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Part |: overview



Universality conjecture for disordered quantum systems

H = random Hermitian operator

= Hamiltonian of quantum system with disorder
Universality conjecture: spectrum of H splits:
(1) Localized (insulator): Eigenvectors are localized.
Local spectral statistics are Poisson.

(2) Delocalized (metal): Eigenvectors are delocalized.

Local spectral statistics follow random matrix theory (e.g. GOE).

Let A be a finite set (physical space) and suppose that H : R* — RA.
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How to quantify localization vs. delocalization?

Let N := |A|.
e Localization exponent: Dy € [0, 1]:
_a=1lp
[Wllag =N""20 70, 1<g<oo.

Remarks:

e w localized at single site <= D;=0
e w perfectly delocalized <+— D,=1
e w uniform over N7 sites <= D, =7

e Scarring: there exists a small € and a small B C A such that

Zwi}l—a.



Example: Anderson model

A4V onAczZi = V=(Vy)wen iid N(0,1).
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Figure 1.2. The predicted shape of the phase diagram of the Anderson
model (1.2) in dimensions d > 2 for site potentials given by bounded iid
random variables with a distribution similar to (1.5).

(From M. Aizenman, S. Warzel, Random Operators, AMS.)

Localized phase very well understood ([Frohlich, Spencer; 1983], [Aizenman,
Molchanov; 1993], [Molchanov; 1981], [Minami; 1996], ...)

Delocalized phase wide open (extended states conjecture).



Other models of quantum disorder

Wigner matrices with light tails are in the delocalized phase.
[Erdés, Schlein, Yau, Yin; 2009-...], [Tao, Vu; 2009-. . .]

Heavy-tailed Wigner matrices proposed as a simple model that exhibits a
phase transition.

[Cizeau, Bouchaud; 1994], [Auffinger, Ben Arous, Péché; 2009], [Tarquini,
Biroli, Tarzia; 2016], [Bordenave, Guionnet; 2013-2017], [Aggarwal,
Lopatto, Yau; 2020]

Random band matrices proposed as a simpler alternative to the Anderson
model on Z¢.

[Disertori, Spencer, Zirnbauer; 2009], [Sodin; 2009], [Erdés, K; 2010],
[Schenker; 2010], [Erdés, K, Yau, Yin; 2013], [Bourgade, Erdés, Yau, Yin;
2017], [Bourgade, Fan, Yau, Yin; 2019], [Fan, Yau, Yin; 2021].

This talk: Random graphs = sparse random matrices.



Erd6s-Rényi graph and critical regime

Erd6s-Rényi graph G(N,d/N)

Critical regime: d ~ log N, below which degrees do not concentrate.

[}

d>log N d < log N

Supercritical d > log N: homogeneous.
Subcritical d < log N: inhomogeneous (hubs, leaves, isolated vertices, ...).

Consider the adjecency matrix A = (A4,,) € {0,1}V*V,



Phase diagram for H :=d~'/2A

d =blog N b

() delocalized
Doo=1=0(1) |~ | by = —1 _ ~259

semilocalized
Do <7v<1

localized




Behaviour of localization exponent

Asymptotically allowed region for Do, (plotted for b = 1):

2 )\max



Simulation of eigenvectors

Scatter plot of (eigenvalue, ||eigenvector||o). (N = 10000, b = 0.6)




Part Il: results (Alt, Ducatez, K; 2019-2022)

Convention: x > 0 tends to 0 slowly as N — oo.



Delocalization

Theorem. Delocalization with high probability under any of the conditions
o d>(by+k)logN
e d>(14k)logN and |A] < 2

e d>CylogN and k < |A| € 2

Remark. The assumptions are optimal (up to constant C).

Consider two identical stars of central de-
grees D attached to a common vertex.

This gives rise to a localized eigenvector
with eigenvalue y/D/d.

Such pairs occur up to D = O(1) if d < giant component

Clog N and up to D = O(d) for d <
C+/log N.



Semilocalization

_x
a—1"

Define the normalized degree «,, := ézy Azy and the map Aa) =

Theorem. Let A\ > 2 + k be an eigenvalue with eigenvector w € SV¥~!. Define
the set of vertices in resonance with \,

| <k}.

Wi = {z:0p =2, |A(ag) — A

There is a radius r > 1 such that for each x € W, there exists a normalized
vector v(z), supported in B,(x), such that the supports of v(z) and v(y) are
disjoint for x # y, and

Y (vlz), W) =1-o0(1)
TEWN

with high probability. Moreover, v(z) decays exponentially around x:

> V@) <






Spectral edge: Poisson eigenvalue statistics

Theorem. Suppose that
(loglog N)* <d < (b, — k)log N .

There exist deterministic u, o, 7,6 (which are explicit functions of d and )
such that the rescaled eigenvalue process

© = bar(ni(H)-o)
i

is asymptotically close to a Poisson point process ¥ on R on intervals [—k, c0)
containing at most K > 1 points.

Corollary. Asymptotic equality in law of k = O(K) largest points.



Intensity of W

The intensity of VU is

p(ds) := Z ul ™ g (s + 0((du) + £)) ds,
LET

where (-) is the periodic representative in [—1/2,1/2), and g(s) :=

Scaling laws
2 2 t __log N

= log(t Vv 2)’ ' d

Distribution of p in
critical regime ¢ < 1:
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Distribution of p in subcritical regime ¢ > 1:

10

Resonance (du) = 0:

Top eigenvalue not gov-
erned by Gumbel law.

[\

Off-resonance |(du)| = ¢

Top eigenvalue governed
by Gumbel law.




Spectral edge: eigenvector localization

Theorem. Suppose that
(loglog N)* < d < (bs — K)log N .

Let w = (w,) be an eigenvector associated with one of the top (or bottom) K
eigenvalues. Then with high probability there exists a vertex z with o, > 2
such that [|w — v(z)| = o(1).

Remark. The vector v(z) is explicit, radial, and exponentially decaying:

T

via) = 3 ula) T

— 1Ls, )l

where

urw) = L ugf@), waln) = —uie) (1),

Vo, —1 a, — 1



Part Ill: overview of the proof in the localized phase



Basic intuition: one-to-one correspondence between eigenvalues and vertices of
large degree.
Main steps of proof:

Step 1. Characterize the fluctuations of an eigenvalue associated with a vertex
of large degree.

Step 2. Establish a one-to-one relation between such eigenvalues and the
eigenvalues of H near the edge.



Step 1

Consider neighbourhood of vertex in

U:={z: 0, >2+kK}.

Use the tridiagonal representation of H := d~'/2A around x: write H in the
basis hg, hy, hy, ... obtained by orthogonalizing 1., H1,, H?1,,....

Apply transfer matrix (or orthogonal polynomial) analysis.

Problem: Fluctuations of transfer matrices very hard to control precisely,
because h; is unwieldy.

Toy model: in a rooted regular tree, the degree
depends only on the distance to the root.

Exercise: if G|p, (4 is a rooted regular tree, then
hi = 151(r) for i <.



e Naive attempt: write H in basis (1g,(,)) instead of (h;), to get an almost
tridiagonal matrix.

Problem: off-tridiagonal matrix is too large.

o More refined attempt: If G|p, (5 is a tree, the vector H1, can be
decomposed as a sum over simple walks in N of length 7.

jump left / right <= terms decreasing / increasing distance from root

e Basis (h;): all walks
e Basis (1g,(x)): only steps to the right

Define basis (f;) using walks with at most one step to the left.
For instance,

f3=153(z)—|— Z (doyy — F)1,, FeR.
y€S1(2)



Proposition. Let r > 1 be suitably chosen. Let M be the matrix H in the

basis (f;)7_,. Then
IM — Zy(au, Bo)|| <d77°,

where 151(2)] Sale)]
- 1T _ 2\ T
S I e 7
and
0 va
Ja 0 B
3 0 V5 1
Zy(e, B) = Vo 0 Vh ) 03:1+g~
\/6 .

0

Remark. v/dZy(a, B) is the tridiagonalization at the root of the rooted regular
tree with degree sequence ad, Bd,d+ 1,d+1,....



Zy (g, Bz) has a unique eigenvalue Ay (o, B2) > 2 + K, with exponentially
decaying eigenvector (u;)7_,.

Back to graph G with

r

f;
Y@= 2wy

=0

It is possible to show that
H(H—Aa(aw,ﬁx))y(m)H <d e (1)

Step 1 is concluded by analysing the fluctuations of A, (a,3,;) (of order d—1).



Step 2

Need to ensure:

(a) (y(x):x € U) are orthogonal (i.e. (B-(z) : z € U) are disjoint).
(b) The high probability bounds hold simultaneously for all x € U.

(c) The remaining eigenvalues cannot “pollute” the edge of the spectrum.

All of these present significant complications. In fact, (a) and (b) are wrong



(a) (By(z):x €U) are disjoint only if either (i) U is small or (ii) we prune the
graph by removing edges to disconnect balls.

The pruning is potentially deadly, since in general removing even a single
edge perturbs an eigenvalue by O(1/v/d).

We have to prune in places that have a small impact on the extreme
eigenvalues: prune only in the neighbourhoods of vertices x whose «, is
far from the top degree.



(b) The estimate (1) is not true simultaneously for all z € U. Solution:
three-scale rigidity argument with the partition U = Uy LU U; U Us, where
g > oy forz e Uy and y € Ui,

The sets Uy, U1, U are increasing in size, but the accuracy of the estimate
(1) deteriorates as i increases.

d—1/2+c d—1+c d—l—c

Spec(H)

o {Ao(aw )}
(o] uO

[ ul

[ ] Z/[2




Block diagonal representation

Dy 0
s |0 Dy
O'HO= |

Ey, E

WHEE

0o E
0 Ef
Dy +& Ej
E, X

D; = diag(AD(O‘vax) + O(gz) HEAS ui)

d-'=¢  ifi=0
&+ B =d e ifi=1
d=1/2e ifi=2

+— main estimates

€2l = O(@™"/>*)  +— pruning
IXI<240(1) (o)



(c) Estimate of || X|| involves two main steps.

1. Quadratic form estimate. H < I + Q + o(1) with @ = diag(aq,...,an).

Proof. Define the nonbacktracking matrix B = (Bey)e, re[n]2 associated with

H through
j=k

Bijyty = Hulj=rlizi - i/o\\ol
Then, by [Bordenave, Benaych-Georges, K; 2017], p(B) = 1+ o(1).
Next, invoke a general lhara-Bass-type formula: define the matrices H(\) and

D(\) = diag(Dz()))ze[n) through

. AH,,

H, . H,;:
= % D =1 __Truttur 2
wA) = 15— o T, +(\) + zu: i 2)

Then X € Spec(B) if and only if det(D(X\) — H(\)) = 0.

Show that H(\) ~ H/X and D(\) ~ I + Q/A?. Then a simple continuity
argument using p(B) = 1+ o(1) yields the claim. O



2. Local delocalization bound. Let A > 2 + x be an eigenvalue of H with
normalized eigenvector w L Span(v(x) : x € U). Then

Y Lasiew? =o(1).

Proof. Radial Combes-Thomas-type argument. O

Now we can conclude (c): if A > 2 + & be an eigenvalue of H with normalized
eigenvector w L Span(v(z) : x € U), then

1
A= (w,Hw) <1+ 0(1) —&—Zaacwi
=1+o(1)+ Z ]laz<1+na:rwa20 + Z 1a$>1+naﬂcw§:
T x

<2+0(1)+ max o Z Lo, >1irw?

x

2
<2+40(1).



Part IV: overview of the proof in the delocalized phase



Delocalization follows from local law, controlling Green function

G=(H-2)""

for Imz > N1 and |[Rez| < 2 —o(1).

Schur complement formula yields

where (-)(*) means vertex x is removed.



Remark. Suppose that all neighbours in S;(x) are in different connected
components of A@) . Then

y€eSi(z)
and 1
x _ x)\2
G — Gy, = (G)) SGaa

The assumption of Remark is badly wrong for G(N,d/N) and the conclusion in
general completely wrong for Im z < 1.

Key insight of proof: if max, |G, is bounded then the conclusions of Lemma
3 remain essentially correct although the justification is completely different.

Hence, we obtain a self-consistent equation for the vector (G )ze[n]-



More precisely: suppose that max, ,|Gyy| < C

Step 1. By large deviation estimates for quadratic forms of sparse random
vectors [He, K, Marcozzi; 2018] from (3) we obtain

1
Gm:—z—f Z G(I +o(1
y€S1(z)

with very high probability. (Requires only d > 1.)
Step 2. Define the error parameter
v o= L a1 G
T4 Z w N Z vy
y€S1(x) y€E[N]
A vertex x is typical if ¥, = o(1).
Key Lemma. With very high probability,

(i) Most vertices are typical.
(i) Any vertex has few atypical neighbours.

Proof of Lemma is main work, requires d > /log N.



Step 3. Obtain self-consistent equation for (G2 )ze[n], Which has solution

1
Gpo = ——— +0(1), m = Stieltjes transform of semicircle law.
z 4+ am

The solution is uniformly bounded for ¢ < |Rez| < 2 —c.

Step 4. Bootstrap in Im z from Im z = 1 down to Im z > N~



