Disordered systems at complex temperatures: Phase diagrams, fluctuations and zeros

Anton Klimovsky

Universität Duisburg-Essen

August 19, 2019

Complex Random Energy Model: Zeros and Fluctuations. With Zakhar Kabluchko. Prob. Theor. and Rel. Fields. 2012.

- Generalized random energy model at complex temperatures. With Zakhar Kabluchko. Preprint arXiv:1402.2142, 2014.
- The glassy phase of the complex branching Brownian motion energy model. With Lisa Hartung. Electron. Commun. Probab. 20 (78), 1–15, 2015.
- The phase diagram of the complex branching Brownian motion energy model. With Lisa Hartung. Electron. J. Probab. 23 (127), 27 pp. 2018.

Disordered systems: Hamiltonian as a random field

Fruitfull approach, Derrida (1980):

- Treat $H(\cdot)$ as a random field.
- Explore universality classes.

- Q: What is the simplest random field?
- ► A: "White noise" (e.g., i.i.d. Gaussian field).

Derrida's random energy model Derrida (1980): Partition function:

$$\mathscr{Z}_N(eta) := \sum_{k=1}^N \mathrm{e}^{eta \sqrt{n} X_k}$$

- Notation: $n = \log N$.
- ► ${X_k}_{k=1}^{\infty}$ are i.i.d. $\mathcal{N}(0,1)$ random energies.
- Seemingly unrealistic: No microscopic interactions, no spins, completely random energy levels, ...
- Q: Why bother?

Large-volume limit of the log-partition function:

$$\mathbf{p}(\boldsymbol{\beta}) := \lim_{N \to \infty} \frac{1}{n} \log \mathscr{Z}_N(\boldsymbol{\beta}) = \begin{cases} 1 + \frac{1}{2} \boldsymbol{\beta}^2, & 0 \le \boldsymbol{\beta} \le \sqrt{2}, \\ \sqrt{2} \boldsymbol{\beta}, & \boldsymbol{\beta} \ge \sqrt{2}. \end{cases}$$

 \Rightarrow phase transition!

Lee-Yang Program (1952)

Interference phenomena

Quantum Physics:

- Schrödinger equations with random potentials.
- Path integrals.
- Quantum Monte Carlo.
- ▶

interference

\Rightarrow Complex-valued Hamiltonians!

Riemann zeta-function, random matrices and complex random energy models

Riemann's zeta-function:

$$\zeta(s) = \sum_{n=1}^{\infty} n^{-s}, \quad s \in \mathbb{C} \setminus \{1\}.$$

- log |ζ(1/2+it+iωT)|, for ω ~ Uniform(0,1), T → ∞ behaves like a complex log-correlated field on micro- and mesoscopic scales, see Fyodorov, Keating (2014); Saksman, Webb (2016); Arguin, Belius, Bourgade (2019), ...
- log of CUE's characteristic polynomial behaves like a log-correlated field

⇒ Complex-valued Hamiltonians!

Complex REM

with Zakhar Kabluchko

Define:

$$\mathscr{Z}_{N}(\boldsymbol{\beta}) := \sum_{k=1}^{N} \mathrm{e}^{\sqrt{n}(\boldsymbol{\sigma} X_{k} + i \boldsymbol{\tau} Y_{k})}, \qquad \boldsymbol{\beta} = (\boldsymbol{\sigma}, \boldsymbol{\tau}) \in \mathbb{R}^{2}.$$

▶ $\{(X_k, Y_k)\}_{k=1}^{\infty}$ i.i.d. zero-mean bivariate Gaussian random vectors with

$$\operatorname{Var} X_k = \operatorname{Var} Y_k = 1, \quad \operatorname{corr}(X_k, Y_k) = \rho, \\ -1 \le \rho \le 1$$

 \Rightarrow Complex REM.

Log-partition function

Theorem (Kabluchko and K. 2014)

For every $eta \in \mathbb{R}^2$ and any ho , the limit

$$p(\boldsymbol{\beta}) := \lim_{N \to \infty} p_N(\boldsymbol{\beta})$$

exists in probability and in L^q , $q \ge 1$, and is explicitly given as

$$p(\beta) = \begin{cases} 1 + \frac{1}{2}(\sigma^2 - \tau^2), & \beta \in \overline{B}_1, & \text{[LNN]} \\ \sqrt{2}|\sigma|, & \beta \in \overline{B}_2, & \text{[EVT]} \\ \frac{1}{2} + \sigma^2, & \beta \in \overline{B}_3. & \text{[CLT, Var} > \mathbb{E}^2 \end{cases}$$

N.B.:

- ρ-independent limit.
- The formula was heuristically derived by Derrida (1991).
- ► Our proof: fluctuations of *𝔅*_N(β) + continuous mapping theorem.

Zeros

Theorem (Zeros)

It holds that

- (a) There are no zeros of \mathscr{Z}_N inside any $K \Subset B_1$ w.h.p., as $N \to \infty$.
- (b) There is positive density of zeros only in B_3 and on $(\bar{B}_1 \cap \bar{B}_3) \cup (\bar{B}_1 \cap \bar{B}_3)$:

$$\frac{1}{n}\sum_{\boldsymbol{\beta}\in\mathbb{C}: \ \mathcal{Z}_{N}(\boldsymbol{\beta})=0}f(\boldsymbol{\beta}) \xrightarrow[N\to\infty]{P} \frac{1}{2\pi}\int_{\mathbb{C}}f(\boldsymbol{\beta})\mathbf{\Xi}(\mathrm{d}\boldsymbol{\beta}), \quad \forall f\in C_{K}(\mathbb{C},\mathbb{R}),$$

where $\Xi := \Delta p$ and therefore

$$\boldsymbol{\Xi} = 2\boldsymbol{\Xi}_3 + \boldsymbol{\Xi}_{12} + \boldsymbol{\Xi}_{13},$$

where

►
$$\Xi_3$$
 = Lebesgue2D(B_3),
► $\frac{d\Xi_{13}}{dLebesgue1D(\bar{B}_1 \cap \bar{B}_3)}(\sigma, \tau) = 2|\tau|, (\sigma, \tau) \in \bar{B}_1 \cap \bar{B}_3$),
► Ξ_{12} = Lebesgue1D($\bar{B}_1 \cap \bar{B}_3$).

Fluctuations of zeros

► For
$$\beta_0 \in B_3$$
, $\forall f \in C_K(\mathbb{C}, \mathbb{R})$,

$$\sum_{\beta \in \mathbb{C}: \ \mathscr{Z}_N(\beta) = 0} f(\sqrt{n}(\beta - \beta_0)) \xrightarrow[N \to \infty]{w} \sum_{\beta \in \mathbb{C}: \ \mathbb{G}(\beta) = 0} f(\beta),$$

where

- Gaussian analytic function: $\mathbb{G}(t) := \sum_{k=0}^{\infty} \xi_k \frac{t^k}{\sqrt{k!}}, t \in \mathbb{C}.$
- ξ_0, ξ_1, \dots are i.i.d. $\mathscr{N}_{\mathbb{C}}(0, 1)$.
- For $f \in C_K(B_2, \mathbb{R})$,

$$\sum_{\substack{\boldsymbol{\beta}\in B_2: \ \mathscr{Z}_N(\boldsymbol{\beta})=0}} f(\boldsymbol{\beta}) \xrightarrow[N\to\infty]{w} \sum_{\substack{\boldsymbol{\beta}\in B_2: \\ \boldsymbol{\zeta}_P^{(1)}(\boldsymbol{\beta}/\sqrt{2})=0}} f(\boldsymbol{\beta}) + \sum_{\substack{\boldsymbol{\beta}\in B_2: \\ \boldsymbol{\zeta}_P^{(2)}(\boldsymbol{\beta}/\sqrt{2})=0}} f(-\boldsymbol{\beta}),$$

where

► Poisson ζ -function: $\zeta_P(\beta) := \sum_{k=1}^{\infty} \frac{1}{P_k \beta}$ with $(P_k)_{k\geq 1}$ being the arrivals of the Poisson process on \mathbb{R}_+ with unit intensity.

$$\boldsymbol{\zeta}_P^{(1)}, \boldsymbol{\zeta}_P^{(2)} \sim \boldsymbol{\zeta}_P \\ \text{i.i.d.} \boldsymbol{\zeta}_P$$

Beyond the REM universality class

- 1. Q: What happens beyond the REM universality class?
- 2. Q: How strong should the correlations be in order to fall out of the REM universality class?

Generalised Random Energy Model: two levels

Cumulative displacement = energy:

$$X_{\varepsilon_1\varepsilon_2} = \sqrt{a_1}\,\xi_{\varepsilon_1} + \sqrt{a_2}\,\xi_{\varepsilon_1\varepsilon_2}.$$

Generalised Random Energy Model: d levels

Define a zero-mean Gaussian random field $\{X_{\varepsilon}: \varepsilon \in \mathbb{S}_n\}$ by

$$X_{\varepsilon} = \sqrt{a_1}\,\xi_{\varepsilon_1} + \sqrt{a_2}\,\xi_{\varepsilon_1\varepsilon_2} + \ldots + \sqrt{a_d}\,\xi_{\varepsilon_1\ldots\varepsilon_d}.$$

- **1.** Number of levels $d \in \mathbb{N}$.
- **2.** The variances of the levels $a_1, \ldots, a_d > 0$ (energetic parameters).
- **3.** The branching exponents $\alpha_1, \ldots, \alpha_d > 1$ (entropic parameters).
- 4. Branching numbers $N_{n,1} = [\alpha_1^n], \dots, N_{n,d} = [\alpha_d^n].$
- 5. Leaves of the tree

$$\mathfrak{S}_n = \{ \boldsymbol{\varepsilon} = (\boldsymbol{\varepsilon}_1, \dots, \boldsymbol{\varepsilon}_d) \in \mathbb{N}^d \colon 1 \leq \boldsymbol{\varepsilon}_1 \leq N_{n,1}, \dots, 1 \leq \boldsymbol{\varepsilon}_d \leq N_{n,d} \}.$$

6. Random energies

 $\{\boldsymbol{\xi}_{\boldsymbol{\varepsilon}_1...\boldsymbol{\varepsilon}_m}: 1 \leq m \leq d, 1 \leq \boldsymbol{\varepsilon}_1 \leq N_{n,1}, \ldots, 1 \leq \boldsymbol{\varepsilon}_m \leq N_{n,m}\}$ i.i.d. $\mathcal{N}(0,1)$ r.v.'s.

Phase diagram of the GREM in the complex β plane

Figure: Phases and zeros. The darker the shading, the more zeros

Phases decoded

The GREM phase transitions (on \mathbb{R}) occur at

$$\sigma_k := \sqrt{\frac{2\log \alpha_k}{a_k}}, \quad 1 \le k \le d, \quad \text{Assume: } \sigma_1 < \ldots < \sigma_d.$$

 $E \rightsquigarrow$ expectation, $F \rightsquigarrow$ fluctuations, $G \rightsquigarrow$ glassy (extremes). Each level can be in on of the **rescaled REM phases**:

$$\begin{split} & \boldsymbol{G}_k := \{\boldsymbol{\beta} \in \mathbb{C} \colon 2|\boldsymbol{\sigma}| > \boldsymbol{\sigma}_k, \, |\boldsymbol{\sigma}| + |\boldsymbol{\tau}| > \boldsymbol{\sigma}_k\}, \\ & \boldsymbol{F}_k := \{\boldsymbol{\beta} \in \mathbb{C} \colon 2|\boldsymbol{\sigma}| < \boldsymbol{\sigma}_k, \, 2(\boldsymbol{\sigma}^2 + \boldsymbol{\tau}^2) > \boldsymbol{\sigma}_k^2\}, \\ & \boldsymbol{E}_k := \mathbb{C} \setminus \overline{\boldsymbol{G}_k \cup \boldsymbol{F}_k}, \end{split}$$

so the rescaled REM phase transition occurs at $\beta = \sigma_k$.

Fluctuations: A limiting object

Poisson cascade $\Pi = \sum_{\varepsilon = (\varepsilon_1, ..., \varepsilon_d) \in \mathbb{N}^d} \delta(P_{\varepsilon_1}, P_{\varepsilon_1 \varepsilon_2}, ..., P_{\varepsilon_1 ... \varepsilon_d})$, where $\sum_{i=1}^{\infty} \delta(P_{\varepsilon_1 ... \varepsilon_m i})$ a unit intensity Poisson point process on $(0, \infty)$.

Poisson cascade ζ -function: $\zeta_P(z_1, \ldots, z_d) = \sum_{\varepsilon \in \mathbb{N}^d} P_{\varepsilon_1}^{-z_1} P_{\varepsilon_1 \varepsilon_2}^{-z_2} \ldots P_{\varepsilon_1 \ldots \varepsilon_d}^{-z_d}$.

Fluctuations

Theorem

 $C_n($

Let $eta\in G^{d_1}F^{d_2}E^{d_3}.$ Then,

$$\underbrace{\mathscr{Z}_n(\beta)}_{\mathbf{e}^{c_n(\beta)}} \underset{n \to \infty}{\Longrightarrow} \begin{cases} 1, & \text{if } d_1 = 0 \text{ and } d_2 = 0, \\ N_{\mathbb{C}}(0,1), & \text{if } d_1 = 0 \text{ and } d_2 > 0, \\ \zeta_{P}(\frac{\beta}{\sigma_1}, \dots, \frac{\beta}{\sigma_{d_1}}), & \text{if } d_1 > 0 \text{ and } d_2 = 0, \\ cS_{\sigma/\sigma_1}, & \text{if } d_1 > 0 \text{ and } d_2 > 0. \end{cases}$$

Here, ζ_P is the Poisson cascade zeta function and S_{α} is the isotrpic, complex standard α -stable random variable with characteristic function $\mathbb{E}e^{i\operatorname{Re}(S_{\alpha}\bar{z})} = e^{-|z|^{\alpha}}, z \in \mathbb{C}$, where $\alpha \in (0, 2)$.

$$c_{n,k}(\beta) = \begin{cases} \beta \sqrt{na_k} u_{n,k}, & \text{if } \beta \in G^k, \\ \frac{1}{2} \log N_{n,k} + a_k \sigma^2 n, & \text{if } \beta \in F^k, \\ \log N_{n,k} + \frac{1}{2} a_k \beta^2 n, & \text{if } \beta \in E^k. \end{cases}$$
$$(\beta) = c_{n,1}(\beta) + \ldots + c_{n,d}(\beta), u_{n,k} = \sigma_k \sqrt{na_k}.$$

Log-partition function

Theorem

For every $\beta \in \mathbb{C}$, the following limit exists in probability and in L^q , for all $q \ge 1$:

$$p(\boldsymbol{\beta}) := \lim_{n \to \infty} \frac{1}{n} \log |\mathscr{Z}_n(\boldsymbol{\beta})| = \sum_{k=1}^d p_k(\boldsymbol{\beta}),$$

where

$$\mathbf{p}_{k}(\boldsymbol{\beta}) = \begin{cases} |\boldsymbol{\sigma}| \sqrt{2a_{k} \log \alpha_{k}}, & \text{if } \boldsymbol{\beta} \in \bar{G}_{k}, \\ \frac{1}{2} \log \alpha_{k} + a_{k} \boldsymbol{\sigma}^{2}, & \text{if } \boldsymbol{\beta} \in \bar{F}_{k}, \\ \log \alpha_{k} + \frac{1}{2} a_{k} (\boldsymbol{\sigma}^{2} - \boldsymbol{\tau}^{2}), & \text{if } \boldsymbol{\beta} \in \bar{E}_{k}. \end{cases}$$

Confirms and extends Takahashi (2011).

Proof: Above fluctuation results + continuous mapping theorem.

Infinitely deep & wide hierarchies: $d \rightarrow \infty$

The continuous GREM (CREM):

- ▶ Let $A: [0,1] \rightarrow \mathbb{R}$ be an increasing, concave function with A(0) = 0.
- Fix also some α > 1.
- Consider a GREM with *d* levels whose parameters (a₁,...,a_d) and (α₁,...,α_d) are given by

$$a_1 + \ldots + a_k = A\left(\frac{k}{d}\right), \quad \log \alpha_k = \frac{1}{d}\log \alpha, \quad 1 \le k \le d.$$

Phase diagram $d = \infty$

Approximating CREM by GREM with many levels.

Conjectured phase diagram of the CREM w.r.t. complex temperatures.

Log-partition function of the CREM

Conjecture (The log-partition function of the CREM) The log-partition function of the CREM converges to

$$p^{\infty}(\boldsymbol{\beta}) := p^{\infty}_{\boldsymbol{G}}(\boldsymbol{\beta}) + p^{\infty}_{\boldsymbol{F}}(\boldsymbol{\beta}) + p^{\infty}_{\boldsymbol{E}}(\boldsymbol{\beta}), \quad \text{in } L^1,$$

where

$$p_{G}^{\infty}(\boldsymbol{\beta}) := |\boldsymbol{\sigma}| \sqrt{2\log\alpha} \int_{0}^{\gamma_{1}} \sqrt{A'(t)} dt,$$

$$p_{F}^{\infty}(\boldsymbol{\beta}) := \frac{\gamma_{2}}{2}\log\alpha + (A(\gamma_{1} + \gamma_{2}) - A(\gamma_{1}))\boldsymbol{\sigma}^{2},$$

$$p_{E}^{\infty}(\boldsymbol{\beta}) := \gamma_{3}\log\alpha + \frac{1}{2}(\boldsymbol{\sigma}^{2} - \boldsymbol{\tau}^{2})(A(1) - A(\gamma_{1} + \gamma_{2})).$$

REM borderline

Q: What happens at the borderline of the REM universality class?

- The glassy phase of the complex branching Brownian motion energy model. Electron. Commun. Probab. 20 (78), 1–15, 2015
- The phase diagram of the complex branching Brownian motion energy model. Electron. J. Probab. 23 (127), 27 pp. 2018.

with Lisa Hartung

Branching Brownian motion

- ► (Supercritical) Galton-Watson process: $i_1(t), \ldots, i_{n(t)}(t), t \in \mathbb{R}_+$.
- Genealogy: $i_k(s,t)$ is the unique ancestor of particle $i_k(t)$ at time s < t.
- Correlations $k, l \leq n(t)$:

 $\mathbb{E}\left[x_k(s,t)x_l(r,t) \mid \text{Genealogy upto time } t\right] = \underbrace{d(i_k(s,t),i_l(r,t))}_{\text{tree overlap}}, \quad s,r \in [0,t].$

Complex branching Brownian motion energy model

Partition function:

$$\widetilde{\mathscr{Z}}_{\beta,\rho}(t) := \sum_{k=1}^{n(t)} \mathrm{e}^{\sigma x_k(t) + i\tau y_k(t)},$$

where x, y are BBMs with

- The same genealogy.
- $\operatorname{Cov}(x_k(t), y_k(t)) = \rho t, \rho \in [-1, 1].$

Thechnical assumptions on the Galton-Watson process:

- Σ_{k=1}[∞] p_k = 1 (none of the particles die);
- Σ_{k=1}[∞] kp_k = 2 (the expected number of children per particle equals two);
- $K := \sum_{k=1}^{\infty} k(k-1)p_k < \infty$ (finite second moment).

Summary of results

Phase diagram of the BBM energy model

Same phase diagram as in the REM, but markedly different fluctuations:

- ▶ B_1 : Law of large numbers \rightsquigarrow martingale convergence.
- ▶ B_2 : Glassy phase \rightsquigarrow EVT for a strongly correlated field.
- ▶ B_3 : Central limit theorem \rightsquigarrow CLT with a random variance.

Log-partition function

Theorem (Phase diagram)

For any $\rho \in [-1,1]$, the complex BBM energy model has the same free energy and the phase diagram as the complex REM:

$$\lim_{t\uparrow\infty} p_t(\boldsymbol{\beta}) =: p(\boldsymbol{\beta}) = \begin{cases} 1 + \frac{1}{2}(\sigma^2 - \tau^2), & \boldsymbol{\beta} \in \overline{B_1}, \\ \sqrt{2}|\boldsymbol{\sigma}|, & \boldsymbol{\beta} \in \overline{B_2}, \\ \frac{1}{2} + \sigma^2, & \boldsymbol{\beta} \in \overline{B_3}, \end{cases}$$

and the convergence holds in probability and (conjecturally) in L^1 .

Fluctuations of the partition function

Q: Fluctuations of $\mathscr{Z}_N(\beta)$?

Distribution of the maximum

- Note that $\mathbb{E}[n(t)] = e^t$.
- Define

$$m(t) := \sqrt{2}t - \frac{3}{2\sqrt{2}}\log t.$$

Bramson (1978) + Lalley and Selke (1987):

$$\lim_{t\uparrow\infty}\mathbb{P}\left\{\max_{k\leq n(t)}x_k(t)-\boldsymbol{m}(t)\leq y\right\}=\mathbb{E}\left[e^{-C\mathbb{Z}e^{-\sqrt{2}y}}\right],\quad y\in\mathbb{R},$$

where C > 0 is a constant and Z is the a.s. limit of the so-called **derivative** martingale:

$$\mathbf{Z} := \lim_{t \uparrow \infty} \sum_{k=1}^{n(t)} (\sqrt{2}t - x_k(t)) \mathrm{e}^{-\sqrt{2}(\sqrt{2}t - x_k(t))}, \quad \text{a.s.}$$

Extremal process

Arguin, Bovier, Kistler (2013)

$$\mathscr{E}_t := \sum_{k=1}^{n(t)} \delta_{x_k(t)-m(t)}, \quad t \in \mathbb{R}_+$$

converges in law as $t \uparrow \infty$ to the point process

$$\mathscr{E}:=\sum_{k,l}\delta_{\eta_k+\Delta_l^{(k)}},$$

where:

- (a) $\{\eta_k\}_{k\in\mathbb{N}}\subset\mathbb{R}$ are the atoms of a Cox process with random intensity measure $CZe^{-\sqrt{2}y}dy$,
- (b) $\{\Delta_l^{(k)}\}_{l \in \mathbb{N}} \subset \mathbb{R}$ are the atoms of i.i.d. PP $\Delta^{(k)}$, $k \in \mathbb{N}$ called **clusters** which are i.i.d. copies of

$$\Delta := \lim_{t\uparrow\infty} \sum_{k=1}^{n(t)} \delta_{\hat{x}_k(t) - \max_{l \le n(t)} \hat{x}_l(t)}$$

with $\hat{x}(t)$ being BBM x(t) conditioned on $\max_{k \le n(t)} x_k(t) \ge \sqrt{2}t$.

Part 1) (Cox-)Poisson point process with intensity $C\sqrt{2}Ze^{-\sqrt{2}x}dx$:

Part 2) To each point of PPP associate an independent copy of some point process Δ :

Poisson point process

Poisson point process + all clusters

Partition function fluctuations in B₂

Theorem (Partition function fluctuations for $|\rho| = 1$) For $\beta = \sigma + i\tau \in B_2$, the rescaled partition function $\mathscr{L}_{\beta,1}(t) := e^{-\beta m(t)} \widetilde{\mathscr{L}}_{\beta,1}(t)$ converges in law to the r.v.

$$\mathscr{Z}_{\beta,1} := \sum_{k,l \ge 1} \mathrm{e}^{\beta \left(\eta_k + \Delta_l^{(k)}\right)}, \quad \text{as } t \uparrow \infty.$$

Theorem (Partition function fluctuations for $|\rho| \in (0,1)$)

Let $\beta = \sigma + i\tau \in B_2$ and $|\rho| \in (0,1)$. Then,

► The rescaled partition function $\mathscr{Z}_{\beta,\rho}(t)$ converges in law to the r.v. $\mathscr{Z}_{\beta,\rho}$, as $t \uparrow \infty$.

• Conditionally on Z, $\mathscr{Z}_{\beta,\rho}$ is a **complex isotropic** $\sqrt{2}/\sigma$ -stable r.v.

Partition function in *B*₁: Martingale convergence

Denote

$$\mathscr{M}_{\boldsymbol{\sigma},\boldsymbol{\tau}}(t) := \mathrm{e}^{-t\left(1+\frac{\boldsymbol{\sigma}^2-\boldsymbol{\tau}^2}{2}\right)}\mathscr{Z}_{\boldsymbol{\beta},\boldsymbol{\rho}}.$$

Theorem (Hartung-K. '17)

Let $\rho \in [-1,1]$ and $\beta \in B_1$. (i) $\mathcal{M}_{\sigma,\tau}(t)$ is a mean 1 martingale. (ii) For $|\beta| \le 1$, $\mathcal{M}_{\sigma,\tau}(t)$ is in L^2 . For $|\beta| > 1$, $\mathcal{M}_{\sigma,\tau}(t)$ is in L^p for $p < \sqrt{2}/\sigma$. $\lim \mathcal{M}_{\sigma,\tau}(t) = \mathcal{M}_{\sigma,\tau}$ a.s. and in L^1 .

t↑∞

Partition function in B_1 : "CLT" for $|\sigma| < 1/\sqrt{2}$

Similar to phase B_3 a "CLT" holds in B_1 if $\sigma < 1/\sqrt{2}$.

Theorem (Hartung-K. '17)

Let
$$\beta = \sigma + i\tau$$
 with $|\sigma| < \frac{1}{\sqrt{2}}$ and $\rho \in [-1, 1]$.
For $\beta \in B_1$,
$$\frac{\mathscr{M}_{\sigma,\tau}(t+r) - \mathscr{M}_{\sigma,\tau}(r)}{e^{r(1-\sigma^2-\tau^2)}} \Rightarrow \mathscr{N}(0, C_1\mathscr{M}_{2\sigma,0}),$$

as first $t \uparrow \infty$ and then $r \uparrow \infty$ given a realization of $\mathcal{M}_{2\sigma,0}$ and for some constant $0 < C_1 < \infty$.

Partition function in *B*₃**: CLT**^{*}

$$B_{2}$$

$$B_{3}$$

$$B_{4}$$

$$B_{2}$$

$$B_{3}$$

$$B_{3}$$

$$B_{3}$$

$$B_3:=\{\sigma+i\tau\in\mathbb{C}:\,2\sigma^2<1,\sigma^2+\tau^2>1\}.$$

Intuition: ["CLT"]

Partition function is order of the root of the second moment of the real temperature part (assuming independence)

$$\left(\mathrm{e}^{t}\mathbb{E}\left(\mathrm{e}^{2\sigma x_{k}(t)}\right)\right)^{1/2}=\mathrm{e}^{t/2}\mathrm{e}^{\sigma^{2}t},$$

where $x_k(t) \sim \mathcal{N}(0, t)$.

Partition function in *B*₃**: CLT**^{*}

Theorem (Hartung-K. '17)

Let $\rho \in [-1,1]$ and $\beta \in B_3$. Assume that all moments of the offspring distribution exist.

Then, conditionally on $\mathcal{M}_{2\sigma,0}$,

$$\frac{\mathscr{Z}_{\beta,\rho}}{\mathrm{e}^{t\left(\frac{1}{2}+\sigma^{2}\right)}} \Rightarrow \mathscr{N}\left(0,C_{2}\mathscr{M}_{2\sigma,0}\right), \quad \text{as } t \uparrow \infty,$$

where

$$\mathscr{M}_{2\sigma,0} = \lim_{t\uparrow\infty}\sum_{k=1}^{n(t)} \mathrm{e}^{2\sigma x_k(t) - (1+\sigma^2)t}.$$

Some related results

- Derrida, Evans, Speer 1993: independent Re & Im parts of the complex random energy on a regular tree, log-partition function, no fluctuations.
- Barral, Jin, Mandelbrot 2010: complex Gaussian multiplicative cascades (d = 1). (Phase I and Phase II, tightness only)
- ► Lacoin, Rhodes, Vargas 2015: complex Gaussian multiplicative chaos (d ≥ 2). (Phase I and Phase III)
- Meiners and Mentemeier 2017; Kolesko and Meiners 2016: complex smoothing transforms.
- Fyodorov, Hiary and Keating: 2012; Arguin, Belius and Bourgade: 2015; Saksman and Webb 2016: characteristic polynomials of random matrices, and (probabilistic models of the) Riemann zeta function.
- Hairer and Shen 2016: renormalization of the dynamical sine-Gordon model.

Summary and Outlook

For REM, GREM and for BBM we now know:

- Fluctuations of the partition function;
- Distribution of complex zeros of the partition function;
- the log-partition function;
- the phase diagram.

Outlook:

- Free energy of the **randomized** ζ -function at complex temperatures.
- Complex Gaussian multiplicative chaos (Phase II).
- Models with microscopic interactions.