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Introduction Classical Branching Random Walk (BRW)

Classical Branching Random Walk

The time is discrete and starts at 0. At time n = 0, there is only one particle
at the origin.

At time n = 1, the particle dies and gives birth to some number of offspring
which are then displaced according to a point process, say, Z. These particles
then forms the first generation and behaves independently and identically as
that of the parent.

More precisely, after an unit amount of time, at n = 2, each particle of
generation 1 die and produce a number of offspring, which are displaced from
the position of the respective parents, by independent but identical copies of
the point process Z.

The process so formed by continuation of this simple branching and displace-
ment mechanism. is called the Branching Random Walk (BRW).

A classical example is obtained by taking Z = δξ1 + δξ2 , where ξ1 and ξ2 are
i.i.d. standard Gaussian.
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Introduction Classical Branching Random Walk (BRW)

Classical Branching Random Walk

Notice that if T is the genealogical tree of the process, then it is nothing but
a Galton-Watson brunching process with progeny distribution given by the
random variable N := Z (R), the total mass of the point process Z.

For the classical example the tree is nothing but rooted binary tree (just as in
the figure).

We will denote by Sv the position of an individual v (say at generation n).

An interesting statistics related to this process is

Rn := max
|v |=n

Sv ,

the so called right-most position of the BRW.
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Introduction Classical Branching Random Walk (BRW)

Difficulties Related to BRW

The real difficulty in studying the asymptotic distribution of the position of
the right-most individual is because of (strong) “correlation” between the
positions of the particles at the n-th generation.

In fact, if u and v are two individuals at the n-th generation with (random)
positions Su and Sv , and we write u ∧ v as the least common ancestor, then

cov (Su,Sv ) = O (|u ∧ v |) ,

where |x | denotes the generation of the particle x .

Notice that in the classical example of binary branching with standard Gaus-
sian displacements the following then holds

#
{
v
∣∣∣ cov (Su,Sv ) ≥ rn

}
= 2(1−r)n,

for any 0 ≤ r ≤ 1.

This observation is often referred as “BRW is log-correlated”.
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Introduction Brief History of BRW

History and Motivation

A very rich history with a long list of excellent contributions from all over the world. For
light tail displacements:

1 Hammersley (1974), Kingman (1975) and Biggins (1976): SLLN for Rn.

2 Bramson (1978 & 1983): BBM centered limit to traveling wave solution to F-KPP
equation. Also showed that centering is not linear, it needs a further logarithmic
correction.

3 Lally and Sellke (1987): Probabilistic interpretation to the F-KPP solution through
a conditional limit.

4 Bachmann (2000): Centered limit was established for i.i.d. displacements with
log-concave density.

5 B. and Aldous (2005): (Rn −median (Rn))n≥1 is tight under mild conditions on
the displacement distribution.

6 Bramson and Zeitouni (2009): Showed similar tightness for more general processes
satisfying same recursive relation.

7 Hu and Shi (2009) & Addario-Berry and Reed (2009): Second order fluctuations
around the linear centering was shown to be logarithmic in probability with exact
constant.

8 Äıdékon (2013): Showed that Rn −
(
c1n − 3

2
c2 log n

) d−→ X∞.
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8 Äıdékon (2013): Showed that Rn −
(
c1n − 3

2
c2 log n

) d−→ X∞.

Bandyopadhyay and Ghosh Modified BRW August 12, 2020 5 / 31



Introduction Brief History of BRW

History and Motivation

A very rich history with a long list of excellent contributions from all over the world. For
light tail displacements:

1 Hammersley (1974), Kingman (1975) and Biggins (1976): SLLN for Rn.

2 Bramson (1978 & 1983): BBM centered limit to traveling wave solution to F-KPP
equation. Also showed that centering is not linear, it needs a further logarithmic
correction.

3 Lally and Sellke (1987): Probabilistic interpretation to the F-KPP solution through
a conditional limit.

4 Bachmann (2000): Centered limit was established for i.i.d. displacements with
log-concave density.

5 B. and Aldous (2005): (Rn −median (Rn))n≥1 is tight under mild conditions on
the displacement distribution.

6 Bramson and Zeitouni (2009): Showed similar tightness for more general processes
satisfying same recursive relation.

7 Hu and Shi (2009) & Addario-Berry and Reed (2009): Second order fluctuations
around the linear centering was shown to be logarithmic in probability with exact
constant.
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Introduction Modified Branching Random Walk (M-BRW)

Last Progeny Modified Branching Random Walk

The time is again discrete and starts at 0 and at time n = 0, there is only
one particle at the origin.

After an unit amount of time, at time n = 1, the particle dies and gives birth
to some number of offspring which are then displaced according to a point
process, say, Z. These particles then forms the first generation and behaves
independently and identically as that of the parent.

We let the process run in this classical manner till time/generation n.

Once this has been done, all particles at generation n are given further dis-
placements by a set of i.i.d. random variables, of the form

(
1
θXv

)
|v |=n

, which

are independent of the process so far. The distribution of this displacement
variables, namely Xv ’s and the “scaling” constant θ ≥ 0 are two parameters
of this model.

This new process will be called last progeny modified branching random walk
(M-BRW). Notice informally, “θ =∞”, will give us back the classical BRW.
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Introduction Modified Branching Random Walk (M-BRW)

Last Progeny Modified Branching Random Walk

Notice that if T∗ is the genealogical tree of the process, then it is nothing
but a Galton-Watson brunching process with progeny distribution given by
the random variable N, except at the end we attach one leaf to each of the
end vertices.

We will still denote by Sv the position of an individual v (say at generation
n).

We further define
R∗n := max

|v |=n
Sv ,

as the right-most position of the modified branching random walk. This is
analogous to Rn for the classical BRW.
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Introduction Modified Branching Random Walk (M-BRW)

Last Progeny Modified Branching Random Walk

Remarks:

1 The modified version is different but perhaps ”not too different”!

2 Similar difficulty of (strong) “corelation” exists in this case also.

3 We will perhaps like to see that R∗n and Rn has “similar” asymptotic!

4 Few points to be noted here:

a If Xv ’s are just constant then it will only be a constant shift and hence
Item 3 above should automatically hold.

b However, if we make Xv ’s depending on the generation n, then results
can be drastically different [Fang and Zeitouni (2012) and Mallein
(2015)].

c In our model, we will take a specific type of distribution for the Xv ’s.
We will take Xv = log Yv

Ev
, where (Yv )|v |=n are i.i.d. with some

positively supported measure, say, µ and (Ev )|v |=n are i.i.d.

Exponential (1)-variables and both sets of variables will be independent.
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Main Results Notations and Assumptions

Notations

For a point process Z =
N∑
j=1

δξj , we write

m (θ) := E

[∫
R
eθxZ (dx)

]
= E

 N∑
j=1

eθξj

 ,
where θ ∈ R.

Further, define ν (θ) := logm (θ).

Note that ν is a convex function.
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Main Results Notations and Assumptions

Assumptions

Assumption 1: m (θ) <∞ for all θ ∈ (−ϑ,∞) for some ϑ > 0.

Assumption 2: The point process Z is non-trivial and the extinction proba-
bility of the underlying branching process is 0. In other words, P(N = 1) < 1,
P(Z({t}) = N) < 1 for any t ∈ R and P(N ≥ 1) = 1.

Assumption 3: N has finite (1 + p)-th moment for some p > 0.
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Main Results A Specific Constant θ0

A Specific Constant θ0

We define

θ0 := inf

{
θ > 0 :

ν(θ)

θ
= ν′(θ)

}
,

which always exist (can be ∞) under our assumptions.

Note that when θ0 <∞, then it is the unique positive constant, such that, the
tangent line to the curve θ 7→ ν (θ) at the point (θ0, ν (θ0)) passes through
the origin.

x
x = θ0

y
=
νZ

(θ
0
)

θ0

x

y

y
=
ν z
(x
)

O
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Main Results A Specific Constant θ0

A Specific Constant θ0

Three cases to be considered:

a Boundary Case: θ = θ0 <∞;
b Below the Boundary Case: θ < θ0 ≤ ∞; and
c Above the Boundary Case: θ0 < θ <∞.
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Main Results SLLN Regime

SLLN for R∗n

Theorem 1 [B. and Ghosh (2020)]

For every non-negatively supported probability µ 6= δ0 that admits a finite mean

R∗n (θ, µ)

n
a.s.−−−→



ν(θ)
θ if θ < θ0 ≤ ∞;

ν(θ0)
θ0

if θ = θ0 <∞; and

ν(θ0)
θ0

if θ0 < θ <∞.

Remark: Note that the almost sure limit remains same as ν(θ0)
θ0

for the boundary
case and also in above the boundary case.
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Main Results Centered Weak Limit Regime

Boundary Case: θ = θ0 <∞

Theorem 2 [B. and Ghosh (2020)]

Assume that µ admits a finite mean, then there exists a random variable H∞ such
that

R∗n −
ν (θ0)

θ0
n +

1

2θ0
log n

d−→ H∞θ0
+

1

θ0
log〈µ〉

where H∞θ0
= 1

θ0

[
logD∞ − log E + 1

2 log
(

2
πσ2

)]
and D∞ is a almost sure limit

of the derivative martingale, namely, Dn = 1
m(θ0)n

∑
|v |=n (θ0Sv − nν (θ0)) eθ0Sv

and E ∼ Exponential (1) random variable which is independent of D∞. Further,

σ2 := E
[

1
m(θ0)n

∑
|v |=n (θ0Sv − nν (θ0))2 eθ0Sv

]
.

Remarks:

The coefficient for the linear term is exactly same as that of the centering of Rn

as proved by Äıdékon [2013]. However, the coefficient for the logarithmic term is
1/3-rd of that of the centering of Rn as proved by Äıdékon [2013].

The limiting distribution is similar to that obtained by Äıdékon [2013], which is a
random shift of the Gumbel distribution.
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Main Results Centered Weak Limit Regime

Boundary Case: θ = θ0 <∞

Theorem (Äıdékon [2013])

There exists a random variable H∞ such that

Rn −
ν (θ0)

θ0
n +

3

2θ0
log n

d−→ H∞,

where H∞ = 1
θ0

[logD∞ − log E + C ] and D∞ is a almost sure limit of the

derivative martingale, namely, Dn = 1
m(θ0)n

∑
|v |=n (θ0Sv − nν (θ0)) eθ0Sv and E ∼

Exponential (1) random variable which is independent of D∞. And C is a constant.

Remarks:

The coefficient for the linear term is exactly same as that of the centering of Rn

as proved by Äıdékon [2013]. However, the coefficient for the logarithmic term is
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Main Results Centered Weak Limit Regime

Why this is called the “Boundary Case”?

Notice that θ is essentially a scale parameter.

Thus one can try to scale the process in such a manner that θ0 = 1.

For the classical BRW such scaled model has been termed as the boundary
case (e.g. by Biggings and Kyprianou [2005], Äıdékon [2013]).

However, for our modified BRW, θ is not just a scaled parameter! It has
a different effects on the “last” displacements, as the link operator, is not
amenable to scaling!

So we consider θ = θ0 as the boundary case and do not further scale the
process to make θ0 = 1.

It is worth to note here that for the classical BRW the only non-trivial limit
happens at θ = θ0. But for us all possible parameters values are in principle
acceptable.
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However, for our modified BRW, θ is not just a scaled parameter! It has
a different effects on the “last” displacements, as the link operator, is not
amenable to scaling!

So we consider θ = θ0 as the boundary case and do not further scale the
process to make θ0 = 1.

It is worth to note here that for the classical BRW the only non-trivial limit
happens at θ = θ0. But for us all possible parameters values are in principle
acceptable.

Bandyopadhyay and Ghosh Modified BRW August 12, 2020 17 / 31



Main Results Centered Weak Limit Regime

Why this is called the “Boundary Case”?

Notice that θ is essentially a scale parameter.

Thus one can try to scale the process in such a manner that θ0 = 1.

For the classical BRW such scaled model has been termed as the boundary
case (e.g. by Biggings and Kyprianou [2005], Äıdékon [2013]).
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Main Results Centered Weak Limit Regime

Below the Boundary Case: θ < θ0 ≤ ∞

Theorem 3 [B. and Ghosh (2020)]

Assume that µ admits finite mean, then for 0 < θ < θ0 ≤ ∞,

R∗n −
ν (θ)

θ
n

d−→ H∞θ +
1

θ
log〈µ〉

where H∞θ is a random variable similar to that of H∞θ0
.

Remark: Notice the Bramson correction disappears in this case.
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Main Results Centered Weak Limit Regime

Above the Boundary Case: θ0 < θ <∞

Theorem 4 [B. and Ghosh (2020)]

Suppose µ = δ1,

R∗n −
ν(θ0)
θ0

n

log n
P−→ − 3

2θ0
.

Remarks:

The result is imprecise!

However, notice that now we capture the right constant for the Bramson
correction.
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Transforming Relation

“Conspiracy Behind the Stage!”

It is natural to guess that we really did not invented this innovative “last
progeny modification” for sake of understanding only this specific model!

Rather the truth is, we really wanted to give a completely different and possibly
much simpler solution to the age old problem of the classical BRW.

In fact, we actually discovered that a very simple “coupling” holds between
the BRW problem and a more well known/studied process obtained out of a
(quite standard) statistical technique, know as, the smoothing transform.

But, we are not there yet! What we have are results on this last progeny
modified BRW.

This coupling is a conspiracy of few operators!
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Transforming Relation Maximum Operator

Maximum Operator

Let Z be the progeny point process with N := Z (R) <∞.

and we denote it
as

Z =
N∑
j=1

δξj .

To be interpreted as, each individual produces a random but finitely many
offspring (given by N = Z (R)) and they are displaced from the position of
the parent according to the points ξ1, ξ2, · · · , ξk , · · · ξN .

With it we can then associate and operator MZ : P
(
R̄
)
→ P

(
R̄
)
, given by

MZ (η) = dist

(
max

1≤j≤N
(ξj + Xj)

)
,

where (Xi )i≥1 are i.i.d. with distribution η ∈ P
(
R̄
)

and are also independent
of the point process Z.

It is then easy to see that Rn
d
= Mn

Z (δ0).
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Transforming Relation Linear Operator

Linear Operator

As before let Z =
N∑
j=1

δξj be the progeny point process.

With it we can associate another and perhaps more well known operator
LZ : P

(
R̄+

)
→ P

(
R̄+

)
, given by

LZ (µ) = dist

 ∑
1≤j≤N

eξjYj

 ,

where (Yi )i≥1 are i.i.d. with distribution µ ∈ P
(
R̄+

)
and are also independent

of the point process Z.
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Transforming Relation Linear Operator

Linear Operator

This operator is fairly well known in both probability and statistics and often
called the smoothing operator.

In probability literature, this was first considered by Biggins [1976] and then
by many others, such as, Durrett and Liggett [1983]; Lally and Sellkey [1987];
Liu [2000]; Biggins and Kyprianou [1997, 2004 & 2005]; Hu and Shi [2009];
and Maillard [2009].

In statistics, this is essentially regression and hence was known to statisticians
for long time. It was used in the context of the so called Non-Parametric
Regression, which was first introduced by Nadarya and Watson [1964].

It has also appeared in the study of random algorithms, for example, in the
classical analysis of Quicksort Algorithm (e.g. Rösler [1992]).
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Transforming Relation Link Operator

Link Operator

Consider a new operator E : P
(
R̄+

)
→ P

(
R̄
)
, defined as

E (µ) = dist

(
log

Y

E

)
,

where Y and E are two independent random variables with Y ∼ µ ∈ P
(
R̄+

)
and E ∼ Exponential (1).

Then ...
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Transforming Relation General Transforming Relation

Transforming Relations

Theorem 0a (Basic Transforming Relation) [B. and Ghosh (2020)]

MZ ◦ E = E ◦ LZ.

Theorem 0b (General Transforming Relation) [B. and Ghosh (2020)]

Mn
Z ◦ E = E ◦ LnZ, ∀n ≥ 1.

Remarks:

So using the link operator we can convert a problem related to the maximum
operator to a problem on the linear/smoothing operator, which will perhaps
be easier to solve.

In particular, perhaps we can get an easier proof for asymptotic of Rn, the
right-most position of a BRW.
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Transforming Relation General Transforming Relation

Transforming Relations

However, we do end-up in a problem!

Very silly problem, yet is a serious
issue!!!

Recall, Rn
d
= MZ (δ0). But unfortunately, δ0 6∈ Im (E). This is because the

Im (E) contains only continuous distributions.

So we can not immediately use the General Transforming Relation.
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Transforming Relation General Transforming Relation

Proof of the Basic Transforming Relation

Suppose (Xj)j≥1 are i.i.d. with distribution E (µ) for some positively supported
probability measure µ.

So if we take (Yj)j≥1 as i.i.d. µ and (Ej)j≥1 i.i.d. Exponential (1) and the

two sets of random variables are independent, then we may take Xj = log
Yj

Ej
,

j ≥ 1.

Further, let Z =
∑N

j=1 δξj be such that, it is independent of all other random
variables.
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Transforming Relation General Transforming Relation

Proof of the Basic Transforming Relation

Now recall

MZ ◦ E (µ) = dist

(
max
j≥1

(ξj + Xj)

)

= dist

(
max
j≥1

(
ξj + log

Yj

Ej

))
= dist

(
max
j≥1

log
eξjYj

Ej

)
= dist

(
−min

j≥1
log

Ej

eξjYj

)
= dist

(
− log min

j≥1

Ej

eξjYj

)
= dist

(
− log

E∑
j≥1 e

ξjYj

)

= dist

(
log

∑
j≥1 e

ξjYj

E

)
= E ◦ LZ (µ) .
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Main Idea of the Proofs

Main Idea of the Proofs

Recall the Transforming Relation MZ ◦ E = E ◦ LZ.

Also recall E (µ) = dist
(
log Y

E

)
, where Y ∼ µ and E ∼ Exponential (1) and

are independent.

E is in some sense defines a continuous (under weak convergence topology)
branch of “logarithm” on the set of positively supported probability measures.

So scaling limit of LnZ provides centering limit of Mn
Z with logarithmic center-

ing.

As smoothing transformation is fairly well studied so scaling limit of LnZ are
known (Biggins and Kyprianou [1997, 2004 & 2005] and Hu and Shi [2009]).
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Future Directions

Where Do We Go from Here?

Needless to say that more interesting question is about Rn and not R∗n .

We know Rn
d
= Mn

Z (δ0) and thus can not be written as Rn
d
= Mn

Z (E (µ))
for any positively supported probability µ.

So we are trying to do the next best thing, that is to approximate 0 by an
“appropriate” sequence of probability measures which are of the form 1

θE (δ1)
and take limit as θ −→∞.

As discussed earlier, all we need to prove now is

R∗n −
ν (θ0)

θ0
n +

3

2θ0
log n

d−→ �

for any θ > θ0 and then take limit as θ −→ ∞ to claim the same holds for
Rn.
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Future Directions

Where Do We Go from Here?

The real difficulty is to establish some short of uniform convergence so that
the two limits can be interchanged.

To tackle this difficulty we are in the process of studying the large deviation
properties of the sequence (R∗n ).

Another approach is to use the below the boundary result and use truncation
on the displacements. But I guess, this story should be told another day!
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Thank you!
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