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@ 79 = d-dimensional nearest neighbour lattice

@ 7 is the collection of lattice animals rooted at the origin o € Z9:
set of finite, connected subsets of Z that contain the origin

@ apair (x, H) € Z9 x H is a lattice animal rooted at x
@ the trace of (x, H) is the translated set x + H
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Poisson zoo

@ v is a probability measure on H
@ Let v € R, (intensity parameter)
°
¥ 11 ~POI(v - v(H)), x € Z%, H € H, independent
(Ny 1 is the number of copies of the animal (x, H))
°

New
s =1 U U x+H)
xezd HEH i=1
(the trace of the Poisson zoo at level v.)

e alternatively: let Ny, x € Z9 i.i.d. POI(v),
put Ny i.i.d. copies of animals with law v translated by x
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Properties of Poisson zoo

@ monotone coupling: vy < vo implies SY1 C S§*2
@ law of 8V is ergodic under spatial translations
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Percolation

@ x € SV: occupied, x € Z9 \ 8¥: vacant
@ SYpercolates <= the subgraph of Z¢ spanned by occupied
sites contains an infinite connected component

@ monotonicity + ergodicity = 3 v, € [0, +0o0] such that

e v <V, = P(SYpercolates) =0
o v>yVv, = P(SY percolates) = 1

@ Question: 0 < v, < +o00 ?
@ SY stochastically dominates i.i.d. Ber(1 — e™") configuration, thus

1
<
vcln<1_pc><+oo

@ Question: 0 < v, ? The answer depends on v.
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Two easy lemmas about v,

Lemma (First moment)
Ifmy =3 pey v(H) - |H| = 400 then ve = 0.

In fact my = +oo implies that S¥ = Z9 for all v > 0.
Why? Number of animals that contain o has POI(v - my) law.

Lemma (Second moment)
Ifmy =" 1cq v(H) - |H|? < 400 then v > 0.

In fact v, > m.

Why? Exploration of cluster of origin is dominated by a subcritical
branching process with compound Poisson offspring distribution.

Expectation of total cardinality of animals that contain ois v - mo.
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Is the my lemma sharp?

The answer dependson v ...

Theorem (Gouéré, 2008)

Ifv is the law of of B(0,R) (where R is random) then

Ve >0 < my < +oo.

Thus the my condition can be sharp. How about the m, lemma?



Can the m, lemma be strengthened?

Given d > 2, is there a function f : N — R satisfying

lim f(n)/n? =0

n—oo

such that for any choice of v the condition

> f(HI) - v(H) < 400

HeH

already implies v;(v) > 07?




Can the m, lemma be strengthened?

Given d > 2, is there a function f : N — R satisfying

lim f(n)/n? =0

n—oo
such that for any choice of v the condition
> f(HI) - v(H) < 400
HeH

already implies v;(v) > 07?

v

We do not know, but we will show that the m» condition is quite close to
being sharp for a specific choice of v.
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Worms

@ (Xn)2, is a: simple symmetric random walk on Z9, Xo = 0
@ L is an N-valued r.v. (indep. of walker): length of worm

@ visthe law of {Xp, X1,..., Xr_1}

@ SY is the called the random length worms set at level v

@ Alternatively: start POI(v) worms from each site of Z¢
SY is the set of sites visited by these worms
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Main result

@ ifd>5then mp < +o0 <= E(L?) < +oo
@ thus my lemma gives: E(£?) < 400 = v >0

Letd >5. Lete > 0 and ¢y > €. If
In(In(¢))®
m(¢) :=P(L =?) Bin(0) 1[¢ > 4], (€N
then v, = 0. |
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Discussion

() = Clr;(slT((g 1>y, (€N

@ if ¢ < —1then E(£?) < 400, thus v, > 0
@ if = > 0 then our main result implies v. = 0

@ Our main theorem can be strengthened (see Sanyi’s talk)
@ Why d > 57 capacity of worm = cardinality of worm

Letd > 5. Does E(L2) = +oc imply ve = 07

If the answer to this question is positive then
the answer to our previous question is negative for d > 5.
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The technical problem

@ naive idea: make the branching process approx. work!

@ if we have already used worms from a spatial region
then that region develops a shortage of worms
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Related models

@ Poisson Boolean model [Gouéré, 2008]

@ Finitary random interlacements [Procaccia, Cai, Zhang, ...]
worms where £ ~ GEO(1/T), v=2du/(T + 1),
fine percolation properties

@ Bernoulli hyper-edge percolation [Chang, 2021]
quite similar to Poisson zoo

@ Wiener sausage percolation [Erhard, Poisat, 2016]
like worms where L =T

T-92  d=23

Ve(T) < In(T)/T?> d=4
172 d>5
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@ ellipses centered on a PPP on R? with intensity v
@ uniformly random direction, minor axis is equal to one
@ major axis with distribution p, where p[r, +o00) = r

Theorem (Teixeira, Ungaretti, 2017)

@ 0<a<1 = ellipses coverR? (by my lemma)
Qua>2 — v, >0
@ 1 <a<?2 = the covered set is not R, but v, > 0

Note: a > 2 implies my < +o0, thus v > 0 by ms lemma
If a =2then mo = 400, but v, >0
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Related model: loop percolation

@ PPP of random walk loops on Z9, d > 3
@ Heuristically: similar to worms with m(¢) = ¢—(9+2)/2

Theorem (Sapozhnikov, Chang, 2016)

For all d > 3 we have v, > 0.

Note: mo < o0 if d > 5, but mo = +o0if d = 3,4
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Conjectures about worms in d = 3,4

m(l) < ¢~

@ if 5> 3then m, < +oc and thus v, > 0

o if 5 <2then mi = +oc andthus v, =0

@ Conjecture: if d =3then v, > 0iff 3 > 5/2
Note: loop percolation corresponds to 5 = 5/2

@ Conjecture: ifd =4thenv, > 0iff 3> 3
Note: loop percolation corresponds to 5 = 3



Thank you for your attention!



