attained, when K grows with N
sufficiently fast.

o How fast is fast enough? Trade-off
with computation time.

Lognormal in d=10

Local Separation

Py ~ exp(N(0,1))

H1191792:%‘
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Case 1: Dimension Less or Equals 8

Theorem (Zhou and Rao (1993), B. (2019+))

Suppose dimension d < 8. Then the limiting power of the multivariate spacings
test, for a fized function u : [0,00) — R, is given by

o if |Inden|| =0,
P (fz% + co, (u, h)) + @ (fz% — co, (u, h)) if ||n%6n|| — h,
1 if |Inden|| = oo.
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Case 1: Dimension Less or Equals 8

Theorem (Zhou and Rao (1993), B. (2019+))

Suppose dimension d < 8. Then the limiting power of the multivariate spacings
test, for a fized function u : [0,00) — R, is given by

. 1
«a if  ||nzen|| — 0,
. 1
@ (fz% + cop (u, h)) T o (fz% - ceo(u,h)) if  |Intenl] — b
1
1 if  |Inten|| — oo.
W
@ What is co,(u,h)?
hWTvg f(x100]% 0 . .2 .
A® [ | S et - owaar if dsm,
coy (u, h) = L RT v rx100% o 42 , )
U(u>]E —FxeD [T et (5 — )/ (H)dt + Iigi('u,,h) if d=38.

correction term

arametric Inference and Geometric Probability



f-Fit T d on Geometric

Independence Tes on Geometric Gr
More Examples

Case 1: Dimension Less or Equals 8

Theorem (Zhou and Rao (1993), B. (2019+))

Suppose dimension d < 8. Then the limiting power of the multivariate spacings

test, for a fized function u : [0,00) — R, is given by

. 1
«a if  ||nzen|| — 0,
. 1
@ (fz% + cop (u, h)) T o (fz% - ceo(u,h)) if  |Intenl] — b
1
1 if  |Inten|| — oo.
v
@ What is co,(u,h)?
hWTvg f(x100]% 0 . .2 .
ﬁu)ﬂi [W} e (s — Hu'(t)de if d<7
coy (u, h) = L RT v rx100% o 42 , )
U(u>]E —FxeD o e (g —tHu'(t)dt + ligi('u,, h) if d=38.

correction term

o Can be optimized over u to obtain the “optimal” test among the
class of tests Tn (u):
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Goodness-of-Fit T 3 1 on Geometri

Independence Test £ on Geometric Gra
More Examples

Case 1: Dimension Less or Equals 8

Theorem (Zhou and Rao (1993), B. (2019+))

Suppose dimension d < 8. Then the limiting power of the multivariate spacings

test, for a fized function u : [0,00) — R, is given by

. 1
«a if  ||nzen|| — 0,
. 1
@ (fz% + cop (u, h)) T o (fz% - ceo(u,h)) if  |Intenl] — b
1
1 if  |Inten|| — oo.
v
@ What is co,(u,h)?
hWTvg f(x100]% 0 . .2 .
ﬁu)ﬂi [W} e (s — Hu'(t)de if d<7
coy (u, h) = L RT v rx100% o 42 , )
U(u>]E —FxeD o e (g —tHu'(t)dt + ligi('u,, h) if d=38.

correction term

o Can be optimized over u to obtain the “optimal” test among the
class of tests Th,(u): Global test for uniformity, irrespective of the
alternative.
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More Examples

Case 1: Simulations

e For a fixed direction h € RP, consider the hypothesis

H029:90

as b varies from (0, 1).

Normal Location in d=4

Power

Negate Separaion (Expoent)
Py ~ N(0,1)
Ho:0=0 vs H;:0=—-1

versus

S { — spacings.
— B8
— GIR

co=4 vs H;

h

H130:90+7

Nb’

Spherical Normal in d=4

T T
1 075 05 025 o

Negaive Separation (Exponent b)

P, ~ N(0,c%I)
ro=4— %.
N




More Examples

Case 2: Dimension Greater Than 8

Again, there are two critical exponents, 2

Lo d<8 | /
—2 if 4>09, )

Exponents

and the constant %.




Goodness-of-Fit Te ed on Geometric Graphs

More Bxamples Independence Test on Geometric Graphs

Case 2: Dimension Greater Than 8

Again, there are two critical exponents, o
p Loif d<8 1
TV E-2 i d>0,
and the constant %. )

Theorem (B. (2019+))

The limiting power of the multivariate spacings test, for a fized function
u: [0,00) — R, satisfies:

o If ||[NPien|| — 0, the limiting power of the test is a.

o If||Niey]|| = oo, the limiting power of the test is 1.

Nonparametric Inference and Geometric Probability
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