Percolation of worms

Balázs Ráth (BME) Joint work with Sándor Rokob (BME)

October 4, 2021, Bangalore Probability Seminar

• $\mathbb{Z}^d = d$ -dimensional nearest neighbour lattice

- $\mathbb{Z}^d = d$ -dimensional nearest neighbour lattice
- *H* is the collection of lattice animals rooted at the origin *o* ∈ Z^d: set of finite, connected subsets of Z^d that contain the origin

- $\mathbb{Z}^d = d$ -dimensional nearest neighbour lattice
- *H* is the collection of lattice animals rooted at the origin *o* ∈ Z^d: set of finite, connected subsets of Z^d that contain the origin
- a pair $(x, H) \in \mathbb{Z}^d \times \mathcal{H}$ is a lattice animal rooted at x

- $\mathbb{Z}^d = d$ -dimensional nearest neighbour lattice
- *H* is the collection of lattice animals rooted at the origin *o* ∈ Z^d: set of finite, connected subsets of Z^d that contain the origin
- a pair $(x, H) \in \mathbb{Z}^d \times \mathcal{H}$ is a lattice animal rooted at x
- the trace of (x, H) is the translated set x + H

• ν is a probability measure on $\mathcal H$

- ν is a probability measure on ${\cal H}$
- Let $v \in \mathbb{R}_+$ (intensity parameter)

۲

- ν is a probability measure on $\mathcal H$
- Let $v \in \mathbb{R}_+$ (intensity parameter)

 $N_{x,H}^{v} \sim \text{POI}(v \cdot \nu(H)), \ x \in \mathbb{Z}^{d}, \ H \in \mathcal{H}, \text{ independent}$ $(N_{x,H}^{v} \text{ is the number of copies of the animal } (x, H))$

۲

۲

• ν is a probability measure on $\mathcal H$

• Let $v \in \mathbb{R}_+$ (intensity parameter)

 $N_{x,H}^{\nu} \sim \text{POI}(\nu \cdot \nu(H)), \ x \in \mathbb{Z}^d, \ H \in \mathcal{H}, \text{ independent}$ $(N_{x,H}^{\nu} \text{ is the number of copies of the animal } (x, H))$

$$\mathcal{S}^{\mathbf{v}} := \bigcup_{\mathbf{x} \in \mathbb{Z}^d} \bigcup_{\mathbf{H} \in \mathcal{H}} \bigcup_{i=1}^{N_{\mathbf{x},H}^{\mathbf{v}}} (\mathbf{x} + \mathbf{H})$$

(the trace of the Poisson zoo at level v.)

۲

۲

• ν is a probability measure on $\mathcal H$

• Let $v \in \mathbb{R}_+$ (intensity parameter)

 $N_{x,H}^{v} \sim \text{POI}(v \cdot \nu(H)), \ x \in \mathbb{Z}^{d}, \ H \in \mathcal{H}, \text{ independent}$ $(N_{x,H}^{v} \text{ is the number of copies of the animal } (x, H))$

$$\mathcal{S}^{\mathbf{v}} := \bigcup_{\mathbf{x} \in \mathbb{Z}^d} \bigcup_{\mathbf{H} \in \mathcal{H}} \bigcup_{i=1}^{N^{\mathbf{v}}_{\mathbf{x},\mathbf{H}}} (\mathbf{x} + \mathbf{H})$$

(the trace of the Poisson zoo at level v.)

 alternatively: let N_x, x ∈ Z^d i.i.d. POI(v), put N_x i.i.d. copies of animals with law ν translated by x • monotone coupling: $v_1 \leq v_2$ implies $S^{v_1} \subseteq S^{v_2}$

- monotone coupling: $v_1 \leq v_2$ implies $\mathcal{S}^{v_1} \subseteq \mathcal{S}^{v_2}$
- law of S^{ν} is ergodic under spatial translations

• $x \in S^{\nu}$: occupied, $x \in \mathbb{Z}^d \setminus S^{\nu}$: vacant

- $x \in S^{\nu}$: occupied, $x \in \mathbb{Z}^d \setminus S^{\nu}$: vacant
- S^u percolates ⇐⇒ the subgraph of Z^d spanned by occupied sites contains an infinite connected component

- $x \in S^{\nu}$: occupied, $x \in \mathbb{Z}^d \setminus S^{\nu}$: vacant
- S^u percolates ⇐⇒ the subgraph of Z^d spanned by occupied sites contains an infinite connected component
- monotonicity + ergodicity $\implies \exists v_c \in [0, +\infty]$ such that

•
$$v < v_c \implies \mathbb{P}(\mathcal{S}^u \text{ percolates}) = 0$$

•
$$v > v_c \implies \mathbb{P}(\mathcal{S}^u \text{ percolates}) = 1$$

- $x \in S^{\nu}$: occupied, $x \in \mathbb{Z}^d \setminus S^{\nu}$: vacant
- S^u percolates ⇐⇒ the subgraph of Z^d spanned by occupied sites contains an infinite connected component
- monotonicity + ergodicity $\implies \exists v_c \in [0, +\infty]$ such that
 - $v < v_c \implies \mathbb{P}(\mathcal{S}^u \text{ percolates}) = 0$
 - $v > v_c \implies \mathbb{P}(\mathcal{S}^u \text{ percolates}) = 1$
- Question: $0 < v_c < +\infty$?

• $x \in S^{\nu}$: occupied, $x \in \mathbb{Z}^d \setminus S^{\nu}$: vacant

- S^u percolates ⇐⇒ the subgraph of Z^d spanned by occupied sites contains an infinite connected component
- monotonicity + ergodicity $\implies \exists v_c \in [0, +\infty]$ such that

•
$$v < v_c \implies \mathbb{P}(\mathcal{S}^u \text{ percolates}) = 0$$

- $v > v_c \implies \mathbb{P}(\mathcal{S}^u \text{ percolates}) = 1$
- Question: $0 < v_c < +\infty$?

• S^{ν} stochastically dominates i.i.d. Ber $(1 - e^{-\nu})$ configuration, thus

$$\nu_c \leq \ln\left(\frac{1}{1-p_c}\right) < +\infty$$

• $x \in S^{\nu}$: occupied, $x \in \mathbb{Z}^d \setminus S^{\nu}$: vacant

- S^u percolates ⇐⇒ the subgraph of Z^d spanned by occupied sites contains an infinite connected component
- monotonicity + ergodicity $\implies \exists v_c \in [0, +\infty]$ such that

•
$$v < v_c \implies \mathbb{P}(\mathcal{S}^u \text{ percolates}) = 0$$

- $v > v_c \implies \mathbb{P}(\mathcal{S}^u \text{ percolates}) = 1$
- Question: $0 < v_c < +\infty$?
- S^{ν} stochastically dominates i.i.d. Ber $(1 e^{-\nu})$ configuration, thus

$$v_c \leq \ln\left(rac{1}{1-p_c}
ight) < +\infty$$

Question: 0 < v_c ?

• $x \in S^{\nu}$: occupied, $x \in \mathbb{Z}^d \setminus S^{\nu}$: vacant

- S^u percolates ⇐⇒ the subgraph of Z^d spanned by occupied sites contains an infinite connected component
- monotonicity + ergodicity $\implies \exists v_c \in [0, +\infty]$ such that

•
$$v < v_c \implies \mathbb{P}(\mathcal{S}^u \text{ percolates}) = 0$$

- $v > v_c \implies \mathbb{P}(\mathcal{S}^u \text{ percolates}) = 1$
- Question: $0 < v_c < +\infty$?

• S^{ν} stochastically dominates i.i.d. Ber $(1 - e^{-\nu})$ configuration, thus

$$v_c \leq \ln\left(rac{1}{1-p_c}
ight) < +\infty$$

• Question: $0 < v_c$? The answer depends on ν .

Lemma (First moment)

If
$$m_1 = \sum_{H \in \mathcal{H}} \nu(H) \cdot |H| = +\infty$$
 then $v_c = 0$.

Lemma (First moment)

If
$$m_1 = \sum_{H \in \mathcal{H}} \nu(H) \cdot |H| = +\infty$$
 then $v_c = 0$.

In fact $m_1 = +\infty$ implies that $S^v = \mathbb{Z}^d$ for all v > 0.

Lemma (First moment)

If
$$m_1 = \sum_{H \in \mathcal{H}} \nu(H) \cdot |H| = +\infty$$
 then $v_c = 0$.

In fact $m_1 = +\infty$ implies that $S^v = \mathbb{Z}^d$ for all v > 0. Why? Number of animals that contain *o* has POI($v \cdot m_1$) law.

Lemma (First moment)

If
$$m_1 = \sum_{H \in \mathcal{H}} \nu(H) \cdot |H| = +\infty$$
 then $v_c = 0$.

In fact $m_1 = +\infty$ implies that $S^v = \mathbb{Z}^d$ for all v > 0. Why? Number of animals that contain o has $POI(v \cdot m_1)$ law.

Lemma (Second moment)

If
$$m_2 = \sum_{H \in \mathcal{H}} \nu(H) \cdot |H|^2 < +\infty$$
 then $v_c > 0$.

Lemma (First moment)

If
$$m_1 = \sum_{H \in \mathcal{H}} \nu(H) \cdot |H| = +\infty$$
 then $v_c = 0$.

In fact $m_1 = +\infty$ implies that $S^v = \mathbb{Z}^d$ for all v > 0. Why? Number of animals that contain *o* has $POI(v \cdot m_1)$ law.

Lemma (Second moment)

If
$$m_2 = \sum_{H \in \mathcal{H}} \nu(H) \cdot |H|^2 < +\infty$$
 then $v_c > 0$.

In fact $v_c \geq \frac{1}{m_2 \cdot (2d+1)}$.

Lemma (First moment)

If
$$m_1 = \sum_{H \in \mathcal{H}} \nu(H) \cdot |H| = +\infty$$
 then $v_c = 0$.

In fact $m_1 = +\infty$ implies that $S^v = \mathbb{Z}^d$ for all v > 0. Why? Number of animals that contain *o* has $POI(v \cdot m_1)$ law.

Lemma (Second moment)

If
$$m_2 = \sum_{H \in \mathcal{H}} \nu(H) \cdot |H|^2 < +\infty$$
 then $v_c > 0$.

In fact $v_c \ge \frac{1}{m_2 \cdot (2d+1)}$. Why? Exploration of cluster of origin is dominated by a subcritical branching process with compound Poisson offspring distribution.

Lemma (First moment)

If
$$m_1 = \sum_{H \in \mathcal{H}} \nu(H) \cdot |H| = +\infty$$
 then $v_c = 0$.

In fact $m_1 = +\infty$ implies that $S^v = \mathbb{Z}^d$ for all v > 0. Why? Number of animals that contain *o* has $POI(v \cdot m_1)$ law.

Lemma (Second moment)

If
$$m_2 = \sum_{H \in \mathcal{H}} \nu(H) \cdot |H|^2 < +\infty$$
 then $v_c > 0$.

In fact $v_c \ge \frac{1}{m_2 \cdot (2d+1)}$. Why? Exploration of cluster of origin is dominated by a subcritical branching process with compound Poisson offspring distribution. Expectation of total cardinality of animals that contain *o* is $v \cdot m_2$.

Is the m_1 lemma sharp?

Is the m_1 lemma sharp?

The answer depends on ν ...

The answer depends on $\nu \dots$

Theorem (Gouéré, 2008)

If ν is the law of of B(0, R) (where R is random) then

 $v_c > 0 \iff m_1 < +\infty.$

The answer depends on $\nu \dots$

Theorem (Gouéré, 2008)

If ν is the law of of B(0, R) (where R is random) then

 $v_c > 0 \iff m_1 < +\infty.$

Thus the m_1 condition can be sharp.

The answer depends on $\nu \dots$

Theorem (Gouéré, 2008)

If ν is the law of of B(0, R) (where R is random) then

 $v_c > 0 \iff m_1 < +\infty.$

Thus the m_1 condition can be sharp. How about the m_2 lemma?

Can the *m*₂ lemma be strengthened?

Question

Given $d \ge 2$, is there a function $f : \mathbb{N} \to \mathbb{R}_+$ satisfying

 $\lim_{n\to\infty} f(n)/n^2 = 0$

such that for any choice of ν the condition

$$\sum_{\mathsf{H}\in\mathcal{H}} f(|\mathsf{H}|) \cdot \nu(\mathsf{H}) < +\infty$$

already implies $v_c(\nu) > 0$?

Can the *m*₂ lemma be strengthened?

Question

Given $d \ge 2$, is there a function $f : \mathbb{N} \to \mathbb{R}_+$ satisfying

 $\lim_{n\to\infty}f(n)/n^2=0$

such that for any choice of ν the condition

$$\sum_{\mathsf{H}\in\mathcal{H}}f(|\mathsf{H}|)\cdot\nu(\mathsf{H})<+\infty$$

already implies $v_c(\nu) > 0$?

We do not know, but we will show that the m_2 condition is quite close to being sharp for a specific choice of ν .

• $(X_n)_{n=0}^{\infty}$ is a: simple symmetric random walk on \mathbb{Z}^d , $X_0 = 0$

- $(X_n)_{n=0}^{\infty}$ is a: simple symmetric random walk on \mathbb{Z}^d , $X_0 = 0$
- \mathcal{L} is an \mathbb{N} -valued r.v. (indep. of walker): length of worm

- $(X_n)_{n=0}^{\infty}$ is a: simple symmetric random walk on \mathbb{Z}^d , $X_0 = 0$
- $\mathcal L$ is an $\mathbb N\text{-valued r.v.}$ (indep. of walker): length of worm
- ν is the law of $\{X_0, X_1, ..., X_{L-1}\}$

- $(X_n)_{n=0}^{\infty}$ is a: simple symmetric random walk on \mathbb{Z}^d , $X_0 = 0$
- $\mathcal L$ is an $\mathbb N\text{-valued r.v.}$ (indep. of walker): length of worm
- ν is the law of $\{X_0, X_1, \ldots, X_{\mathcal{L}-1}\}$
- S^{v} is the called the random length worms set at level v

- $(X_n)_{n=0}^{\infty}$ is a: simple symmetric random walk on \mathbb{Z}^d , $X_0 = 0$
- \mathcal{L} is an \mathbb{N} -valued r.v. (indep. of walker): length of worm
- ν is the law of $\{X_0, X_1, ..., X_{L-1}\}$
- S^{v} is the called the random length worms set at level v
- Alternatively: start POI(v) worms from each site of Z^d
 S^v is the set of sites visited by these worms

• if $d \geq 5$ then $m_2 < +\infty \iff \mathbb{E}(\mathcal{L}^2) < +\infty$

if d ≥ 5 then m₂ < +∞ ⇔ E(L²) < +∞
thus m₂ lemma gives: E(L²) < +∞ ⇒ v_c > 0

Main result

- if $d \ge 5$ then $m_2 < +\infty \iff \mathbb{E}(\mathcal{L}^2) < +\infty$
- thus m_2 lemma gives: $\mathbb{E}(\mathcal{L}^2) < +\infty \implies v_c > 0$

Theorem

Let $d \ge 5$. Let $\varepsilon > 0$ and $\ell_0 \ge e^e$. If

$$m(\ell) := \mathbb{P}(\mathcal{L} = \ell) = c \frac{\ln(\ln(\ell))^{\varepsilon}}{\ell^3 \ln(\ell)} \mathbb{1}[\ell \ge \ell_0], \quad \ell \in \mathbb{N}$$

then $v_c = 0$.

$$m(\ell) = c rac{\ln(\ln(\ell))^{\varepsilon}}{\ell^3 \ln(\ell)} \mathbb{1}[\ell \ge \ell_0], \quad \ell \in \mathbb{N}$$

- if $\varepsilon < -1$ then $\mathbb{E}(\mathcal{L}^2) < +\infty$, thus $v_c > 0$
- if $\varepsilon > 0$ then our main result implies $v_c = 0$

$$m(\ell) = c rac{\ln(\ln(\ell))^{\varepsilon}}{\ell^3 \ln(\ell)} \mathbb{1}[\ell \ge \ell_0], \quad \ell \in \mathbb{N}$$

- if $\varepsilon < -1$ then $\mathbb{E}(\mathcal{L}^2) < +\infty$, thus $v_c > 0$
- if $\varepsilon > 0$ then our main result implies $v_c = 0$
- Our main theorem can be strengthened (see Sanyi's talk)

$$m(\ell) = c rac{\ln(\ln(\ell))^{\varepsilon}}{\ell^3 \ln(\ell)} \mathbb{1}[\ell \ge \ell_0], \quad \ell \in \mathbb{N}$$

- if $\varepsilon < -1$ then $\mathbb{E}(\mathcal{L}^2) < +\infty$, thus $v_c > 0$
- if $\varepsilon > 0$ then our main result implies $v_c = 0$
- Our main theorem can be strengthened (see Sanyi's talk)
- Why $d \ge 5$? capacity of worm \asymp cardinality of worm

$$m(\ell) = c rac{\ln(\ln(\ell))^{\varepsilon}}{\ell^3 \ln(\ell)} \mathbb{1}[\ell \ge \ell_0], \quad \ell \in \mathbb{N}$$

- if $\varepsilon < -1$ then $\mathbb{E}(\mathcal{L}^2) < +\infty$, thus $v_c > 0$
- if $\varepsilon > 0$ then our main result implies $v_c = 0$
- Our main theorem can be strengthened (see Sanyi's talk)
- Why $d \ge 5$? capacity of worm \asymp cardinality of worm

Question

Let
$$d \geq 5$$
. Does $\mathbb{E}(\mathcal{L}^2) = +\infty$ imply $v_c = 0$?

$$m(\ell) = c rac{\ln(\ln(\ell))^{\varepsilon}}{\ell^3 \ln(\ell)} \mathbb{1}[\ell \ge \ell_0], \quad \ell \in \mathbb{N}$$

- if $\varepsilon < -1$ then $\mathbb{E}(\mathcal{L}^2) < +\infty$, thus $v_c > 0$
- if $\varepsilon > 0$ then our main result implies $v_c = 0$
- Our main theorem can be strengthened (see Sanyi's talk)
- Why $d \ge 5$? capacity of worm \asymp cardinality of worm

Question

Let
$$d \geq 5$$
. Does $\mathbb{E}(\mathcal{L}^2) = +\infty$ imply $v_c = 0$?

If the answer to this question is positive then the answer to our previous question is negative for $d \ge 5$.

The technical problem

• naive idea: make the branching process approx. work!

- naive idea: make the branching process approx. work!
- if we have already used worms from a spatial region then that region develops a shortage of worms

• Poisson Boolean model [Gouéré, 2008]

- Poisson Boolean model [Gouéré, 2008]
- Finitary random interlacements [Procaccia, Cai, Zhang, ...] worms where L ~ GEO(1/T), v = 2du/(T + 1), fine percolation properties

- Poisson Boolean model [Gouéré, 2008]
- Finitary random interlacements [Procaccia, Cai, Zhang, ...] worms where L ~ GEO(1/T), v = 2du/(T + 1), fine percolation properties
- Bernoulli hyper-edge percolation [Chang, 2021] quite similar to Poisson zoo

- Poisson Boolean model [Gouéré, 2008]
- Finitary random interlacements [Procaccia, Cai, Zhang, ...] worms where L ~ GEO(1/T), v = 2du/(T + 1), fine percolation properties
- Bernoulli hyper-edge percolation [Chang, 2021] quite similar to Poisson zoo
- Wiener sausage percolation [Erhard, Poisat, 2016] like worms where L = T

$$v_c(T) \asymp egin{cases} T^{-d/2} & d=2,3 \ \ln(T)/T^2 & d=4 \ 1/T^2 & d\geq 5 \end{cases}$$

• ellipses centered on a PPP on \mathbb{R}^2 with intensity v

- ellipses centered on a PPP on \mathbb{R}^2 with intensity v
- uniformly random direction, minor axis is equal to one

- ellipses centered on a PPP on \mathbb{R}^2 with intensity v
- uniformly random direction, minor axis is equal to one
- major axis with distribution ρ , where $\rho[r, +\infty) \simeq r^{-\alpha}$

- ellipses centered on a PPP on \mathbb{R}^2 with intensity v
- uniformly random direction, minor axis is equal to one
- major axis with distribution ρ , where $\rho[r, +\infty) \approx r^{-\alpha}$

Theorem (Teixeira, Ungaretti, 2017)

• $0 < \alpha \le 1 \implies \text{ellipses cover } \mathbb{R}^2$ (by m_1 lemma)

- ellipses centered on a PPP on \mathbb{R}^2 with intensity v
- uniformly random direction, minor axis is equal to one
- major axis with distribution ρ , where $\rho[r, +\infty) \approx r^{-\alpha}$

Theorem (Teixeira, Ungaretti, 2017)

• $0 < \alpha \le 1 \implies \text{ellipses cover } \mathbb{R}^2 \text{ (by } m_1 \text{ lemma)}$ • $\alpha \ge 2 \implies v_c > 0$

- ellipses centered on a PPP on \mathbb{R}^2 with intensity v
- uniformly random direction, minor axis is equal to one
- major axis with distribution ρ , where $\rho[r, +\infty) \approx r^{-\alpha}$

Theorem (Teixeira, Ungaretti, 2017)

• $0 < \alpha \le 1 \implies \text{ellipses cover } \mathbb{R}^2$ (by m_1 lemma)

•
$$\alpha \geq 2 \implies v_c > 0$$

• $1 < \alpha < 2 \implies$ the covered set is not \mathbb{R}^2 , but $v_c > 0$

- ellipses centered on a PPP on \mathbb{R}^2 with intensity v
- uniformly random direction, minor axis is equal to one
- major axis with distribution ρ , where $\rho[r, +\infty) \approx r^{-\alpha}$

Theorem (Teixeira, Ungaretti, 2017)

•
$$0 < \alpha \le 1 \implies \text{ellipses cover } \mathbb{R}^2$$
 (by m_1 lemma)

•
$$\alpha \ge 2 \implies v_c > 0$$

• $1 < \alpha < 2 \implies$ the covered set is not \mathbb{R}^2 , but $v_c > 0$

Note: $\alpha > 2$ implies $m_2 < +\infty$, thus $v_c > 0$ by m_2 lemma

- ellipses centered on a PPP on \mathbb{R}^2 with intensity v
- uniformly random direction, minor axis is equal to one
- major axis with distribution ρ , where $\rho[r, +\infty) \approx r^{-\alpha}$

Theorem (Teixeira, Ungaretti, 2017)

•
$$0 < \alpha \le 1 \implies \text{ellipses cover } \mathbb{R}^2$$
 (by m_1 lemma)

•
$$\alpha \ge 2 \implies v_c > 0$$

• $1 < \alpha < 2 \implies$ the covered set is not \mathbb{R}^2 , but $v_c > 0$

Note: $\alpha > 2$ implies $m_2 < +\infty$, thus $v_c > 0$ by m_2 lemma If $\alpha = 2$ then $m_2 = +\infty$, but $v_c > 0$

• PPP of random walk loops on $\mathbb{Z}^d, d \geq 3$

- PPP of random walk loops on $\mathbb{Z}^d, d \geq 3$
- Heuristically: similar to worms with $m(\ell) \simeq \ell^{-(d+2)/2}$

- PPP of random walk loops on $\mathbb{Z}^d, d \geq 3$
- Heuristically: similar to worms with $m(\ell) \simeq \ell^{-(d+2)/2}$

Theorem (Sapozhnikov, Chang, 2016)

For all $d \ge 3$ we have $v_c > 0$.

- PPP of random walk loops on $\mathbb{Z}^d, d \geq 3$
- Heuristically: similar to worms with $m(\ell) \simeq \ell^{-(d+2)/2}$

Theorem (Sapozhnikov, Chang, 2016)

For all $d \ge 3$ we have $v_c > 0$.

Note: $m_2 < +\infty$ if $d \ge 5$, but $m_2 = +\infty$ if d = 3, 4

$$m(\ell) \asymp \ell^{-\beta}$$

$$m(\ell) \asymp \ell^{-\beta}$$

• if $\beta > 3$ then $m_2 < +\infty$ and thus $v_c > 0$

$$m(\ell) \asymp \ell^{-\beta}$$

- if $\beta > 3$ then $m_2 < +\infty$ and thus $v_c > 0$
- if $\beta \leq 2$ then $m_1 = +\infty$ and thus $v_c = 0$

$$m(\ell) symp \ell^{-\beta}$$

- if $\beta > 3$ then $m_2 < +\infty$ and thus $v_c > 0$
- if $\beta \leq 2$ then $m_1 = +\infty$ and thus $v_c = 0$
- Conjecture: if *d* = 3 then *v_c* > 0 iff β ≥ 5/2 Note: loop percolation corresponds to β = 5/2

$$m(\ell) symp \ell^{-eta}$$

- if $\beta > 3$ then $m_2 < +\infty$ and thus $v_c > 0$
- if $\beta \leq 2$ then $m_1 = +\infty$ and thus $v_c = 0$
- Conjecture: if *d* = 3 then *v_c* > 0 iff β ≥ 5/2 Note: loop percolation corresponds to β = 5/2
- Conjecture: if *d* = 4 then *v_c* > 0 iff β ≥ 3 Note: loop percolation corresponds to β = 3

Thank you for your attention!