## Spectral phases of Erdős-Rényi graphs

Antti Knowles



With Johannes Alt and Raphaël Ducatez

## Part I: overview

Universality conjecture for disordered quantum systems

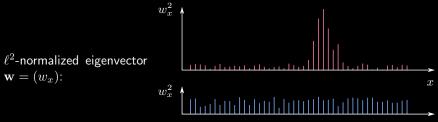
H = random Hermitian operator

= Hamiltonian of quantum system with disorder

Universality conjecture: spectrum of H splits:

- (1) Localized (insulator): Eigenvectors are localized. Local spectral statistics are Poisson.
- (2) Delocalized (metal): Eigenvectors are delocalized.
   Local spectral statistics follow random matrix theory (e.g. GOE).

Let  $\Lambda$  be a finite set (physical space) and suppose that  $H : \mathbb{R}^{\Lambda} \to \mathbb{R}^{\Lambda}$ .



#### How to quantify localization vs. delocalization?

Let  $N := |\Lambda|$ .

• Localization exponent:  $\mathcal{D}_q \in [0, 1]$ :

$$\|\mathbf{w}\|_{2q} = N^{-\frac{q-1}{2q}\mathcal{D}_q}, \qquad 1 < q \leq \infty.$$

Remarks:

- w localized at single site  $\iff D_q = 0$
- w perfectly delocalized  $\iff \mathcal{D}_q = 1$
- w uniform over  $N^{\gamma}$  sites  $\iff \mathcal{D}_q = \gamma$
- Scarring: there exists a small  $\varepsilon$  and a small  $\mathcal{B} \subset \Lambda$  such that

$$\sum_{x \in \mathcal{B}} w_x^2 \ge 1 - \varepsilon \,.$$

#### Example: Anderson model

 $-\Delta + \lambda V$  on  $\Lambda \subset \mathbb{Z}^d$ ,  $V = (V_x)_{x \in \Lambda}$  i.i.d.  $\mathcal{N}(0, 1)$ .

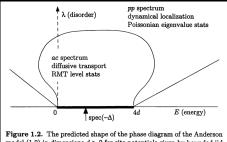


Figure 1.2. The predicted shape of the phase diagram of the Anderson model (1.2) in dimensions d > 2 for site potentials given by bounded iid random variables with a distribution similar to (1.5).

(From M. Aizenman, S. Warzel, Random Operators, AMS.)

Localized phase very well understood ([Fröhlich, Spencer; 1983], [Aizenman, Molchanov; 1993], [Molchanov; 1981], [Minami; 1996], ...)

Delocalized phase wide open (extended states conjecture).

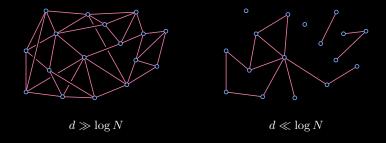
## Other models of quantum disorder

- Wigner matrices with light tails are in the delocalized phase. [Erdős, Schlein, Yau, Yin; 2009–...], [Tao, Vu; 2009–...]
- Heavy-tailed Wigner matrices proposed as a simple model that exhibits a phase transition.
   [Cizeau, Bouchaud; 1994], [Auffinger, Ben Arous, Péché; 2009], [Tarquini, Biroli, Tarzia; 2016], [Bordenave, Guionnet; 2013–2017], [Aggarwal, Lopatto, Yau; 2020]
- Random band matrices proposed as a simpler alternative to the Anderson model on Z<sup>d</sup>.
  [Disertori, Spencer, Zirnbauer; 2009], [Sodin; 2009], [Erdős, K; 2010], [Schenker; 2010], [Erdős, K, Yau, Yin; 2013], [Bourgade, Erdős, Yau, Yin; 2017], [Bourgade, Fan, Yau, Yin; 2019], [Fan, Yau, Yin; 2021].
- This talk: Random graphs  $\approx$  sparse random matrices.

## Erdős-Rényi graph and critical regime

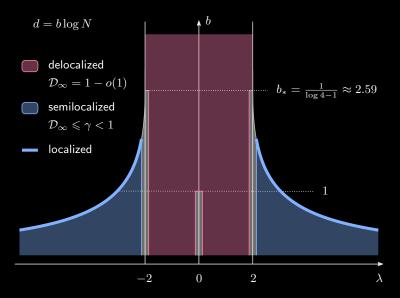
Erdős-Rényi graph  $\mathbb{G}(N, d/N)$ 

Critical regime:  $d \approx \log N$ , below which degrees do not concentrate.



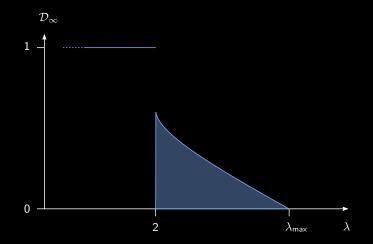
Supercritical  $d \gg \log N$ : homogeneous.

Subcritical  $d \ll \log N$ : inhomogeneous (hubs, leaves, isolated vertices, ...). Consider the adjecency matrix  $A = (A_{xy}) \in \{0, 1\}^{N \times N}$ . Phase diagram for  $H := d^{-1/2}A$ 



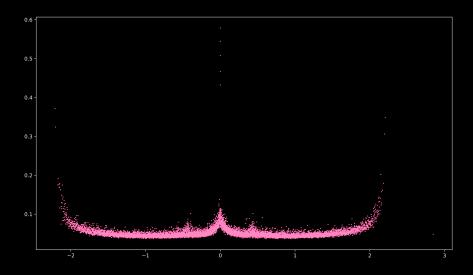
## Behaviour of localization exponent

Asymptotically allowed region for  $\mathcal{D}_{\infty}$  (plotted for b = 1):



## Simulation of eigenvectors

Scatter plot of (eigenvalue,  $\|$ eigenvector $\|_{\infty}$ ). (N = 10'000, b = 0.6)



# Part II: results (Alt, Ducatez, K; 2019–2022)

Convention:  $\kappa > 0$  tends to 0 slowly as  $N \to \infty$ .

## Delocalization

Theorem. Delocalization with high probability under any of the conditions

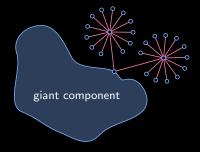
- $d \ge (b_* + \kappa) \log N$
- $d \ge (1+\kappa)\log N$  and  $|\lambda| \leqslant 2-\kappa$
- $d \ge C\sqrt{\log N}$  and  $\kappa \le |\lambda| \le 2 \kappa$ .

**Remark.** The assumptions are optimal (up to constant C).

Consider two identical stars of central degrees D attached to a common vertex.

This gives rise to a localized eigenvector with eigenvalue  $\sqrt{D/d}.$ 

Such pairs occur up to D = O(1) if  $d \leq C \log N$  and up to D = O(d) for  $d \leq C \sqrt{\log N}$ .



#### Semilocalization

Define the normalized degree  $\alpha_x := \frac{1}{d} \sum_y A_{xy}$  and the map  $\Lambda(\alpha) := \frac{\alpha}{\sqrt{\alpha-1}}$ .

**Theorem.** Let  $\lambda \ge 2 + \kappa$  be an eigenvalue with eigenvector  $\mathbf{w} \in \mathbb{S}^{N-1}$ . Define the set of vertices in resonance with  $\lambda$ ,

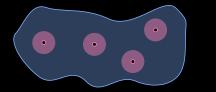
$$\mathcal{W}_{\lambda} := \left\{ x : \alpha_x \ge 2, |\Lambda(\alpha_x) - \lambda| \le \kappa \right\}.$$

There is a radius  $r \gg 1$  such that for each  $x \in W_{\lambda}$  there exists a normalized vector  $\mathbf{v}(x)$ , supported in  $B_r(x)$ , such that the supports of  $\mathbf{v}(x)$  and  $\mathbf{v}(y)$  are disjoint for  $x \neq y$ , and

$$\sum_{x \in \mathcal{W}_{\lambda}} \langle \mathbf{v}(x), \mathbf{w} \rangle^2 = 1 - o(1)$$

with high probability. Moreover,  $\mathbf{v}(x)$  decays exponentially around x:

$$\sum_{y \notin B_r(x)} (\mathbf{v}(x))_y^2 \leqslant \frac{1}{(\alpha_x - 1)^{r+1}}$$





#### Spectral edge: Poisson eigenvalue statistics

**Theorem**. Suppose that

$$(\log \log N)^4 \leq d \leq (b_* - \kappa) \log N$$
.

There exist deterministic  $u, \sigma, \tau, \theta$  (which are explicit functions of d and N) such that the rescaled eigenvalue process

$$\Phi := \sum_{i} \delta_{d\tau(\lambda_i(H) - \sigma)}$$

is asymptotically close to a Poisson point process  $\Psi$  on  $\mathbb{R}$  on intervals  $[-\kappa,\infty)$  containing at most  $\mathcal{K} \gg 1$  points.

**Corollary**. Asymptotic equality in law of  $k = O(\mathcal{K})$  largest points.

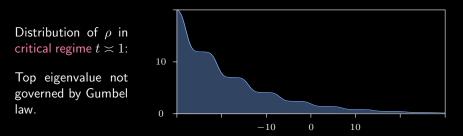
### Intensity of $\Psi$

The intensity of  $\Psi$  is

$$\rho(\mathrm{d}s) := \sum_{\ell \in \mathbb{Z}} u^{\langle du \rangle + \ell} g(s + \theta(\langle du \rangle + \ell)) \,\mathrm{d}s \,,$$

where  $\langle \cdot \rangle$  is the periodic representative in [-1/2, 1/2), and  $g(s) := \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}s^2}$ . Scaling laws

$$u \asymp \tau \asymp \sigma^2 \asymp \theta^2 \asymp \frac{t}{\log(t \lor 2)}, \qquad t := \frac{\log N}{d}.$$



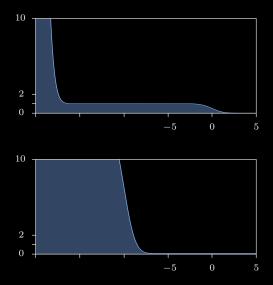
#### Distribution of $\rho$ in subcritical regime $t \gg 1$ :

Resonance  $\langle du \rangle = 0$ :

Top eigenvalue not governed by Gumbel law.

Off-resonance  $|\langle du \rangle| \ge c$ :

Top eigenvalue governed by Gumbel law.



#### Spectral edge: eigenvector localization

Theorem. Suppose that

$$(\log \log N)^4 \leq d \leq (b_* - \kappa) \log N.$$

Let  $\mathbf{w} = (w_x)$  be an eigenvector associated with one of the top (or bottom)  $\mathcal{K}$  eigenvalues. Then with high probability there exists a vertex x with  $\alpha_x > 2$  such that  $\|\mathbf{w} - \mathbf{v}(x)\| = o(1)$ .

**Remark**. The vector  $\mathbf{v}(x)$  is explicit, radial, and exponentially decaying:

$$\mathbf{v}(x) := \sum_{i=0}^{r} u_i(x) \frac{\mathbf{1}_{S_i(x)}}{\|\mathbf{1}_{S_i(x)}\|} \,,$$

where

$$u_1(x) = \frac{\sqrt{\alpha_x}}{\sqrt{\alpha_x - 1}} u_0(x), \qquad u_{i+1}(x) = \frac{1}{\sqrt{\alpha_x - 1}} u_i(x) \quad (i \ge 1).$$

Part III: overview of the proof in the localized phase

Basic intuition: one-to-one correspondence between eigenvalues and vertices of large degree.

Main steps of proof:

- **Step 1.** Characterize the fluctuations of an eigenvalue associated with a vertex of large degree.
- **Step 2.** Establish a one-to-one relation between such eigenvalues and the eigenvalues of H near the edge.

### Step 1

Consider neighbourhood of vertex in

$$\mathcal{U} := \left\{ x : \alpha_x \ge 2 + \kappa \right\}.$$

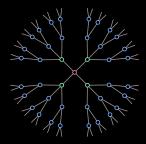
Use the tridiagonal representation of  $H := d^{-1/2}A$  around x: write H in the basis  $\mathbf{h}_0, \mathbf{h}_1, \mathbf{h}_2, \ldots$  obtained by orthogonalizing  $\mathbf{1}_x, H\mathbf{1}_x, H^2\mathbf{1}_x, \ldots$ 

Apply transfer matrix (or orthogonal polynomial) analysis.

Problem: Fluctuations of transfer matrices very hard to control precisely, because  $h_i$  is unwieldy.

Toy model: in a rooted regular tree, the degree depends only on the distance to the root.

Exercise: if  $\mathbb{G}|_{B_r(x)}$  is a rooted regular tree, then  $\mathbf{h}_i = \mathbf{1}_{S_i(x)}$  for  $i \leq r$ .



• Naive attempt: write H in basis  $(\mathbf{1}_{S_i(x)})$  instead of  $(\mathbf{h}_i)$ , to get an almost tridiagonal matrix.

Problem: off-tridiagonal matrix is too large.

• More refined attempt: If  $\mathbb{G}|_{B_r(x)}$  is a tree, the vector  $H^i \mathbf{1}_x$  can be decomposed as a sum over simple walks in  $\mathbb{N}$  of length *i*.

jump left / right  $\iff$  terms decreasing / increasing distance from root

- Basis  $(\mathbf{h}_i)$ : all walks
- Basis  $(\mathbf{1}_{S_i(x)})$ : only steps to the right

Define basis  $(\mathbf{f}_i)$  using walks with at most one step to the left. For instance,

$$\mathbf{f}_3 = \mathbf{1}_{S_3(x)} + \sum_{y \in S_1(x)} (d\alpha_y - F) \mathbf{1}_y, \qquad F \in \mathbb{R}.$$

**Proposition.** Let  $r \gg 1$  be suitably chosen. Let M be the matrix H in the basis  $(\mathbf{f}_i)_{i=0}^r$ . Then

$$||M - Z_{\mathfrak{d}}(\alpha_x, \beta_x)|| \leq d^{-1-c},$$

where

$$\alpha_x = \frac{|S_1(x)|}{d}, \qquad \beta_x = \frac{|S_2(x)|}{|S_1(x)|d},$$

and

$$Z_{\mathfrak{d}}(\alpha,\beta) := \begin{pmatrix} 0 & \sqrt{\alpha} & & & \\ \sqrt{\alpha} & 0 & \sqrt{\beta} & & & \\ & \sqrt{\beta} & 0 & \sqrt{\mathfrak{d}} & & \\ & & \sqrt{\mathfrak{d}} & 0 & \sqrt{\mathfrak{d}} & & \\ & & & \sqrt{\mathfrak{d}} & 0 & \ddots & \\ & & & & \ddots & \ddots & \end{pmatrix}, \qquad \mathfrak{d} := 1 + \frac{1}{d}.$$

Remark.  $\sqrt{d}Z_{\mathfrak{d}}(\alpha,\beta)$  is the tridiagonalization at the root of the rooted regular tree with degree sequence  $\alpha d, \beta d, d+1, d+1, \ldots$ .

 $Z_{\mathfrak{d}}(\alpha_x, \beta_x)$  has a unique eigenvalue  $\Lambda_{\mathfrak{d}}(\alpha_x, \beta_x) > 2 + \kappa$ , with exponentially decaying eigenvector  $(u_i)_{i=0}^r$ .

Back to graph  $\mathbb G$  with

$$\mathbf{y}(x) := \sum_{i=0}^{r} u_i \frac{\mathbf{f}_i}{\|\mathbf{f}_i\|} \,.$$

It is possible to show that

$$\left\| \left( H - \Lambda_{\mathfrak{d}}(\alpha_x, \beta_x) \right) \mathbf{y}(x) \right\| \leqslant d^{-1-c} \,. \tag{1}$$

Step 1 is concluded by analysing the fluctuations of  $\Lambda_{\mathfrak{d}}(\alpha_x, \beta_x)$  (of order  $d^{-1}$ ).

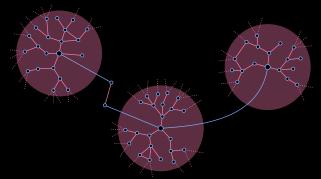
## Step 2

Need to ensure:

- (a)  $(\mathbf{y}(x) : x \in \mathcal{U})$  are orthogonal (i.e.  $(B_r(x) : x \in \mathcal{U})$  are disjoint).
- (b) The high probability bounds hold simultaneously for all  $x \in \mathcal{U}$ .
- (c) The remaining eigenvalues cannot "pollute" the edge of the spectrum.

All of these present significant complications. In fact, (a) and (b) are wrong.

(a)  $(B_r(x) : x \in U)$  are disjoint only if either (i) U is small or (ii) we prune the graph by removing edges to disconnect balls.

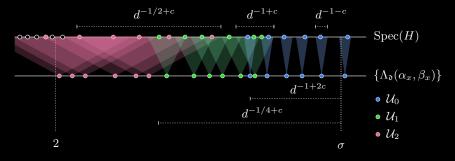


The pruning is potentially deadly, since in general removing even a single edge perturbs an eigenvalue by  $O(1/\sqrt{d})$ .

We have to prune in places that have a small impact on the extreme eigenvalues: prune only in the neighbourhoods of vertices x whose  $\alpha_x$  is far from the top degree.

(b) The estimate (1) is not true simultaneously for all  $x \in \mathcal{U}$ . Solution: three-scale rigidity argument with the partition  $\mathcal{U} = \mathcal{U}_0 \sqcup \mathcal{U}_1 \sqcup \mathcal{U}_2$ , where  $\alpha_x > \alpha_y$  for  $x \in \mathcal{U}_i$  and  $y \in \mathcal{U}_{i+1}$ .

The sets  $U_0, U_1, U_2$  are increasing in size, but the accuracy of the estimate (1) deteriorates as *i* increases.



Block diagonal representation

$$O^{-1}HO = \begin{pmatrix} \mathcal{D}_0 & 0 & 0 & E_0^* \\ 0 & \mathcal{D}_1 & 0 & E_1^* \\ 0 & 0 & \mathcal{D}_2 + \mathcal{E}_2 & E_2^* \\ E_0 & E_1 & E_2 & X \end{pmatrix}$$

where

$$\begin{aligned} \mathcal{D}_i &= \operatorname{diag}(\Lambda_{\mathfrak{d}}(\alpha_x, \beta_x) + O(\xi_i) : x \in \mathcal{U}_i) \\ \xi_i &+ \|E_i\| = \begin{cases} d^{-1-c} & \text{if } i = 0 \\ d^{-1+c} & \text{if } i = 1 \\ d^{-1/2+c} & \text{if } i = 2 \end{cases} \\ \|\mathcal{E}_2\| &= O(d^{-1/2+c}) & \longleftarrow \text{ pruning} \\ \|X\| \leqslant 2 + o(1) & \longleftarrow \text{ (c)} \end{aligned}$$

(c) Estimate of ||X|| involves two main steps.

1. Quadratic form estimate.  $H \leq I + Q + o(1)$  with  $Q = \text{diag}(\alpha_1, \dots, \alpha_N)$ . **Proof.** Define the nonbacktracking matrix  $B = (B_{ef})_{e,f \in [N]^2}$  associated with H through

Then, by [Bordenave, Benaych-Georges, K; 2017],  $\rho(B) = 1 + o(1)$ .

Next, invoke a general Ihara-Bass-type formula: define the matrices  $H(\lambda)$  and  $D(\lambda) = \operatorname{diag}(D_x(\lambda))_{x \in [N]}$  through

$$H_{xy}(\lambda) := \frac{\lambda H_{xy}}{\lambda^2 - H_{xy}H_{yx}}, \qquad D_x(\lambda) := 1 + \sum_u \frac{H_{xu}H_{ux}}{\lambda^2 - H_{xu}H_{ux}}.$$
 (2)

Then  $\lambda \in \operatorname{Spec}(B)$  if and only if  $\det(D(\lambda) - H(\lambda)) = 0$ .

Show that  $H(\lambda) \approx H/\lambda$  and  $D(\lambda) \approx I + Q/\lambda^2$ . Then a simple continuity argument using  $\rho(B) = 1 + o(1)$  yields the claim.

**2. Local delocalization bound.** Let  $\lambda \ge 2 + \kappa$  be an eigenvalue of H with normalized eigenvector  $\mathbf{w} \perp \text{Span}(\mathbf{v}(x) : x \in U)$ . Then

$$\sum_{x} \mathbb{1}_{\alpha_x \geqslant 1+\kappa} w_x^2 = \mathbf{o}(1) \,.$$

**Proof.** Radial Combes-Thomas-type argument.

Now we can conclude (c): if  $\lambda \ge 2 + \kappa$  be an eigenvalue of H with normalized eigenvector  $\mathbf{w} \perp \operatorname{Span}(\mathbf{v}(x) : x \in \mathcal{U})$ , then

$$\begin{split} \lambda &= \langle \mathbf{w}, H\mathbf{w} \rangle \stackrel{1}{\leqslant} 1 + o(1) + \sum_{x} \alpha_{x} w_{x}^{2} \\ &= 1 + o(1) + \sum_{x} \mathbb{1}_{\alpha_{x} \leqslant 1 + \kappa} \alpha_{x} w_{x}^{2} + \sum_{x} \mathbb{1}_{\alpha_{x} > 1 + \kappa} \alpha_{x} w_{x}^{2} \\ &\leqslant 2 + o(1) + \max_{x} \alpha_{x} \sum_{x} \mathbb{1}_{\alpha_{x} > 1 + \kappa} w_{x}^{2} \\ &\stackrel{2}{\leqslant} 2 + o(1) \,. \end{split}$$

Part IV: overview of the proof in the delocalized phase

Delocalization follows from local law, controlling Green function

$$G = (H - z)^{-1}$$

for  $\operatorname{Im} z \gg N^{-1}$  and  $|\operatorname{Re} z| < 2 - o(1)$ .

Schur complement formula yields

$$\frac{1}{G_{xx}} = -z - \frac{1}{d} \sum_{y, \tilde{y} \in S_1(x)} G_{y\tilde{y}}^{(x)}$$
(3)

where  $(\cdot)^{(x)}$  means vertex x is removed.

**Remark.** Suppose that all neighbours in  $S_1(x)$  are in different connected components of  $A^{(x)}$ . Then

$$\frac{1}{G_{xx}} = -z - \frac{1}{d} \sum_{y \in S_1(x)} G_{yy}^{(x)}$$

and

$$G_{yy}^{(x)} - G_{yy} = (G_{yy}^{(x)})^2 \frac{1}{d} G_{xx}.$$

The assumption of Remark is badly wrong for G(N, d/N) and the conclusion in general completely wrong for  $\text{Im } z \ll 1$ .

Key insight of proof: if  $\max_{x,y} |G_{xy}|$  is bounded then the conclusions of Lemma 3 remain essentially correct although the justification is completely different.

Hence, we obtain a self-consistent equation for the vector  $(G_{xx})_{x \in [N]}$ .

More precisely: suppose that  $\max_{x,y} |G_{xy}| \leq C$ .

Step 1. By large deviation estimates for quadratic forms of sparse random vectors [He, K, Marcozzi; 2018] from (3) we obtain

$$\frac{1}{G_{xx}} = -z - \frac{1}{d} \sum_{y \in S_1(x)} G_{yy}^{(x)} + \mathrm{o}(1)$$

with very high probability. (Requires only  $d \gg 1$ .)

Step 2. Define the error parameter

$$\Psi_x := \frac{1}{d} \sum_{y \in S_1(x)} G_{yy}^{(x)} - \frac{1}{N} \sum_{y \in [N]} G_{yy}^{(x)}$$

A vertex x is typical if  $\Psi_x = o(1)$ .

Key Lemma. With very high probability,

(i) Most vertices are typical.

(ii) Any vertex has few atypical neighbours.

Proof of Lemma is main work, requires  $d \gg \sqrt{\log N}$ .

Step 3. Obtain self-consistent equation for  $(G_{xx})_{x \in [N]}$ , which has solution

$$G_{xx} = -\frac{1}{z + \alpha_x m} + o(1)$$
,  $m =$  Stieltjes transform of semicircle law.

The solution is uniformly bounded for  $c \leq |\operatorname{Re} z| \leq 2 - c$ .

Step 4. Bootstrap in Im z from Im z = 1 down to  $\text{Im } z \gg N^{-1}$ .