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Disordered systems: Hamiltonian as a random field

Fruitfull approach, Derrida (1980):

» Treat H(-) as a random field.
» Explore universality classes.



> Q: What is the simplest random field?
> A: “White noise” (e.g., i.i.d. Gaussian field).



Derrida’s random energy model
Derrida (1980): Partition function:

N
Zy(B) =Y PV,
k=1

» Notation: n =logN.
» {Xi}r, areii.d. .#(0,1) random energies.

» Seemingly unrealistic: No microscopic interactions, no spins, completely
random energy levels, ...

» Q: Why bother?

Large-volume limit of the log-partition function:

1n2
)= g or i) = {21 LSRN

= phase transition!



Lee-Yang Program (1952)

Phase Transitions

)

Analyticity Breaking of py(f3), as N — oo

0

(log is non-analytic only at zero, Z(+) is an entire function)

)
Zeros of Zy(B),as N — o, 3 € C
accumulate around f3; € R
= Complex-valued Hamiltonians!



Interference phenomena

» Quantum Physics:

\
» Schrodinger equations tﬁ\.\\\\

CEELLL\)
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1l

with random potentials. l\(:::::m:m:”/;/;
> Path integrals. \\\\\\\\\ )
A\
> Quantum Monte Carlo. AN

> .-

interference

= Complex-valued Hamiltonians!



Riemann zeta-function,
random matrices and
complex random energy models

Riemann’s zeta-function:

oo

C(s)=Y n°, seC\{1}.

n=1

Im(z)
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» log|{(1/2+it+iwT)|, for @ ~ Uniform(0, 1), T — oo behaves like a
complex log-correlated field on micro- and mesoscopic scales, see

Fyodorov, Keating (2014); Saksman, Webb (2016); Arguin, Belius,
Bourgade (2019), ...

» log of CUE’s characteristic polynomial behaves like a log-correlated field

= Complex-valued Hamiltonians!



Complex REM

with Zakhar Kabluchko

Define:

O'Xk-‘rn'Yk ﬁ — (O',T) c R2.

||M2

> {(Xk,Yx)}7, iid. zero-mean bivariate Gaussian random vectors with
VarXy =VarY, =1, corr(Xy,Yy) =p,
—1<p<l1

= Complex REM.



Log-partition function

Theorem (Kabluchko and K. 2014)
For every B € R* and any p, the limit

=1

p(B) = lim py(P)

exists in probability and in L1, g > 1, and is explicitly given as
1+1(62—1%), BeB;, [LNN]

p(B) =1 V2lal, B €B,, [EVT]
i+02, B €Bs. [CLT, Var > E?]

N.B.:
> p-independent limit.

» The formula was heuristically derived by
Derrida (1991).

> Our proof: fluctuations of 2y () + continuous
mapping theorem.




Zeros

Theorem (Zeros)
It holds that

(a) There are no zeros of Zy inside any K € By w.h.p., as N — .

(b) There is positive density of zeros only in B3 and on (By NB3)U (B; NB3):
1
LY B D5 LBz, wecCR),
M gec: Zy(B)=0 N—seo 27T

where & := Ap and therefore

where
» Z; = Lebesgue2D(B3),

d\_‘ - -
> dLebesguelB(BlﬁB3)( ) ) - ’ (O-’T) € B 033)’

» Ej, = LebesguelD(B; NB3).




Fluctuations of zeros
» For ﬁ() € B3, Vf € CK(C,R),

Y SWnB-Po)) > ), fB)

BeC: Zn(p)=0 N7 pec6(p)~0
where
» Gaussian analytic function: G(¢) := Y7 51(%, teC.
> &, &, .. areiid. A¢(0,1).
» Forf € Ckx(B2,R),
Y B X B+ Y fB,

BeBy: Zy(B)=0 Nz pep,. BEB,:

) (B/v2)=0 &2 (B/v2)=0

where
» Poisson {-function: (p(f) ==Y, P;%ﬁ with (Py)x>1 being the arrivals of
the Poisson process on R with unit intensity.
> 5180 ~ G



Beyond the REM universality class

1. Q: What happens beyond the REM universality class?

2. Q: How strong should the correlations be in order to fall out of the
REM universality class?



Generalised Random Energy Model: two levels

Xo1 =+ar& +azéan

Cumulative displacement = energy:

X8|82 = Val égl + \% a2€£l£2'



Generalised Random Energy Model: d levels

Define a zero-mean Gaussian random field {X.: € € S, } by

o wbdb -

Xe = /arGe, +Var Gee, -+ v/aade, e

Number of levels ¢ € N.

The variances of the levels a,...,a; > 0 (energetic parameters).
The branching exponents ¢, ..., 0, > 1 (entropic parameters).
Branching numbers N, | = [o],...,N, 4 = [&f]].

Leaves of the tree

S, = {8 = (81,...,8d) € N: 1 <g SNn,1,~-~,1 <g Sde}.
Random energies

{&e. 6,0 1<m<d,1<g <Nyi,....,1 <&, <Nyp}iid. A4(0,1)
r.v.s.



Phase diagram of the GREM in the complex 3 plane

Figure: Phases and zeros. The darker the shading, the more zeros



Phases decoded

The GREM phase transitions (on R) occur at

[2log o
oy = &, 1<k<d, Assume: o] <...<O0y.
3

Each level can be in on of the

rescaled REM phases:

Gii={B €C: 2/0| > 0, o]+ 1| > a1},
Fp:={B €C: 2|o| < o, 2(6* +7%) > o}},
E; .= C\GkUFk,

E ~~ expectation,
F ~~ fluctuations,
G ~~ glassy (extremes).

so the rescaled REM phase
transition occurs at 8 = o;.



Fluctuations: A limiting object

Poisson cascade [1=Y,_(;, ¢ )en¢ O(Pg,,Pegys---,Pe . ¢,), Where
= 1 6(Pg,..¢,i) @ unit intensity Poisson point process on (0, o).

Poisson cascade {-function: {p(zi,...,24) = Yeend Pe, Pejgs - - - Pey g,



Fluctuations

Theorem

Let B € GHFLE®% . Then,

1, ifd1 :Oanddzzo,
f'[;l(ﬁ) N Nc<0,1), ifdi =0 andd, > 0,
) o gp(g,...,c%), ifd, >0 and dy, =0,
CSG/617 ifdy >0 andd, > 0.

Here, Cp is the Poisson cascade zeta function and S, is the isotrpic, complex
standard o -stable random variable with characteristic function
EeRe(Se?) — ¢~[I* 7 € C, where a € (0,2).

B/naxu, k, if B € G,
cnr(B) = %logN,,,kJraszn, if B € F¥,
log Ny, i + %akb’zm it B € E.
cn(B) =cni(B)+-.-+cna(B), uni = Oky/nay.



Log-partition function

Theorem
For every B € C, the following limit exists in probability and in L1, for all g > 1:

d
p(B) = Jim L 1ox| Z,(8)] = X u(B).
=1

where _
]G]\/Zaklogak, I'fﬁ € Gy,
pe(B) = %logak+ak62, if B € Fy,

log oy + %ak(62 = ’L'z), ifﬁ € Ek.

Confirms and extends Takahashi (2011).
Proof: Above fluctuation results + continuous mapping theorem.



Infinitely deep & wide hierarchies: d —

The continuous GREM (CREM):
» LetA: [0,1] — R be an increasing, concave function with A(0) = 0.
» Fix also some o > 1.

» Consider a GREM with d levels whose parameters (ay,...,a4) and
(ay,...,0y) are given by

k 1
a1+...+ak:A<d), logakzglogoc, 1 <k<d.



Phase diagram d =

Approximating CREM by GREM with many  Conjectured phase diagram of the CREN
levels. w.r.t. complex temperatures.



Log-partition function of the CREM

Conjecture (The log-partition function of the CREM)
The log-partition function of the CREM converges to

p~(B) :=pg(B)+pF(B) +pE(B), inL',

where
PG(B) = lol/2loga [ /AT

pr(B) = %logaJr (An +1)—A(n))o?,

P (B) = ploga+ 5 (67~ 2)(A(1) ~ A1 + 1)),




REM borderline

Q: What happens at the borderline of the REM
universality class?



» The glassy phase of the
complex branching Brownian motion energy model.
Electron. Commun. Probab. 20 (78), 1—15, 2015

» The phase diagram of the
complex branching Brownian motion energy model.
Electron. J. Probab. 23 (127), 27 pp. 2018.

with Lisa Hartung



http://dx.doi.org/10.1214/ECP.v17-1994
http://dx.doi.org/10.1214/ECP.v17-1994

Branching Brownian motion

> (Supercritical) Galton-Watson process: i1 (t),.. ., i, (f), t € Ry.
» Genealogy: ix(s,?) is the unique ancestor of particle ix(¢) at time s < 7.
» Correlations k,! < n(t):
E [xx(s,7)x;(r, ) | Genealogy upto time ¢] = d(ix(s,1),ii(r,t)), s,r € [0,1].
S

tree overlap



Complex branching Brownian motion energy model

Partition function:
%p Ze(rxk +z‘cyk

where x,y are BBMs with
» The same genealogy.
> COV()Ck(t),yk(t)) =pL,pe [_17 1]

Thechnical assumptions on the Galton-Watson process:
> Y1 Pi = 1 (none of the particles die);

v

i1 kpi = 2 (the expected number of children per particle equals two);

P K=Y  k(k—1)p; < o (finite second moment).



Summary of results

Phase diagram of the BBM energy model

Same phase diagram as in the REM, but markedly different fluctuations:
» Bj: Law of large numbers ~~ martingale convergence.
» B,: Glassy phase ~» EVT for a strongly correlated field.
» Bj3: Central limit theorem ~~ CLT with a random variance.



Log-partition function

S0,
ey

Theorem (Phase diagram)

For any p € [—1,1], the complex BBM energy model has the same free
energy and the phase diagram as the complex REM:

1+3(0*~7%), BeB,
limp,(B) =: p(B) = | V2|a], B € B,

tteo -
%-1-0'2, B € B3,

and the convergence holds in probability and (conjecturally) in L.




Fluctuations of the partition function

Q: Fluctuations of Zy(3)?



Distribution of the maximum

» Note that E [n(r)] =¢'.
» Define

3

2V2
Bramson (1978) + Lalley and Selke (1987):

m(t) == V2t — log?.

ltiTrgP {kngl;?()z()Xk(t) —m(t) < )7} =E [e_cze_ﬁ)} , YER,

where C > 0 is a constant and Z is the a.s. limit of the so-called derivative
martingale:

n(t)
Z:= liTrn Z(\/Et—xk(t))e_ﬁ(‘/it_xk(t)), a.s.
e k=1



Extremal process
Arguin, Bovier, Kistler (2013)

& =Y Su)y-mi), TERy
converges in law as ¢ 1 oo to the point process

E:=) 0
; ne+a

where:

(@) {Nk}ren C R are the atoms of a Cox process with random intensity
measure CZe*ﬁydy,

(b) {Al(k)}leN C R are the atoms of i.i.d. PP A®%), k € N called clusters which
are i.i.d. copies of

- ltlTIg Z 8Xk —max;< () &i(t)

with (z) being BBM x() conditioned on max;.,,; xx(t) > v/2t.



Shape of &

Part 1) (Cox-)Poisson point process with intensity C\@Ze*ﬁxdx:

C 2 & o o o

Poisson point process

Part 2) To each point of PPP associate an independent copy of some point
process A:

Xk r——r—— e r——

Poisson point process + A

B9800 r—0—

Poisson point process + all clusters



Partition function fluctuations in B,

Theorem (Partition function
fluctuations for [p| = 1)

For B = o +it € B,, the rescaled
partition function

Zp(t) = e*ﬁm(’),@pm(t) converges
in law to the r.v.

%71 — Z eﬁ(nk+A;k)>7 ast 1 oo.
k,>1

Theorem (Partition function fluctuations for |p| € (0, 1))
Letp =o0+it € B, and|p| € (0,1). Then,

> The rescaled partition function 2 ,(t) converges in law to the r.v.
Zgp,asttoeo.

» Conditionally on Z, %J, is a complex isotropic V2 /o-stable r.v.




Partition function in B{: Martingale convergence

Denote

5%, |

e G S P ey

Theorem (Hartung-K. *17)
Letp € [-1,1] and B € B;.
() A5 :(t) is a mean 1 martingale.

(i) For|B| <1, Msr(t)isin L2
For|B| > 1, #s(t) isinLP forp < /2/c.

ltiTm///c,T(t) = M5 a.s.andin L.




Partition function in B;: "CLT" for |c| < 1//2

Similar to phase B3 a "CLT" holds in By ‘hﬂu I
if o <1/v2. ||“vv

Theorem (Hartung-K. *17)

Letp = o +it with |0 < = andp € [-1,1].
For B € By,
%G;L’(t—"_ I”) - %o—yf(r)

er(l1—02—12)

= N (0,C1Mr50),

as first t 1 oo and then r 1 oo given a realization of .#> o and for some constant
0<Cy <oo.

v




Partition function in B3: CLT"

S

Intuition: ["CLT"]
Partition function is order of the root of the second moment of the real
temperature part (assuming independence)

(CtE (CZka(t)>>1/2 _ et/2662t7

where xi (1) ~ A4(0,1).



Partition function in B;: CLT*

Theorem (Hartung-K. *17)

Letp € [—1,1] and B € Bs. Assume that all moments of the offspring
distribution exist.

Then, conditionally on /> ),

Zp.p

ey = Y (0.Cotticg), astte,
e
where
n(r)
Mrs o =lim eZka(t)—(1+Gz)t.
e =1




Some related results

» Derrida, Evans, Speer 1993: independent Re & Im parts of the complex
random energy on a regular tree, log-partition function, no fluctuations.

» Barral, Jin, Mandelbrot 2010: complex Gaussian multiplicative
cascades (d = 1). (Phase | and Phase I, tightness only)

» Lacoin, Rhodes, Vargas 2015: complex Gaussian multiplicative
chaos (d > 2). (Phase | and Phase llI)

» Meiners and Mentemeier 2017; Kolesko and Meiners 2016: complex
smoothing transforms.

» Fyodorov, Hiary and Keating: 2012; Arguin, Belius and Bourgade:
2015; Saksman and Webb 2016: characteristic polynomials of
random matrices, and (probabilistic models of the) Riemann zeta
function.

» Hairer and Shen 2016: renormalization of the dynamical sine-Gordon
model.



Summary and Outlook

For REM, GREM and for BBM we now know:
» Fluctuations of the partition function;
» Distribution of complex zeros of the partition function;
» the log-partition function;
» the phase diagram.
Outlook:
» Free energy of the randomized {-function at complex temperatures.
» Complex Gaussian multiplicative chaos (Phase ).
» Models with microscopic interactions.
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