Antar Bandyopadhyay (joint work with Partha Pratim Ghosh)

Theoretical Statistics and Mathematics Unit Indian Statistical Institute, Delhi Centre

http://www.isid.ac.in/~antar E-Mail: antar@isid.ac.in

Bangalore Probability Seminar

August 12, 2020

Introduction

- Classical Branching Random Walk (BRW)
- Brief History of BRW
- Modified Branching Random Walk (M-BRW)

Main Results

- Notations and Assumptions
- A Specific Constant θ_0
- SLLN Regime
- Centered Weak Limit Regime
 - Boundary Case: $\theta = \theta_0 < \infty$
 - Below the Boundary Case: $\theta < heta_0 \leq \infty$
 - Above the Boundary Case: $heta_0 < heta < \infty$

3 Transforming Relation

- Maximum Operator
- Linear Operator
- Link Operator
- General Transforming Relation
- Main Idea of the Proofs
- Future Directions

• The time is discrete and starts at 0. At time *n* = 0, there is only one particle at the origin.

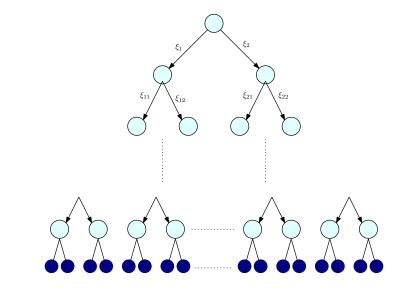
- The time is discrete and starts at 0. At time *n* = 0, there is only one particle at the origin.
- At time *n* = 1, the particle dies and gives birth to some number of offspring which are then displaced according to a *point process*, say, **Z**. These particles then forms the *first generation* and behaves independently and identically as that of the parent.

- The time is discrete and starts at 0. At time *n* = 0, there is only one particle at the origin.
- At time *n* = 1, the particle dies and gives birth to some number of offspring which are then displaced according to a *point process*, say, **Z**. These particles then forms the *first generation* and behaves independently and identically as that of the parent.
- More precisely, after an unit amount of time, at n = 2, each particle of generation 1 die and produce a number of offspring, which are displaced from the position of the respective parents, by independent but identical copies of the point process **Z**.

- The time is discrete and starts at 0. At time *n* = 0, there is only one particle at the origin.
- At time *n* = 1, the particle dies and gives birth to some number of offspring which are then displaced according to a *point process*, say, **Z**. These particles then forms the *first generation* and behaves independently and identically as that of the parent.
- More precisely, after an unit amount of time, at n = 2, each particle of generation 1 die and produce a number of offspring, which are displaced from the position of the respective parents, by independent but identical copies of the point process **Z**.
- The process so formed by continuation of this simple *branching* and *displacement* mechanism. is called the *Branching Random Walk* (*BRW*).

- The time is discrete and starts at 0. At time *n* = 0, there is only one particle at the origin.
- At time *n* = 1, the particle dies and gives birth to some number of offspring which are then displaced according to a *point process*, say, **Z**. These particles then forms the *first generation* and behaves independently and identically as that of the parent.
- More precisely, after an unit amount of time, at n = 2, each particle of generation 1 die and produce a number of offspring, which are displaced from the position of the respective parents, by independent but identical copies of the point process **Z**.
- The process so formed by continuation of this simple *branching* and *displacement* mechanism. is called the *Branching Random Walk* (*BRW*).
- A classical example is obtained by taking $\mathbf{Z} = \delta_{\xi_1} + \delta_{\xi_2}$, where ξ_1 and ξ_2 are i.i.d. standard Gaussian.

Introduction Classical Branching Random Walk (BRW)



• Notice that if \mathbb{T} is the genealogical tree of the process, then it is nothing but a *Galton-Watson brunching process* with progeny distribution given by the random variable $N := \mathbb{Z}(\mathbb{R})$, the total mass of the point process \mathbb{Z} .

- Notice that if \mathbb{T} is the genealogical tree of the process, then it is nothing but a *Galton-Watson brunching process* with progeny distribution given by the random variable $N := \mathbb{Z}(\mathbb{R})$, the total mass of the point process \mathbb{Z} .
- For the classical example the tree is nothing but *rooted binary tree* (just as in the figure).

- Notice that if \mathbb{T} is the genealogical tree of the process, then it is nothing but a *Galton-Watson brunching process* with progeny distribution given by the random variable $N := \mathbb{Z}(\mathbb{R})$, the total mass of the point process \mathbb{Z} .
- For the classical example the tree is nothing but *rooted binary tree* (just as in the figure).
- We will denote by S_v the position of an individual v (say at generation n).

- Notice that if \mathbb{T} is the genealogical tree of the process, then it is nothing but a *Galton-Watson brunching process* with progeny distribution given by the random variable $N := \mathbb{Z}(\mathbb{R})$, the total mass of the point process \mathbb{Z} .
- For the classical example the tree is nothing but *rooted binary tree* (just as in the figure).
- We will denote by S_v the position of an individual v (say at generation n).
- An interesting statistics related to this process is

$$R_n := \max_{|v|=n} S_v,$$

the so called right-most position of the BRW.

• The real difficulty in studying the asymptotic distribution of the position of the right-most individual is because of (strong) "*correlation*" between the positions of the particles at the *n*-th generation.

- The real difficulty in studying the asymptotic distribution of the position of the right-most individual is because of (strong) "correlation" between the positions of the particles at the *n*-th generation.
- In fact, if u and v are two individuals at the n-th generation with (random) positions S_u and S_v , and we write $u \wedge v$ as the *least common ancestor*, then

$$\mathbf{cov}\left(S_{u},S_{v}\right)=O\left(\left|u\wedge v\right|\right),$$

where |x| denotes the generation of the particle x.

- The real difficulty in studying the asymptotic distribution of the position of the right-most individual is because of (strong) "correlation" between the positions of the particles at the *n*-th generation.
- In fact, if u and v are two individuals at the n-th generation with (random) positions S_u and S_v , and we write $u \wedge v$ as the *least common ancestor*, then

$$\mathbf{cov}(S_u, S_v) = O(|u \wedge v|),$$

where |x| denotes the generation of the particle x.

• Notice that in the classical example of *binary branching* with *standard Gaussian displacements* the following then holds

$$\#\left\{v\left|\operatorname{cov}\left(S_{u},S_{v}\right)\geq rn\right.\right\}=2^{(1-r)n},$$

for any $0 \le r \le 1$.

- The real difficulty in studying the asymptotic distribution of the position of the right-most individual is because of (strong) "correlation" between the positions of the particles at the *n*-th generation.
- In fact, if u and v are two individuals at the *n*-th generation with (random) positions S_u and S_v , and we write $u \wedge v$ as the *least common ancestor*, then

$$\mathbf{cov}(S_u, S_v) = O(|u \wedge v|),$$

where |x| denotes the generation of the particle x.

• Notice that in the classical example of *binary branching* with *standard Gaussian displacements* the following then holds

$$\#\left\{v \mid \operatorname{cov}\left(S_{u}, S_{v}\right) \geq rn\right\} = 2^{(1-r)n},$$

for any $0 \le r \le 1$.

• This observation is often referred as "BRW is *log-correlated*".

A very rich history with a long list of excellent contributions from all over the world. For *light tail* displacements:

U Hammersley (1974), Kingman (1975) and Biggins (1976): SLLN for R_n.

- Hammersley (1974), Kingman (1975) and Biggins (1976): SLLN for R_n.
- Bramson (1978 & 1983): BBM centered limit to *traveling wave* solution to F-KPP equation.

- Hammersley (1974), Kingman (1975) and Biggins (1976): SLLN for R_n.
- Pramson (1978 & 1983): BBM centered limit to *traveling wave* solution to F-KPP equation. Also showed that centering is not linear, it needs a further *logarithmic* correction.

- Hammersley (1974), Kingman (1975) and Biggins (1976): SLLN for R_n.
- Pramson (1978 & 1983): BBM centered limit to *traveling wave* solution to F-KPP equation. Also showed that centering is not linear, it needs a further *logarithmic* correction.
- Lally and Sellke (1987): Probabilistic interpretation to the F-KPP solution through a conditional limit.

- Hammersley (1974), Kingman (1975) and Biggins (1976): SLLN for R_n.
- Pramson (1978 & 1983): BBM centered limit to *traveling wave* solution to F-KPP equation. Also showed that centering is not linear, it needs a further *logarithmic* correction.
- Lally and Sellke (1987): Probabilistic interpretation to the F-KPP solution through a conditional limit.
- Bachmann (2000): Centered limit was established for i.i.d. displacements with log-concave density.

- Hammersley (1974), Kingman (1975) and Biggins (1976): SLLN for R_n.
- Pramson (1978 & 1983): BBM centered limit to *traveling wave* solution to F-KPP equation. Also showed that centering is not linear, it needs a further *logarithmic* correction.
- Lally and Sellke (1987): Probabilistic interpretation to the F-KPP solution through a conditional limit.
- Bachmann (2000): Centered limit was established for i.i.d. displacements with log-concave density.
- S. and Aldous (2005): (R_n − median (R_n))_{n≥1} is tight under mild conditions on the displacement distribution.

- Hammersley (1974), Kingman (1975) and Biggins (1976): SLLN for R_n.
- Pramson (1978 & 1983): BBM centered limit to *traveling wave* solution to F-KPP equation. Also showed that centering is not linear, it needs a further *logarithmic* correction.
- Lally and Sellke (1987): Probabilistic interpretation to the F-KPP solution through a conditional limit.
- Bachmann (2000): Centered limit was established for i.i.d. displacements with log-concave density.
- **(3)** B. and Aldous (2005): $(R_n \text{median}(R_n))_{n \ge 1}$ is *tight* under mild conditions on the displacement distribution.
- Bramson and Zeitouni (2009): Showed similar tightness for more general processes satisfying same recursive relation.

- Hammersley (1974), Kingman (1975) and Biggins (1976): SLLN for R_n.
- Pramson (1978 & 1983): BBM centered limit to *traveling wave* solution to F-KPP equation. Also showed that centering is not linear, it needs a further *logarithmic* correction.
- Lally and Sellke (1987): Probabilistic interpretation to the F-KPP solution through a conditional limit.
- Bachmann (2000): Centered limit was established for i.i.d. displacements with log-concave density.
- S. and Aldous (2005): (R_n − median (R_n))_{n≥1} is tight under mild conditions on the displacement distribution.
- Bramson and Zeitouni (2009): Showed similar tightness for more general processes satisfying same recursive relation.
- We hu and Shi (2009) & Addario-Berry and Reed (2009): Second order *fluctuations* around the linear centering was shown to be logarithmic in probability with exact constant.

- Hammersley (1974), Kingman (1975) and Biggins (1976): SLLN for R_n.
- Pramson (1978 & 1983): BBM centered limit to *traveling wave* solution to F-KPP equation. Also showed that centering is not linear, it needs a further *logarithmic* correction.
- Lally and Sellke (1987): Probabilistic interpretation to the F-KPP solution through a conditional limit.
- Bachmann (2000): Centered limit was established for i.i.d. displacements with log-concave density.
- S. and Aldous (2005): (R_n − median (R_n))_{n≥1} is tight under mild conditions on the displacement distribution.
- Bramson and Zeitouni (2009): Showed similar tightness for more general processes satisfying same recursive relation.
- Hu and Shi (2009) & Addario-Berry and Reed (2009): Second order *fluctuations* around the linear centering was shown to be logarithmic in probability with exact constant.

3 Aïdékon (2013): Showed that
$$R_n - (c_1n - \frac{3}{2}c_2\log n) \stackrel{d}{\longrightarrow} X_{\infty}$$
.

• The time is again discrete and starts at 0 and at time *n* = 0, there is only one particle at the origin.

- The time is again discrete and starts at 0 and at time *n* = 0, there is only one particle at the origin.
- After an unit amount of time, at time n = 1, the particle dies and gives birth to some number of offspring which are then displaced according to a *point process*, say, **Z**. These particles then forms the *first generation* and behaves independently and identically as that of the parent.

- The time is again discrete and starts at 0 and at time *n* = 0, there is only one particle at the origin.
- After an unit amount of time, at time n = 1, the particle dies and gives birth to some number of offspring which are then displaced according to a *point process*, say, **Z**. These particles then forms the *first generation* and behaves independently and identically as that of the parent.
- We let the process run in this classical manner till time/generation *n*.

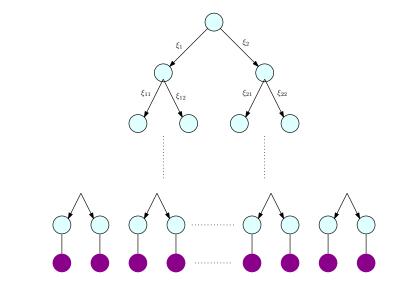
- The time is again discrete and starts at 0 and at time *n* = 0, there is only one particle at the origin.
- After an unit amount of time, at time n = 1, the particle dies and gives birth to some number of offspring which are then displaced according to a *point process*, say, **Z**. These particles then forms the *first generation* and behaves independently and identically as that of the parent.
- We let the process run in this classical manner till time/generation *n*.
- Once this has been done, all particles at generation n are given further displacements by a set of i.i.d. random variables, of the form $\left(\frac{1}{\theta}X_{\nu}\right)_{|\nu|=n}$, which are independent of the process so far. The distribution of this displacement variables, namely X_{ν} 's and the "scaling" constant $\theta \ge 0$ are two parameters of this model.

- The time is again discrete and starts at 0 and at time *n* = 0, there is only one particle at the origin.
- After an unit amount of time, at time n = 1, the particle dies and gives birth to some number of offspring which are then displaced according to a *point process*, say, **Z**. These particles then forms the *first generation* and behaves independently and identically as that of the parent.
- We let the process run in this classical manner till time/generation *n*.
- Once this has been done, all particles at generation n are given further displacements by a set of i.i.d. random variables, of the form $(\frac{1}{\theta}X_v)_{|v|=n}$, which are independent of the process so far. The distribution of this displacement variables, namely X_v 's and the "scaling" constant $\theta \ge 0$ are two parameters of this model.
- This new process will be called *last progeny modified branching random walk* (*M-BRW*).

Bandyopadhyay and Ghosh

- The time is again discrete and starts at 0 and at time *n* = 0, there is only one particle at the origin.
- After an unit amount of time, at time n = 1, the particle dies and gives birth to some number of offspring which are then displaced according to a *point process*, say, **Z**. These particles then forms the *first generation* and behaves independently and identically as that of the parent.
- We let the process run in this classical manner till time/generation n.
- Once this has been done, all particles at generation n are given further displacements by a set of i.i.d. random variables, of the form $(\frac{1}{\theta}X_v)_{|v|=n}$, which are independent of the process so far. The distribution of this displacement variables, namely X_v 's and the "scaling" constant $\theta \ge 0$ are two parameters of this model.
- This new process will be called *last progeny modified branching random walk* (*M-BRW*). Notice informally, " $\theta = \infty$ ", will give us back the classical BRW.

Introduction Modified Branching Random Walk (M-BRW)



• Notice that if \mathbb{T}^* is the genealogical tree of the process, then it is nothing but a *Galton-Watson brunching process* with progeny distribution given by the random variable N, except at the end we attach one leaf to each of the end vertices.

- Notice that if \mathbb{T}^* is the genealogical tree of the process, then it is nothing but a *Galton-Watson brunching process* with progeny distribution given by the random variable N, except at the end we attach one leaf to each of the end vertices.
- We will still denote by S_v the position of an individual v (say at generation n).

- Notice that if T^{*} is the genealogical tree of the process, then it is nothing but a *Galton-Watson brunching process* with progeny distribution given by the random variable N, except at the end we attach one leaf to each of the end vertices.
- We will still denote by S_v the position of an individual v (say at generation n).
- We further define

$$R_n^* := \max_{|v|=n} S_v,$$

as the right-most position of the modified branching random walk. This is analogous to R_n for the classical BRW.

Remarks:

Intermodified version is different but perhaps " not too different"!

- Intermodified version is different but perhaps " not too different" !
- ② Similar difficulty of (strong) "corelation" exists in this case also.

- Intermodified version is different but perhaps " not too different" !
- **2** Similar difficulty of (strong) "corelation" exists in this case also.
- **③** We will perhaps like to see that R_n^* and R_n has "similar" asymptotic!

- In the modified version is different but perhaps " not too different" !
- **2** Similar difficulty of (strong) "corelation" exists in this case also.
- **③** We will perhaps like to see that R_n^* and R_n has "similar" asymptotic!
- Few points to be noted here:
 - If X_v's are just constant then it will only be a constant shift and hence Item 3 above should automatically hold.

- In the modified version is different but perhaps " not too different" !
- **2** Similar difficulty of (strong) "corelation" exists in this case also.
- **③** We will perhaps like to see that R_n^* and R_n has "similar" asymptotic!
- 9 Few points to be noted here:
 - If X_v 's are just constant then it will only be a constant shift and hence ltem 3 above should automatically hold.
 - However, if we make X_v's depending on the generation n, then results can be drastically different [Fang and Zeitouni (2012) and Mallein (2015)].

- In the modified version is different but perhaps " not too different" !
- Similar difficulty of (strong) "corelation" exists in this case also.
- **③** We will perhaps like to see that R_n^* and R_n has "similar" asymptotic!
- Few points to be noted here:
 - If X_v 's are just constant then it will only be a constant shift and hence ltem 3 above should automatically hold.
 - However, if we make X_v's depending on the generation n, then results can be drastically different [Fang and Zeitouni (2012) and Mallein (2015)].
 - **(**In our model, we will take a specific type of distribution for the X_v 's.

- In the modified version is different but perhaps " not too different" !
- ② Similar difficulty of (strong) "corelation" exists in this case also.
- **③** We will perhaps like to see that R_n^* and R_n has "*similar*" asymptotic!
- Few points to be noted here:
 - If X_v 's are just constant then it will only be a constant shift and hence ltem 3 above should automatically hold.
 - However, if we make X_v's depending on the generation n, then results can be drastically different [Fang and Zeitouni (2012) and Mallein (2015)].
 - In our model, we will take a specific type of distribution for the X_ν's. We will take X_ν = log Y_ν/E_ν, where (Y_ν)_{|ν|=n} are i.i.d. with some positively supported measure, say, μ and (E_ν)_{|ν|=n} are i.i.d. Exponential (1)-variables and both sets of variables will be independent.

Notations

• For a point process
$$\mathbf{Z} = \sum_{j=1}^{N} \delta_{\xi_j}$$
, we write

$$m\left(heta
ight):= {\sf E}\left[\int_{\mathbb{R}} e^{ heta x} {\sf Z}\left(dx
ight)
ight] = {\sf E}\left[\sum_{j=1}^{N} e^{ heta \xi_{j}}
ight],$$

where $\theta \in \mathbb{R}$.

Notations

• For a point process
$$\mathbf{Z} = \sum_{j=1}^{N} \delta_{\xi_j}$$
, we write

$$m\left(heta
ight):= {\sf E}\left[\int_{\mathbb{R}}e^{ heta x} {\sf Z}\left(dx
ight)
ight] = {\sf E}\left[\sum_{j=1}^{N}e^{ heta \xi_{j}}
ight],$$

where $\theta \in \mathbb{R}$.

• Further, define
$$\nu(\theta) := \log m(\theta)$$
.

Notations

• For a point process
$$\mathbf{Z} = \sum_{j=1}^{N} \delta_{\xi_j}$$
, we write

$$m\left(heta
ight):= {\sf E}\left[\int_{\mathbb{R}}e^{ heta x} {\sf Z}\left(dx
ight)
ight] = {\sf E}\left[\sum_{j=1}^{N}e^{ heta \xi_{j}}
ight],$$

where $\theta \in \mathbb{R}$.

- Further, define $\nu(\theta) := \log m(\theta)$.
- Note that ν is a *convex* function.

Assumptions

• Assumption 1: $m(\theta) < \infty$ for all $\theta \in (-\vartheta, \infty)$ for some $\vartheta > 0$.

- Assumption 1: $m(\theta) < \infty$ for all $\theta \in (-\vartheta, \infty)$ for some $\vartheta > 0$.
- Assumption 2: The point process Z is non-trivial and the extinction probability of the underlying branching process is 0. In other words, P(N = 1) < 1, P(Z({t}) = N) < 1 for any t ∈ ℝ and P(N ≥ 1) = 1.

- Assumption 1: $m(\theta) < \infty$ for all $\theta \in (-\vartheta, \infty)$ for some $\vartheta > 0$.
- Assumption 2: The point process Z is non-trivial and the extinction probability of the underlying branching process is 0. In other words, P(N = 1) < 1, P(Z({t}) = N) < 1 for any t ∈ ℝ and P(N ≥ 1) = 1.
- Assumption 3: N has finite (1 + p)-th moment for some p > 0.

A Specific Constant θ_0

• We define

$$heta_{\mathsf{0}} := \inf \left\{ heta > \mathsf{0} : rac{
u(heta)}{ heta} =
u'(heta)
ight\},$$

which always exist (can be ∞) under our assumptions.

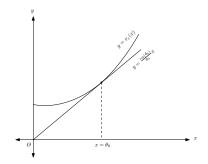
A Specific Constant θ_0

• We define

$$heta_{\mathsf{0}} := \inf \left\{ heta > \mathsf{0} : rac{
u(heta)}{ heta} =
u'(heta)
ight\},$$

which always exist (can be ∞) under our assumptions.

Note that when θ₀ < ∞, then it is the unique positive constant, such that, the tangent line to the curve θ → ν (θ) at the point (θ₀, ν (θ₀)) passes through the origin.



A Specific Constant θ_0

- Three cases to be considered:
 - **a** Boundary Case: $\theta = \theta_0 < \infty$;
 - **b** Below the Boundary Case: $\theta < \theta_0 \leq \infty$; and
 - **Solution** Above the Boundary Case: $\theta_0 < \theta < \infty$.

SLLN for R_n^*

Theorem 1 [B. and Ghosh (2020)]

For every non-negatively supported probability $\mu \neq \delta_0$ that admits a finite mean

$$\frac{R_n^*(\theta,\mu)}{n} \xrightarrow{\text{a.s.}} \begin{cases} \frac{\nu(\theta)}{\theta} & \text{if } \theta < \theta_0 \le \infty; \\\\ \frac{\nu(\theta_0)}{\theta_0} & \text{if } \theta = \theta_0 < \infty; \text{ and} \\\\ \frac{\nu(\theta_0)}{\theta_0} & \text{if } \theta_0 < \theta < \infty. \end{cases}$$

For every non-negatively supported probability $\mu \neq \delta_0$ that admits a finite mean

$$\frac{R_n^*(\theta,\mu)}{n} \xrightarrow{\text{a.s.}} \begin{cases} \frac{\nu(\theta)}{\theta} & \text{if } \theta < \theta_0 \le \infty; \\ \frac{\nu(\theta_0)}{\theta_0} & \text{if } \theta = \theta_0 < \infty; \text{ and} \\ \frac{\nu(\theta_0)}{\theta_0} & \text{if } \theta_0 < \theta < \infty. \end{cases}$$

Remark: Note that the almost sure limit remains same as $\frac{\nu(\theta_0)}{\theta_0}$ for the *boundary* case and also in *above the boundary case*.

Boundary Case:
$$\theta = \theta_0 < \infty$$

Assume that μ admits a finite mean, then there exists a random variable H_∞ such that

$$R_n^* - \frac{\nu\left(\theta_0\right)}{\theta_0}n + \frac{1}{2\theta_0}\log n \quad \stackrel{d}{\longrightarrow} \quad H_{\theta_0}^{\infty} + \frac{1}{\theta_0}\log\langle\mu\rangle$$

where $H_{\theta_0}^{\infty} = \frac{1}{\theta_0} \left[\log D_{\infty} - \log E + \frac{1}{2} \log \left(\frac{2}{\pi \sigma^2} \right) \right]$ and D_{∞} is a almost sure limit of the *derivative martingale*, namely, $D_n = \frac{1}{m(\theta_0)^n} \sum_{|\nu|=n} \left(\theta_0 S_{\nu} - n\nu \left(\theta_0 \right) \right) e^{\theta_0 S_{\nu}}$ and $E \sim$ Exponential (1) random variable which is independent of D_{∞} . Further, $\sigma^2 := \mathbf{E} \left[\frac{1}{m(\theta_0)^n} \sum_{|\nu|=n} \left(\theta_0 S_{\nu} - n\nu \left(\theta_0 \right) \right)^2 e^{\theta_0 S_{\nu}} \right].$

Boundary Case:
$$\theta = \theta_0 < \infty$$

Assume that μ admits a finite mean, then there exists a random variable H_∞ such that

$$R_n^* - \frac{\nu\left(\theta_0\right)}{\theta_0}n + \frac{1}{2\theta_0}\log n \quad \stackrel{d}{\longrightarrow} \quad H_{\theta_0}^{\infty} + \frac{1}{\theta_0}\log\langle\mu\rangle$$

where $H_{\theta_0}^{\infty} = \frac{1}{\theta_0} \left[\log D_{\infty} - \log E + \frac{1}{2} \log \left(\frac{2}{\pi \sigma^2} \right) \right]$ and D_{∞} is a almost sure limit of the *derivative martingale*, namely, $D_n = \frac{1}{m(\theta_0)^n} \sum_{|\nu|=n} \left(\theta_0 S_{\nu} - n\nu \left(\theta_0 \right) \right) e^{\theta_0 S_{\nu}}$ and $E \sim$ Exponential (1) random variable which is independent of D_{∞} . Further, $\sigma^2 := \mathbf{E} \left[\frac{1}{m(\theta_0)^n} \sum_{|\nu|=n} \left(\theta_0 S_{\nu} - n\nu \left(\theta_0 \right) \right)^2 e^{\theta_0 S_{\nu}} \right]$.

Remarks:

• The coefficient for the linear term is exactly same as that of the centering of R_n as proved by Aïdékon [2013].

Boundary Case:
$$\theta = \theta_0 < \infty$$

Assume that μ admits a finite mean, then there exists a random variable H_∞ such that

$$R_n^* - \frac{\nu(\theta_0)}{\theta_0}n + \frac{1}{2\theta_0}\log n \stackrel{d}{\longrightarrow} H_{\theta_0}^{\infty} + \frac{1}{\theta_0}\log\langle\mu\rangle$$

where $H_{\theta_0}^{\infty} = \frac{1}{\theta_0} \left[\log D_{\infty} - \log E + \frac{1}{2} \log \left(\frac{2}{\pi \sigma^2} \right) \right]$ and D_{∞} is a almost sure limit of the *derivative martingale*, namely, $D_n = \frac{1}{m(\theta_0)^n} \sum_{|\nu|=n} \left(\theta_0 S_{\nu} - n\nu \left(\theta_0 \right) \right) e^{\theta_0 S_{\nu}}$ and $E \sim$ Exponential (1) random variable which is independent of D_{∞} . Further, $\sigma^2 := \mathbf{E} \left[\frac{1}{m(\theta_0)^n} \sum_{|\nu|=n} \left(\theta_0 S_{\nu} - n\nu \left(\theta_0 \right) \right)^2 e^{\theta_0 S_{\nu}} \right]$.

Remarks:

• The coefficient for the linear term is exactly same as that of the centering of R_n as proved by Aïdékon [2013]. However, the coefficient for the logarithmic term is 1/3-rd of that of the centering of R_n as proved by Aïdékon [2013].

Boundary Case:
$$\theta = \theta_0 < \infty$$

Assume that μ admits a finite mean, then there exists a random variable H_∞ such that

$$R_n^* - \frac{\nu(\theta_0)}{\theta_0}n + \frac{1}{2\theta_0}\log n \xrightarrow{d} H_{\theta_0}^{\infty} + \frac{1}{\theta_0}\log\langle\mu\rangle$$

where $H_{\theta_0}^{\infty} = \frac{1}{\theta_0} \left[\log D_{\infty} - \log E + \frac{1}{2} \log \left(\frac{2}{\pi \sigma^2} \right) \right]$ and D_{∞} is a almost sure limit of the *derivative martingale*, namely, $D_n = \frac{1}{m(\theta_0)^n} \sum_{|v|=n} \left(\theta_0 S_v - n\nu \left(\theta_0 \right) \right) e^{\theta_0 S_v}$ and $E \sim$ Exponential (1) random variable which is independent of D_{∞} . Further, $\sigma^2 := \mathbf{E} \left[\frac{1}{m(\theta_0)^n} \sum_{|v|=n} \left(\theta_0 S_v - n\nu \left(\theta_0 \right) \right)^2 e^{\theta_0 S_v} \right].$

Remarks:

- The coefficient for the linear term is exactly same as that of the centering of R_n as proved by Aïdékon [2013]. However, the coefficient for the logarithmic term is 1/3-rd of that of the centering of R_n as proved by Aïdékon [2013].
- The limiting distribution is similar to that obtained by Aïdékon [2013], which is a random shift of the Gumbel distribution.

Bandyopadhyay and Ghosh

Modified BRW

Boundary Case:
$$\theta = \theta_0 < \infty$$

[heorem (Aïdékon [2013]]

There exists a random variable H^{∞} such that

$$\mathbf{R}_n - rac{\nu\left(heta_0
ight)}{ heta_0}n + rac{3}{2 heta_0}\log n \ \stackrel{d}{\longrightarrow} \ H_{\infty},$$

where $H_{\infty} = \frac{1}{\theta_0} [\log D_{\infty} - \log E + C]$ and D_{∞} is a almost sure limit of the *derivative martingale*, namely, $D_n = \frac{1}{m(\theta_0)^n} \sum_{|\nu|=n} (\theta_0 S_{\nu} - n\nu(\theta_0)) e^{\theta_0 S_{\nu}}$ and $E \sim$ Exponential (1) random variable which is independent of D_{∞} . And C is a constant.

- The coefficient for the linear term is exactly same as that of the centering of R_n as proved by Aïdékon [2013]. However, the coefficient for the logarithmic term is 1/3-rd of that of the centering of R_n as proved by Aïdékon [2013].
- The limiting distribution is similar to that obtained by Aïdékon [2013], which is a random shift of the Gumbel distribution.

• Notice that θ is essentially a *scale* parameter.

- Notice that θ is essentially a *scale* parameter.
- Thus one can try to scale the process in such a manner that $\theta_0 = 1$.

- Notice that θ is essentially a *scale* parameter.
- Thus one can try to scale the process in such a manner that $\theta_0 = 1$.
- For the classical BRW such scaled model has been termed as the *boundary case* (e.g. by Biggings and Kyprianou [2005], Aïdékon [2013]).

- Notice that θ is essentially a *scale* parameter.
- Thus one can try to scale the process in such a manner that $\theta_0 = 1$.
- For the classical BRW such scaled model has been termed as the *boundary* case (e.g. by Biggings and Kyprianou [2005], Aïdékon [2013]).
- However, for our modified BRW, θ is not just a scaled parameter! It has a different effects on the "last" displacements, as the *link operator*, is not amenable to scaling!

- Notice that θ is essentially a *scale* parameter.
- Thus one can try to scale the process in such a manner that $\theta_0 = 1$.
- For the classical BRW such scaled model has been termed as the *boundary* case (e.g. by Biggings and Kyprianou [2005], Aïdékon [2013]).
- However, for our modified BRW, θ is not just a scaled parameter! It has a different effects on the "last" displacements, as the *link operator*, is not amenable to scaling!
- So we consider $\theta = \theta_0$ as the *boundary case* and do not further scale the process to make $\theta_0 = 1$.

- Notice that θ is essentially a *scale* parameter.
- Thus one can try to scale the process in such a manner that $\theta_0 = 1$.
- For the classical BRW such scaled model has been termed as the *boundary* case (e.g. by Biggings and Kyprianou [2005], Aïdékon [2013]).
- However, for our modified BRW, θ is not just a scaled parameter! It has a different effects on the "last" displacements, as the *link operator*, is not amenable to scaling!
- So we consider $\theta = \theta_0$ as the *boundary case* and do not further scale the process to make $\theta_0 = 1$.
- It is worth to note here that for the classical BRW the only non-trivial limit happens at $\theta = \theta_0$. But for us all possible parameters values are in principle acceptable.

Below the Boundary Case: $\theta < \theta_0 \leq \infty$

Theorem 3 [B. and Ghosh (2020)]

Assume that μ admits finite mean, then for 0 $<\theta<\theta_0\leq\infty,$

$$\mathcal{R}_{n}^{*} - rac{
u\left(heta
ight)}{ heta}n \; \stackrel{d}{\longrightarrow} \; \mathcal{H}_{ heta}^{\infty} + rac{1}{ heta}\log\langle\mu
angle$$

where H_{θ}^{∞} is a random variable similar to that of $H_{\theta_0}^{\infty}$.

Below the Boundary Case: $\theta < \theta_0 \leq \infty$

Theorem 3 [B. and Ghosh (2020)]

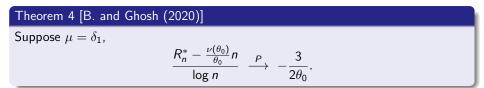
Assume that μ admits finite mean, then for $0 < \theta < \theta_0 \leq \infty$,

$$R_n^* - rac{
u\left(heta
ight)}{ heta} n \stackrel{d}{\longrightarrow} H_{ heta}^{\infty} + rac{1}{ heta} \log\langle\mu
angle$$

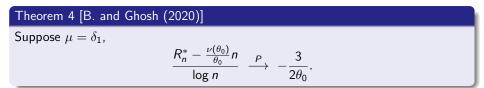
where H^{∞}_{θ} is a random variable similar to that of $H^{\infty}_{\theta_0}$.

Remark: Notice the *Bramson correction* disappears in this case.

Above the Boundary Case: $\theta_0 < \theta < \infty$



Above the Boundary Case: $\theta_0 < \theta < \infty$



Remarks:

• The result is imprecise!

Above the Boundary Case: $\theta_0 < \theta < \infty$

Theorem 4 [B. and Ghosh (2020)]	
Suppose $\mu = \delta_1$, $R_n^* - rac{ u(heta_0)}{ heta_0} n$	P 3
$\log n$	$\rightarrow -\frac{1}{2\theta_0}$.

- The result is imprecise!
- However, notice that now we capture the right constant for the *Bramson correction*.

"Conspiracy Behind the Stage!"

• It is natural to guess that we really did not invented this innovative "*last progeny modification*" for sake of understanding only this specific model!

- It is natural to guess that we really did not invented this innovative "*last progeny modification*" for sake of understanding only this specific model!
- Rather the truth is, we really wanted to give a completely different and possibly much simpler solution to the age old problem of the classical BRW.

- It is natural to guess that we really did not invented this innovative "*last progeny modification*" for sake of understanding only this specific model!
- Rather the truth is, we really wanted to give a completely different and possibly much simpler solution to the age old problem of the classical BRW.
- In fact, we actually discovered that a very simple "coupling" holds between the BRW problem and a more well known/studied process obtained out of a (quite standard) *statistical* technique, know as, the *smoothing transform*.

- It is natural to guess that we really did not invented this innovative "*last progeny modification*" for sake of understanding only this specific model!
- Rather the truth is, we really wanted to give a completely different and possibly much simpler solution to the age old problem of the classical BRW.
- In fact, we actually discovered that a very simple "coupling" holds between the BRW problem and a more well known/studied process obtained out of a (quite standard) *statistical* technique, know as, the *smoothing transform*.
- But, we are not there yet! What we have are results on this last progeny modified BRW.

- It is natural to guess that we really did not invented this innovative "*last progeny modification*" for sake of understanding only this specific model!
- Rather the truth is, we really wanted to give a completely different and possibly much simpler solution to the age old problem of the classical BRW.
- In fact, we actually discovered that a very simple "coupling" holds between the BRW problem and a more well known/studied process obtained out of a (quite standard) *statistical* technique, know as, the *smoothing transform*.
- But, we are not there yet! What we have are results on this last progeny modified BRW.
- This coupling is a conspiracy of few operators!

• Let **Z** be the progeny point process with $N := \mathbf{Z}(\mathbb{R}) < \infty$.

• Let Z be the progeny point process with $N := Z(\mathbb{R}) < \infty$. and we denote it as

$$\mathbf{Z} = \sum_{j=1}^{N} \delta_{\xi_j}.$$

• Let Z be the progeny point process with $N := Z(\mathbb{R}) < \infty$. and we denote it as

$$\mathbf{Z} = \sum_{j=1}^{N} \delta_{\xi_j}.$$

To be interpreted as, each individual produces a random but finitely many offspring (given by $N = \mathbf{Z}(\mathbb{R})$) and they are displaced from the position of the parent according to the points $\xi_1, \xi_2, \dots, \xi_k, \dots \xi_N$.

• Let Z be the progeny point process with $N := Z(\mathbb{R}) < \infty$. and we denote it as

$$\mathbf{Z} = \sum_{j=1}^{N} \delta_{\xi_j}.$$

To be interpreted as, each individual produces a random but finitely many offspring (given by $N = \mathbf{Z}(\mathbb{R})$) and they are displaced from the position of the parent according to the points $\xi_1, \xi_2, \dots, \xi_k, \dots \xi_N$.

• With it we can then associate and operator $M_{\mathbf{Z}}: \mathcal{P}\left(\bar{\mathbb{R}}\right) \to \mathcal{P}\left(\bar{\mathbb{R}}\right)$, given by

$$M_{\mathsf{Z}}\left(\eta
ight) = \operatorname{dist}\left(\max_{1\leq j\leq N}\left(\xi_{j}+X_{j}
ight)
ight),$$

where $(X_i)_{i\geq 1}$ are i.i.d. with distribution $\eta \in \mathcal{P}(\overline{\mathbb{R}})$ and are also independent of the point process **Z**.

• Let Z be the progeny point process with $N := Z(\mathbb{R}) < \infty$. and we denote it as

$$\mathbf{Z} = \sum_{j=1}^{N} \delta_{\xi_j}.$$

To be interpreted as, each individual produces a random but finitely many offspring (given by $N = \mathbf{Z}(\mathbb{R})$) and they are displaced from the position of the parent according to the points $\xi_1, \xi_2, \dots, \xi_k, \dots \xi_N$.

• With it we can then associate and operator $M_{\mathbf{Z}}: \mathcal{P}\left(\bar{\mathbb{R}}\right) \to \mathcal{P}\left(\bar{\mathbb{R}}\right)$, given by

$$M_{\mathsf{Z}}\left(\eta
ight) = \operatorname{dist}\left(\max_{1\leq j\leq N}\left(\xi_{j}+X_{j}
ight)
ight),$$

where $(X_i)_{i\geq 1}$ are i.i.d. with distribution $\eta \in \mathcal{P}(\overline{\mathbb{R}})$ and are also independent of the point process **Z**.

• It is then easy to see that $R_n \stackrel{d}{=} M_{\mathbf{Z}}^n(\delta_0)$.

• As before let
$$\mathbf{Z} = \sum_{j=1}^{N} \delta_{\xi_j}$$
 be the progeny point process.

• As before let
$$\mathbf{Z} = \sum_{j=1}^{N} \delta_{\xi_j}$$
 be the progeny point process.

• With it we can associate another and perhaps more well known operator $L_{\mathbf{Z}}: \mathcal{P}(\bar{\mathbb{R}}_+) \to \mathcal{P}(\bar{\mathbb{R}}_+)$, given by

$$L_{\mathsf{Z}}(\mu) = \operatorname{dist}\left(\sum_{1 \leq j \leq N} e^{\xi_j} Y_j\right),$$

where $(Y_i)_{i\geq 1}$ are i.i.d. with distribution $\mu \in \mathcal{P}(\overline{\mathbb{R}}_+)$ and are also independent of the point process **Z**.

• This operator is fairly well known in both probability and statistics and often called the *smoothing operator*.

- This operator is fairly well known in both probability and statistics and often called the *smoothing operator*.
- In probability literature, this was first considered by Biggins [1976] and then by many others, such as, Durrett and Liggett [1983]; Lally and Sellkey [1987]; Liu [2000]; Biggins and Kyprianou [1997, 2004 & 2005]; Hu and Shi [2009]; and Maillard [2009].

- This operator is fairly well known in both probability and statistics and often called the *smoothing operator*.
- In probability literature, this was first considered by Biggins [1976] and then by many others, such as, Durrett and Liggett [1983]; Lally and Sellkey [1987]; Liu [2000]; Biggins and Kyprianou [1997, 2004 & 2005]; Hu and Shi [2009]; and Maillard [2009].
- In statistics, this is essentially *regression* and hence was known to statisticians for long time. It was used in the context of the so called *Non-Parametric Regression*, which was first introduced by Nadarya and Watson [1964].

- This operator is fairly well known in both probability and statistics and often called the *smoothing operator*.
- In probability literature, this was first considered by Biggins [1976] and then by many others, such as, Durrett and Liggett [1983]; Lally and Sellkey [1987]; Liu [2000]; Biggins and Kyprianou [1997, 2004 & 2005]; Hu and Shi [2009]; and Maillard [2009].
- In statistics, this is essentially *regression* and hence was known to statisticians for long time. It was used in the context of the so called *Non-Parametric Regression*, which was first introduced by Nadarya and Watson [1964].
- It has also appeared in the study of *random algorithms*, for example, in the classical analysis of *Quicksort Algorithm* (e.g. Rösler [1992]).

Link Operator

• Consider a new operator $\mathcal{E}:\mathcal{P}\left(\bar{\mathbb{R}}_{+}\right)\to\mathcal{P}\left(\bar{\mathbb{R}}\right)$, defined as

$$\mathcal{E}(\mu) = \operatorname{dist}\left(\log \frac{Y}{E}\right),$$

where Y and E are two independent random variables with $Y \sim \mu \in \mathcal{P}(\bar{\mathbb{R}}_+)$ and $E \sim \text{Exponential}(1)$.

Link Operator

• Consider a new operator $\mathcal{E}:\mathcal{P}\left(\bar{\mathbb{R}}_{+}\right)\rightarrow\mathcal{P}\left(\bar{\mathbb{R}}\right)$, defined as

$$\mathcal{E}(\mu) = \operatorname{dist}\left(\log \frac{Y}{E}\right),$$

where Y and E are two independent random variables with $Y \sim \mu \in \mathcal{P}(\bar{\mathbb{R}}_+)$ and $E \sim \text{Exponential}(1)$.

• Then ...

Theorem 0a (Basic Transforming Relation) [B. and Ghosh (2020)]

 $M_{\mathsf{Z}} \circ \mathcal{E} = \mathcal{E} \circ L_{\mathsf{Z}}.$

Theorem 0a (Basic Transforming Relation) [B. and Ghosh (2020)]

 $M_{\mathsf{Z}} \circ \mathcal{E} = \mathcal{E} \circ L_{\mathsf{Z}}.$

Theorem 0b (General Transforming Relation) [B. and Ghosh (2020)]

 $M_{\mathsf{Z}}^n \circ \mathcal{E} = \mathcal{E} \circ L_{\mathsf{Z}}^n, \ \forall n \geq 1.$

Theorem 0a (Basic Transforming Relation) [B. and Ghosh (2020)]

 $M_{\mathsf{Z}} \circ \mathcal{E} = \mathcal{E} \circ L_{\mathsf{Z}}.$

Theorem 0b (General Transforming Relation) [B. and Ghosh (2020)]

 $M_{\mathsf{Z}}^{n} \circ \mathcal{E} = \mathcal{E} \circ L_{\mathsf{Z}}^{n}, \ \forall n \geq 1.$

Remarks:

• So using the link operator we can convert a problem related to the maximum operator to a problem on the linear/smoothing operator, which will perhaps be easier to solve.

Theorem 0a (Basic Transforming Relation) [B. and Ghosh (2020)]

 $M_{\mathbf{Z}} \circ \mathcal{E} = \mathcal{E} \circ L_{\mathbf{Z}}.$

Theorem 0b (General Transforming Relation) [B. and Ghosh (2020)]

 $M_{\mathsf{Z}}^{n} \circ \mathcal{E} = \mathcal{E} \circ L_{\mathsf{Z}}^{n}, \ \forall n \geq 1.$

Remarks:

- So using the link operator we can convert a problem related to the maximum operator to a problem on the linear/smoothing operator, which will perhaps be easier to solve.
- In particular, perhaps we can get an easier proof for asymptotic of R_n , the right-most position of a BRW.

• However, we do end-up in a problem!

• However, we do end-up in a problem! Very silly problem, yet is a serious issue!!!

- However, we do end-up in a problem! Very silly problem, yet is a serious issue!!!
- Recall, $R_n \stackrel{d}{=} M_{\mathbf{Z}}(\delta_0)$.

- However, we do end-up in a problem! Very silly problem, yet is a serious issue!!!
- Recall, $R_n \stackrel{d}{=} M_{\mathbf{Z}}(\delta_0)$. But unfortunately, $\delta_0 \notin \operatorname{Im}(\mathcal{E})$.

- However, we do end-up in a problem! Very silly problem, yet is a serious issue!!!
- Recall, $R_n \stackrel{d}{=} M_{\mathbb{Z}}(\delta_0)$. But unfortunately, $\delta_0 \notin \operatorname{Im}(\mathcal{E})$. This is because the $\operatorname{Im}(\mathcal{E})$ contains only continuous distributions.

- However, we do end-up in a problem! Very silly problem, yet is a serious issue!!!
- Recall, $R_n \stackrel{d}{=} M_{\mathbb{Z}}(\delta_0)$. But unfortunately, $\delta_0 \notin \operatorname{Im}(\mathcal{E})$. This is because the $\operatorname{Im}(\mathcal{E})$ contains only continuous distributions.
- So we can not immediately use the *General Transforming Relation*.

Suppose (X_j)_{j≥1} are i.i.d. with distribution *E* (μ) for some positively supported probability measure μ.

- Suppose (X_j)_{j≥1} are i.i.d. with distribution *E* (μ) for some positively supported probability measure μ.
- So if we take $(Y_j)_{j\geq 1}$ as i.i.d. μ and $(E_j)_{j\geq 1}$ i.i.d. Exponential (1) and the two sets of random variables are independent, then we may take $X_j = \log \frac{Y_j}{E_j}$, $j \geq 1$.

- Suppose (X_j)_{j≥1} are i.i.d. with distribution *E* (μ) for some positively supported probability measure μ.
- So if we take $(Y_j)_{j\geq 1}$ as i.i.d. μ and $(E_j)_{j\geq 1}$ i.i.d. Exponential (1) and the two sets of random variables are independent, then we may take $X_j = \log \frac{Y_j}{E_j}$, $j \geq 1$.
- Further, let $\mathbf{Z} = \sum_{j=1}^{N} \delta_{\xi_j}$ be such that, it is independent of all other random variables.

$$M_{\mathbf{Z}} \circ \mathcal{E}(\mu) = \operatorname{dist}\left(\max_{j \geq 1} \left(\xi_j + X_j\right)\right)$$

$$\begin{aligned} \mathsf{M}_{\mathbf{Z}} \circ \mathcal{E}\left(\mu\right) &= \operatorname{dist}\left(\max_{j \geq 1} \left(\xi_{j} + X_{j}\right)\right) \\ &= \operatorname{dist}\left(\max_{j \geq 1} \left(\xi_{j} + \log \frac{Y_{j}}{E_{j}}\right)\right) \end{aligned}$$

$$\begin{aligned} \mathsf{M}_{\mathbf{Z}} \circ \mathcal{E}\left(\mu\right) &= \operatorname{dist}\left(\max_{j\geq 1}\left(\xi_{j}+X_{j}\right)\right) \\ &= \operatorname{dist}\left(\max_{j\geq 1}\left(\xi_{j}+\log\frac{Y_{j}}{E_{j}}\right)\right) \\ &= \operatorname{dist}\left(\max_{j\geq 1}\log\frac{e^{\xi_{j}}Y_{j}}{E_{j}}\right) \end{aligned}$$

$$\begin{split} \mathcal{M}_{\mathbf{Z}} \circ \mathcal{E} \left(\mu \right) &= \operatorname{dist} \left(\max_{j \geq 1} \left(\xi_j + X_j \right) \right) \\ &= \operatorname{dist} \left(\max_{j \geq 1} \left(\xi_j + \log \frac{Y_j}{E_j} \right) \right) \\ &= \operatorname{dist} \left(\max_{j \geq 1} \log \frac{e^{\xi_j} Y_j}{E_j} \right) \\ &= \operatorname{dist} \left(-\min_{j \geq 1} \log \frac{E_j}{e^{\xi_j} Y_j} \right) \end{split}$$

$$\begin{split} \mathcal{M}_{\mathbf{Z}} \circ \mathcal{E} \left(\mu \right) &= \operatorname{dist} \left(\max_{j \geq 1} \left(\xi_j + X_j \right) \right) \\ &= \operatorname{dist} \left(\max_{j \geq 1} \left(\xi_j + \log \frac{Y_j}{E_j} \right) \right) \\ &= \operatorname{dist} \left(\max_{j \geq 1} \log \frac{e^{\xi_j} Y_j}{E_j} \right) \\ &= \operatorname{dist} \left(-\min_{j \geq 1} \log \frac{E_j}{e^{\xi_j} Y_j} \right) \\ &= \operatorname{dist} \left(-\log \min_{j \geq 1} \frac{E_j}{e^{\xi_j} Y_j} \right) \end{split}$$

$$\begin{split} M_{\mathbf{Z}} \circ \mathcal{E} \left(\mu \right) &= \operatorname{dist} \left(\max_{j \geq 1} \left(\xi_j + X_j \right) \right) \\ &= \operatorname{dist} \left(\max_{j \geq 1} \left(\xi_j + \log \frac{Y_j}{E_j} \right) \right) \\ &= \operatorname{dist} \left(\max_{j \geq 1} \log \frac{e^{\xi_j} Y_j}{E_j} \right) \\ &= \operatorname{dist} \left(-\min_{j \geq 1} \log \frac{E_j}{e^{\xi_j} Y_j} \right) \\ &= \operatorname{dist} \left(-\log \min_{j \geq 1} \frac{E_j}{e^{\xi_j} Y_j} \right) \\ &= \operatorname{dist} \left(-\log \frac{E}{\sum_{j \geq 1} e^{\xi_j} Y_j} \right) \end{split}$$

Proof of the Basic Transforming Relation

Now recall

$$\begin{split} M_{\mathbf{Z}} \circ \mathcal{E} \left(\mu \right) &= \operatorname{dist} \left(\max_{j \geq 1} \left(\xi_j + X_j \right) \right) \\ &= \operatorname{dist} \left(\max_{j \geq 1} \left(\xi_j + \log \frac{Y_j}{E_j} \right) \right) \\ &= \operatorname{dist} \left(\max_{j \geq 1} \log \frac{e^{\xi_j} Y_j}{E_j} \right) \\ &= \operatorname{dist} \left(-\min_{j \geq 1} \log \frac{E_j}{e^{\xi_j} Y_j} \right) \\ &= \operatorname{dist} \left(-\log \min_{j \geq 1} \frac{E_j}{e^{\xi_j} Y_j} \right) \\ &= \operatorname{dist} \left(-\log \frac{E}{\sum_{j \geq 1} e^{\xi_j} Y_j} \right) \\ &= \operatorname{dist} \left(\log \frac{\sum_{j \geq 1} e^{\xi_j} Y_j}{E} \right) \end{split}$$

Proof of the Basic Transforming Relation

Now recall

Μz

$$\circ \mathcal{E}(\mu) = \operatorname{dist}\left(\max_{j\geq 1} \left(\xi_j + X_j\right)\right)$$

= $\operatorname{dist}\left(\max_{j\geq 1} \left(\xi_j + \log \frac{Y_j}{E_j}\right)\right)$
= $\operatorname{dist}\left(\max_{j\geq 1} \log \frac{e^{\xi_j}Y_j}{E_j}\right)$
= $\operatorname{dist}\left(-\min_{j\geq 1} \log \frac{E_j}{e^{\xi_j}Y_j}\right)$
= $\operatorname{dist}\left(-\log \min_{j\geq 1} \frac{E_j}{e^{\xi_j}Y_j}\right)$
= $\operatorname{dist}\left(-\log \frac{E}{\sum_{j\geq 1} e^{\xi_j}Y_j}\right)$
= $\operatorname{dist}\left(\log \frac{\sum_{j\geq 1} e^{\xi_j}Y_j}{E}\right) = \mathcal{E} \circ L_{\mathsf{Z}}(\mu).$

Bandyopadhyay and Ghosh

• Recall the Transforming Relation $M_{\mathbf{Z}} \circ \mathcal{E} = \mathcal{E} \circ L_{\mathbf{Z}}$.

- Recall the Transforming Relation $M_{\mathbf{Z}} \circ \mathcal{E} = \mathcal{E} \circ L_{\mathbf{Z}}$.
- Also recall $\mathcal{E}(\mu) = \text{dist}(\log \frac{Y}{E})$, where $Y \sim \mu$ and $E \sim \text{Exponential}(1)$ and are independent.

- Recall the Transforming Relation $M_{\mathbf{Z}} \circ \mathcal{E} = \mathcal{E} \circ L_{\mathbf{Z}}$.
- Also recall $\mathcal{E}(\mu) = \text{dist}(\log \frac{Y}{E})$, where $Y \sim \mu$ and $E \sim \text{Exponential}(1)$ and are independent.
- \mathcal{E} is in some sense defines a continuous (under weak convergence topology) branch of "logarithm" on the set of positively supported probability measures.

- Recall the Transforming Relation $M_{\mathbf{Z}} \circ \mathcal{E} = \mathcal{E} \circ L_{\mathbf{Z}}$.
- Also recall $\mathcal{E}(\mu) = \text{dist}(\log \frac{Y}{E})$, where $Y \sim \mu$ and $E \sim \text{Exponential}(1)$ and are independent.
- \mathcal{E} is in some sense defines a continuous (under weak convergence topology) branch of "logarithm" on the set of positively supported probability measures.
- So *scaling limit* of L^n_Z provides *centering limit* of M^n_Z with logarithmic centering.

- Recall the Transforming Relation $M_{\mathbf{Z}} \circ \mathcal{E} = \mathcal{E} \circ L_{\mathbf{Z}}$.
- Also recall $\mathcal{E}(\mu) = \text{dist}(\log \frac{Y}{E})$, where $Y \sim \mu$ and $E \sim \text{Exponential}(1)$ and are independent.
- \mathcal{E} is in some sense defines a continuous (under weak convergence topology) branch of "logarithm" on the set of positively supported probability measures.
- So *scaling limit* of L^n_{Z} provides *centering limit* of M^n_{Z} with logarithmic centering.
- As smoothing transformation is fairly well studied so scaling limit of Lⁿ_Z are known (Biggins and Kyprianou [1997, 2004 & 2005] and Hu and Shi [2009]).

• Needless to say that more interesting question is about R_n and not R_n^* .

- Needless to say that more interesting question is about R_n and not R_n^* .
- We know $R_n \stackrel{d}{=} M_{Z}^n(\delta_0)$ and thus can not be written as $R_n \stackrel{d}{=} M_{Z}^n(\mathcal{E}(\mu))$ for any positively supported probability μ .

- Needless to say that more interesting question is about R_n and not R_n^* .
- We know $R_n \stackrel{d}{=} M_{Z}^n(\delta_0)$ and thus can not be written as $R_n \stackrel{d}{=} M_{Z}^n(\mathcal{E}(\mu))$ for any positively supported probability μ .
- So we are trying to do the next best thing, that is to approximate 0 by an "appropriate" sequence of probability measures which are of the form $\frac{1}{\theta} \mathcal{E}(\delta_1)$ and take limit as $\theta \longrightarrow \infty$.

- Needless to say that more interesting question is about R_n and not R_n^* .
- We know $R_n \stackrel{d}{=} M_Z^n(\delta_0)$ and thus can not be written as $R_n \stackrel{d}{=} M_Z^n(\mathcal{E}(\mu))$ for any positively supported probability μ .
- So we are trying to do the next best thing, that is to approximate 0 by an "appropriate" sequence of probability measures which are of the form $\frac{1}{\theta} \mathcal{E}(\delta_1)$ and take limit as $\theta \longrightarrow \infty$.
- As discussed earlier, all we need to prove now is

$$R_n^* - rac{\nu\left(heta_0
ight)}{ heta_0}n + rac{3}{2 heta_0}\log n \ \stackrel{d}{\longrightarrow} \ \odot$$

for any $\theta > \theta_0$ and then take limit as $\theta \longrightarrow \infty$ to claim the same holds for R_n .

• The real difficulty is to establish some short of *uniform* convergence so that the two limits can be interchanged.

- The real difficulty is to establish some short of *uniform* convergence so that the two limits can be interchanged.
- To tackle this difficulty we are in the process of studying the *large deviation* properties of the sequence (R_n^*) .

- The real difficulty is to establish some short of *uniform* convergence so that the two limits can be interchanged.
- To tackle this difficulty we are in the process of studying the *large deviation* properties of the sequence (R_n^*) .
- Another approach is to use the *below the boundary* result and use truncation on the displacements. But I guess, this story should be told another day!

Thank you!