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set of finite, connected subsets of Zd that contain the origin
a pair (x ,H) ∈ Zd ×H is a lattice animal rooted at x
the trace of (x ,H) is the translated set x + H
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Poisson zoo

ν is a probability measure on H

Let v ∈ R+ (intensity parameter)

Nv
x ,H ∼ POI(v · ν(H)), x ∈ Zd , H ∈ H, independent

(Nv
x ,H is the number of copies of the animal (x ,H))

Sv :=
⋃

x∈Zd

⋃
H∈H

Nv
x,H⋃

i=1

(
x + H

)
(the trace of the Poisson zoo at level v .)
alternatively: let Nx , x ∈ Zd i.i.d. POI(v),
put Nx i.i.d. copies of animals with law ν translated by x
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Percolation

x ∈ Sv : occupied, x ∈ Zd \ Sv : vacant

Su percolates ⇐⇒ the subgraph of Zd spanned by occupied
sites contains an infinite connected component
monotonicity + ergodicity =⇒ ∃ vc ∈ [0,+∞] such that

v < vc =⇒ P(Su percolates) = 0
v > vc =⇒ P(Su percolates) = 1

Question: 0 < vc < +∞ ?
Sv stochastically dominates i.i.d. Ber(1− e−v ) configuration, thus

vc ≤ ln
(

1
1− pc

)
< +∞

Question: 0 < vc ? The answer depends on ν.
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Two easy lemmas about vc

Lemma (First moment)
If m1 =

∑
H∈H ν(H) · |H| = +∞ then vc = 0.

In fact m1 = +∞ implies that Sv = Zd for all v > 0.
Why? Number of animals that contain o has POI(v ·m1) law.

Lemma (Second moment)

If m2 =
∑

H∈H ν(H) · |H|2 < +∞ then vc > 0.

In fact vc ≥ 1
m2·(2d+1) .

Why? Exploration of cluster of origin is dominated by a subcritical
branching process with compound Poisson offspring distribution.
Expectation of total cardinality of animals that contain o is v ·m2.
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Is the m1 lemma sharp?

The answer depends on ν . . .

Theorem (Gouéré, 2008)
If ν is the law of of B(0,R) (where R is random) then

vc > 0 ⇐⇒ m1 < +∞.

Thus the m1 condition can be sharp. How about the m2 lemma?
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If ν is the law of of B(0,R) (where R is random) then

vc > 0 ⇐⇒ m1 < +∞.

Thus the m1 condition can be sharp. How about the m2 lemma?



Can the m2 lemma be strengthened?

Question
Given d ≥ 2, is there a function f : N→ R+ satisfying

lim
n→∞

f (n)/n2 = 0

such that for any choice of ν the condition∑
H∈H

f (|H|) · ν(H) < +∞

already implies vc(ν) > 0?

We do not know, but we will show that the m2 condition is quite close to
being sharp for a specific choice of ν.
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(Xn)
∞
n=0 is a: simple symmetric random walk on Zd , X0 = 0

L is an N-valued r.v. (indep. of walker): length of worm
ν is the law of {X0,X1, . . . ,XL−1}
Sv is the called the random length worms set at level v
Alternatively: start POI(v) worms from each site of Zd

Sv is the set of sites visited by these worms
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Main result

if d ≥ 5 then m2 < +∞ ⇐⇒ E(L2) < +∞

thus m2 lemma gives: E(L2) < +∞ =⇒ vc > 0

Theorem
Let d ≥ 5. Let ε > 0 and `0 ≥ ee. If

m(`) := P(L = `) = c
ln(ln(`))ε

`3 ln(`)
1[` ≥ `0], ` ∈ N

then vc = 0.
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`3 ln(`)
1[` ≥ `0], ` ∈ N

if ε < −1 then E(L2) < +∞, thus vc > 0
if ε > 0 then our main result implies vc = 0

Our main theorem can be strengthened (see Sanyi’s talk)
Why d ≥ 5? capacity of worm � cardinality of worm

Question
Let d ≥ 5. Does E(L2) = +∞ imply vc = 0?

If the answer to this question is positive then
the answer to our previous question is negative for d ≥ 5.
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Related models

Poisson Boolean model [Gouéré, 2008]

Finitary random interlacements [Procaccia, Cai, Zhang, . . . ]
worms where L ∼ GEO(1/T ), v = 2du/(T + 1),
fine percolation properties
Bernoulli hyper-edge percolation [Chang, 2021]
quite similar to Poisson zoo
Wiener sausage percolation [Erhard, Poisat, 2016]
like worms where L = T

vc(T ) �


T−d/2 d = 2,3
ln(T )/T 2 d = 4
1/T 2 d ≥ 5
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Related model: ellipses percolation (d=2)

ellipses centered on a PPP on R2 with intensity v

uniformly random direction, minor axis is equal to one
major axis with distribution ρ, where ρ[r ,+∞) � r−α

Theorem (Teixeira, Ungaretti, 2017)

0 < α ≤ 1 =⇒ ellipses cover R2 (by m1 lemma)
α ≥ 2 =⇒ vc > 0
1 < α < 2 =⇒ the covered set is not R2, but vc > 0

Note: α > 2 implies m2 < +∞, thus vc > 0 by m2 lemma
If α = 2 then m2 = +∞, but vc > 0
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Related model: loop percolation

PPP of random walk loops on Zd ,d ≥ 3

Heuristically: similar to worms with m(`) � `−(d+2)/2

Theorem (Sapozhnikov, Chang, 2016)
For all d ≥ 3 we have vc > 0.

Note: m2 < +∞ if d ≥ 5, but m2 = +∞ if d = 3,4
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Conjectures about worms in d = 3,4

m(`) � `−β

if β > 3 then m2 < +∞ and thus vc > 0
if β ≤ 2 then m1 = +∞ and thus vc = 0
Conjecture: if d = 3 then vc > 0 iff β ≥ 5/2
Note: loop percolation corresponds to β = 5/2
Conjecture: if d = 4 then vc > 0 iff β ≥ 3
Note: loop percolation corresponds to β = 3
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Thank you for your attention!


