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Introduction Pólya’s Urn Scheme

Pólya’s Urn Scheme with k-Colors

Suppose we have k colors, indexed by the set [k] := {1, 2, . . . , k}.

We start with an initial configuration, say, U0 = (U0,1,U0,2, . . . ,U0,k), where
U0,j denotes the number of balls of color j in the urn (at the beginning).

A ball is drawn (uniformly) at random from the urn and returned to the urn
along with another ball of its color. This process is then repeated.

Let Un := (Un,1,Un,2, · · · ,Un,k) denote the configuration of the urn after n
draws, where Un,j represent the number of balls of color j in the urn after n
draws.

Let Zn denote the random color of the (n + 1)-th draw and χn+1 be a
(random) row vector with all entries 0 except the Zn-th entry been 1, then

Un+1 = Un + χn+1.
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Pólya’s Urn Scheme with k-Colors

Suppose we have k colors, indexed by the set [k] := {1, 2, . . . , k}.

We start with an initial configuration, say, U0 = (U0,1,U0,2, . . . ,U0,k), where
U0,j denotes the number of balls of color j in the urn (at the beginning).

A ball is drawn (uniformly) at random from the urn and returned to the urn
along with another ball of its color. This process is then repeated.

Let Un := (Un,1,Un,2, · · · ,Un,k) denote the configuration of the urn after n
draws, where Un,j represent the number of balls of color j in the urn after n
draws.

Let Zn denote the random color of the (n + 1)-th draw and χn+1 be a
(random) row vector with all entries 0 except the Zn-th entry been 1, then

Un+1 = Un + χn+1.

Bandyopadhyay & Thacker Urn Schemes and Branching Markov Chains March 20, 2017 4 / 29
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Introduction Generalized Pólya’s Urn Scheme

Pólya’s Urn Scheme with a Replacement Matrix

We can consider more general replacement mechanism encoded as

R :=

Red Green Blue · · · Yellow
Red α β γ · · · η

Green a b c · · · e
Blue x y z · · · t

...
...

...
...

. . .
...

Yellow φ χ ψ · · · ω

where α, β, γ, . . ., η; a, b, c , . . ., e; x , y , z , . . ., t; and φ, χ, ψ, . . ., ω; are
non-negative integers.

Once color of a chosen ball is noted, say Zn, then balls are added in the urn
according to the Zn-th row of the matrix R.

With the same notations as earlier, we can then write

Un+1 = Un + χn+1R.
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Introduction Generalized Pólya’s Urn Scheme

Balanced Urn Scheme

If we assume that the row sums are all equal then such a replacement matrix
is called a balanced replacement matrix

For such a model it is customary to divide by the total row sum and to use a
stochastic matrix instead.

In this formalization it is natural to consider U0 as the initial proportion of
colors instead of the number of colors. Note that this results to some loss of
generality! (Fortunately, recoverable in the classical setup.)

From now on for the rest of the talk we will only consider balanced schemes.

Note that Un,j ’s now can be fractions and hence is not really the number of
balls of color j .

In fact, if we consider the (row) vector Un

n+1 then it represents the
distribution of the colors in the urn after the n draws.
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Introduction Blackwell and MacQueen Scheme

Baclwell and MacQueen Urn

In 1973 David Blackwell and James B. MacQueen introduced a new urn
scheme to construct an earlier discovered prior distribution then called the
Ferguson distribution (which now a days in Bayesian Statistics literature
known as the Dirichlet Process Prior).

They consider the same process as that of Pólya’s Urn, except have the
colors index by a Polish space (possibly uncountable).

The driving equation also remains same, except it takes the form

Un+1 = Un + δZn ,

where δz is the Dirac Measure at z .
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colors index by a Polish space (possibly uncountable).

The driving equation also remains same, except it takes the form

Un+1 = Un + δZn ,

where δz is the Dirac Measure at z .

Bandyopadhyay & Thacker Urn Schemes and Branching Markov Chains March 20, 2017 7 / 29



Generalized Urn Schemes with Colors Indexed by a Polish Space The Basic Set Up

Generalized Urn Schemes with Colors Indexed by a Polish
Space

Let S ⊆ Rd be a Polish space. We endow S with its Borel σ-algebra S.

Let M (S) and P (S) denote respectively the set of all finite measures and
the set of all probability measures on the measurable space (S ,S).

Let R : S × S → [0, 1] be a Markov kernel on S .

By a configuration of the urn at time n ≥ 0, we will consider a finite
measure Un ∈M (S), such that, if Zn represents the randomly chosen color
at the (n + 1)-th draw then the conditional distribution of Zn given the
“past”, is given by

P
(
Zn ∈ ds

∣∣∣Un,Un−1, · · · ,U0

)
∝ Un (ds) .
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Generalized Urn Schemes with Colors Indexed by a Polish Space The Basic Set Up

Generalized Urn Schemes with Colors Indexed by a Polish
Space

Formally, starting with U0 ∈ P (S) we define (Un)n≥0 ⊆M (S) recursively
as follows

Un+1 (A) = Un (A) + R (Zn,A) , A ∈ S,

where,

P
(
Zn ∈ ds

∣∣∣Un,Un−1, · · · ,U0

)
=

Un (ds)

n + 1
.

We will refer to the process (Un)n≥0 as the urn model with colors index by
S , initial configuration U0 and replacement kernel R.
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Generalized Urn Schemes with Colors Indexed by a Polish Space Random and Expected Configurations

Random Configurations

Random configuration of the urn: With slight abuse of terminology, we
will call the random probability measure Un

n+1 , as the random configuration of
the urn.

In fact,

P
(
Zn ∈ A

∣∣∣Un,Un−1, · · · ,U0

)
=

Un (A)

n + 1
, A ∈ S.

In other words, the n-th random configuration of the urn is the conditional
distribution of the (n + 1)-th selected color, given U0,U1, . . . ,Un.
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Generalized Urn Schemes with Colors Indexed by a Polish Space Random and Expected Configurations

Expected Configurations

Expected configuration of the urn: We define the probability measure
E[Un]
n+1 , as the expected configuration of the urn.

In fact,

P (Zn ∈ A) =
E [Un] (A)

n + 1
, A ∈ S.

In other words, the n-th expected configuration of the urn is the marginal
distribution of the (n + 1)-th selected color.
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Branching Markov Chains on Random Recursive Tree

Branching Markov Chains on Random Recursive Tree

For n ≥ −1, let T n be the random recursive tree on (n + 2) vertices labeled
by {−1; 0, 1, 2, . . . , n}, where the vertex labeled by −1 is considered as the
root.

We define
T :=

⋃
n≥−1

T n,

and call it the (infinite) random recursive tree.
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Branching Markov Chains on Random Recursive Tree

Definition: Branching Markov Chains on Random Recursive Tree

A stochastic process (Wn)n≥−1 taking values in Ŝ := {∆} ∪ S is called a
branching Markov chain on T starting at the root −1 and at a position
W−1 = ∆ 6∈ S if for any n ≥ 0 and A ∈ S,

P
(
Wn ∈ A

∣∣∣Wn−1,Wn−2, . . . ,W−1; T n

)
=

 U0 (A) if W←−n = ∆;

R (W←−n ,A) otherwise,

where ←−n is the parent of the vertex labeled by n in T n.
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Grand Representation Theorem

Grand Representation Theorem [B. and Thacker (2016)]

Consider an urn model with colors indexed by a Polish space S ⊆ Rd endowed
with the Borel σ-algebra S. Let R be the replacement kernel and U0 be the initial
configuration. For n ≥ 0, let Zn be the random color of the (n + 1)-th draw. Let
(Wn)n≥−1 be the branching Markov chain on T as defined above. Then

(Zn)n≥0
d
= (Wn)n≥0 .
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Marginal Representation Theorem

Mrginal Representation Theorem [B. and Thacker (2016)]

Consider an urn model with colors indexed by Polish space S ⊆ Rd endowed with the
Borel σ-algebra S. Let R be the replacement kernel and U0 be the initial configuration.
For n ≥ 0, let Zn be the random color of the (n + 1)-th draw. Let (Xn)n≥0 be the
associated Markov chain on S with transition kernel R and initial distribution U0. Then
there exists an increasing non-negative sequence of stopping times (τn)n≥0 with τ0 = 0,
which are independent of the Markov chain (Xn)n≥0, such that,

Zn
d
= Xτn ,

for any n ≥ 0. Moreover, as n→∞,

τn
log n

−→ 1 a.s.

and
τn − log n√

log n

d−→ N (0, 1) .
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Representation Theorems Proof of the Grand Representation Theorem

Proof of the Grand Representation Theorem

Recall that the fundamental recursion is

Un = Un−1 + R (Zn, ·)

Thus we can write

Un = Un−1 + R (Zn−1, ·)
⇔ Un = U0 + R (Z0, ·) + R (Z1, ·) + · · ·+ R (Zn−1, ·)

⇔ Un

n + 1
=

U0

n + 1
+

n−1∑
k=0

R (Zk , ·)
n + 1

.

Also recall that the conditional distribution of Zn given U0;Z0,Z1, · · · ,Zn−1

is nothing but Un

n+1 .
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Proof of the Grand Representation Theorem

A Sampling Scheme: So given U0;Z0,Z1, · · · ,Zn−1 the color Zn can be selected
as follow:

(I) First select a (discrete) uniform random variable Dn on index set
{0, 1, 2, · · · , n − 1};

(II) Next, if Dn ≥ 1 then select Zn from the probability distribution R (ZDn , ·),
that is, a move by R-chain from the position ZDn ;

(III) Otherwise, select Zn from the initial configuration U0.
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Proof of the Grand Representation Theorem

Another Sampling Scheme: Let P−1;P0,P1,P2, · · · be i.i.d. Poisson point
processes of unit intensity.

We start at say, −1 which we call the root. We
endowed −1 with a state, say ∆ 6∈ S , and the Poisson clock P−1.

(I) When the clock rings a new vertex labeled by 0 appears and gets attached
to the root −1. It is then endowed with a state Z0 which is a sample from
U0 and also receives the Poisson clock P0.

(II) Now a new vertex labeled 1 appears when one of the Poisson clocks rings
and it gets attached to the vertex for which the clock ringed. It is then
endowed with a state Z1 which is a sample from U0 if it is attached at −1,
otherwise it is a move by R-chain from Z0. It also receives its Poisson clock
P1.

(III) Having constructed the vertices −1; 0, 1, · · · , n − 1 endowed with states
Z−1 ≡ ∆;Z0,Z1, · · · ,Zn−1 respectively, we bring a new vertex n when one
of the clocks P0;P1,P2, · · · ,Pn−1 rings. It gets attached to the vertex for
which the clock ringed. It is then endowed with a state Zn which is either a
sample from U0 (if it got attached to 0) or a move by R-chain from the
state of the vertex it got attached to.

Bandyopadhyay & Thacker Urn Schemes and Branching Markov Chains March 20, 2017 18 / 29



Representation Theorems Proof of the Grand Representation Theorem

Proof of the Grand Representation Theorem

Another Sampling Scheme: Let P−1;P0,P1,P2, · · · be i.i.d. Poisson point
processes of unit intensity. We start at say, −1 which we call the root. We
endowed −1 with a state, say ∆ 6∈ S , and the Poisson clock P−1.

(I) When the clock rings a new vertex labeled by 0 appears and gets attached
to the root −1. It is then endowed with a state Z0 which is a sample from
U0 and also receives the Poisson clock P0.

(II) Now a new vertex labeled 1 appears when one of the Poisson clocks rings
and it gets attached to the vertex for which the clock ringed. It is then
endowed with a state Z1 which is a sample from U0 if it is attached at −1,
otherwise it is a move by R-chain from Z0. It also receives its Poisson clock
P1.

(III) Having constructed the vertices −1; 0, 1, · · · , n − 1 endowed with states
Z−1 ≡ ∆;Z0,Z1, · · · ,Zn−1 respectively, we bring a new vertex n when one
of the clocks P0;P1,P2, · · · ,Pn−1 rings. It gets attached to the vertex for
which the clock ringed. It is then endowed with a state Zn which is either a
sample from U0 (if it got attached to 0) or a move by R-chain from the
state of the vertex it got attached to.

Bandyopadhyay & Thacker Urn Schemes and Branching Markov Chains March 20, 2017 18 / 29



Representation Theorems Proof of the Grand Representation Theorem

Proof of the Grand Representation Theorem

Another Sampling Scheme: Let P−1;P0,P1,P2, · · · be i.i.d. Poisson point
processes of unit intensity. We start at say, −1 which we call the root. We
endowed −1 with a state, say ∆ 6∈ S , and the Poisson clock P−1.

(I) When the clock rings a new vertex labeled by 0 appears and gets attached
to the root −1. It is then endowed with a state Z0 which is a sample from
U0 and also receives the Poisson clock P0.

(II) Now a new vertex labeled 1 appears when one of the Poisson clocks rings
and it gets attached to the vertex for which the clock ringed. It is then
endowed with a state Z1 which is a sample from U0 if it is attached at −1,
otherwise it is a move by R-chain from Z0. It also receives its Poisson clock
P1.

(III) Having constructed the vertices −1; 0, 1, · · · , n − 1 endowed with states
Z−1 ≡ ∆;Z0,Z1, · · · ,Zn−1 respectively, we bring a new vertex n when one
of the clocks P0;P1,P2, · · · ,Pn−1 rings. It gets attached to the vertex for
which the clock ringed. It is then endowed with a state Zn which is either a
sample from U0 (if it got attached to 0) or a move by R-chain from the
state of the vertex it got attached to.

Bandyopadhyay & Thacker Urn Schemes and Branching Markov Chains March 20, 2017 18 / 29



Representation Theorems Proof of the Grand Representation Theorem

Proof of the Grand Representation Theorem

Another Sampling Scheme: Let P−1;P0,P1,P2, · · · be i.i.d. Poisson point
processes of unit intensity. We start at say, −1 which we call the root. We
endowed −1 with a state, say ∆ 6∈ S , and the Poisson clock P−1.

(I) When the clock rings a new vertex labeled by 0 appears and gets attached
to the root −1. It is then endowed with a state Z0 which is a sample from
U0 and also receives the Poisson clock P0.

(II) Now a new vertex labeled 1 appears when one of the Poisson clocks rings
and it gets attached to the vertex for which the clock ringed. It is then
endowed with a state Z1 which is a sample from U0 if it is attached at −1,
otherwise it is a move by R-chain from Z0. It also receives its Poisson clock
P1.

(III) Having constructed the vertices −1; 0, 1, · · · , n − 1 endowed with states
Z−1 ≡ ∆;Z0,Z1, · · · ,Zn−1 respectively, we bring a new vertex n when one
of the clocks P0;P1,P2, · · · ,Pn−1 rings. It gets attached to the vertex for
which the clock ringed. It is then endowed with a state Zn which is either a
sample from U0 (if it got attached to 0) or a move by R-chain from the
state of the vertex it got attached to.

Bandyopadhyay & Thacker Urn Schemes and Branching Markov Chains March 20, 2017 18 / 29



Representation Theorems Proof of the Grand Representation Theorem

Proof of the Grand Representation Theorem

Another Sampling Scheme: Let P−1;P0,P1,P2, · · · be i.i.d. Poisson point
processes of unit intensity. We start at say, −1 which we call the root. We
endowed −1 with a state, say ∆ 6∈ S , and the Poisson clock P−1.

(I) When the clock rings a new vertex labeled by 0 appears and gets attached
to the root −1. It is then endowed with a state Z0 which is a sample from
U0 and also receives the Poisson clock P0.

(II) Now a new vertex labeled 1 appears when one of the Poisson clocks rings
and it gets attached to the vertex for which the clock ringed. It is then
endowed with a state Z1 which is a sample from U0 if it is attached at −1,
otherwise it is a move by R-chain from Z0. It also receives its Poisson clock
P1.

(III) Having constructed the vertices −1; 0, 1, · · · , n − 1 endowed with states
Z−1 ≡ ∆;Z0,Z1, · · · ,Zn−1 respectively, we bring a new vertex n when one
of the clocks P0;P1,P2, · · · ,Pn−1 rings. It gets attached to the vertex for
which the clock ringed. It is then endowed with a state Zn which is either a
sample from U0 (if it got attached to 0) or a move by R-chain from the
state of the vertex it got attached to.

Bandyopadhyay & Thacker Urn Schemes and Branching Markov Chains March 20, 2017 18 / 29



Representation Theorems Proof of the Grand Representation Theorem

Few Remarks on the Representation Theorems

The Grand Representation Theorem links the sequence of chosen colors to a
branching Markov chain on the random recursive tree.

The Marginal Representation Theorem is an immediate consequence of it.

Now by evoking known properties of the random recursive tree, we can try
to prove results for either of the two processes.
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Main Results An Assumption

An Assumption on the Replacement Kernal

(Xn)n≥0 denotes a Markov chain with state space S , transition kernel R and
starting distribution U0.
We now make the following assumption:

(A) There exists a (non-random) probability Λ on
(
Rd ,BRd

)
and a vector

v ∈ Rd , and two functions a : R+ → R and b : R+ → R+, such that, for any
initial distribution U0,

Xn − a (n) v

b (n)
d−→ Λ. (1)
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Main Results Asymptotic of the Random Configuration of the Urn

Asymptotic of the Random Configuration of the Urn

Define Fn := σ (Z0,Z1, · · · ,Zn), n ≥ 0. Let Pn be a version of the regular
conditional distribution of Zn given Fn. Note by construction Pn = Un

n+1 almost
surely.
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Asymptotic of the Random Configuration of the Urn

Theorem 1 [B. and Thacker (2017)]

Suppose assumption (A) holds. Let Pcs
n is the conditional distribution of

Zn−a(log n)v
b(log n) given Fn, that is, a scaled and centered version of Pn with centering

by a (log n) v and scaling by b (log n), then

(a) If a = 0 and b = 1, then

Pcs
n = Pn

p−→ Λ in P (S) . (2)

(b) Suppose a = 0 and b is regularly varying function, then

Pcs
n

p−→ Λ in P
(
Rd
)
. (3)
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Main Results Asymptotic of the Random Configuration of the Urn

Asymptotic of the Random Configuration of the Urn

Theorem 1 [B. and Thacker (2017)]

(c) Suppose a is differentiable and lim
x→∞

a′ (x) = ã <∞. Also assume b is

regularly varying and lim
x→∞

√
x

b (x)
= b̃ <∞, then

Pcs
n

p−→ Ξ in P
(
Rd
)
, (4)

where Ξ is Λ if ã = 0 or b̃ = 0, otherwise, it is given by the convolution of Λ

and Normal
(

0, ã2b̃2
)

v.
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Asymptotic of the Expected Configuration of the Urn

Theorem 2 [B. and Thecker (2017)]

Suppose assumption (A) holds, then

(a) If a = 0 and b = 1, then
Zn ⇒ Λ. (5)

(b) Suppose a = 0 and b is regularly varying function, then

Zn − a (log n) v

b (log n)
⇒ Λ, (6)

(c) Suppose a is differentiable and lim
x→∞

a′ (x) = ã <∞. Also assume b is regularly

varying and lim
x→∞

√
x

b (x)
= b̃ <∞, then

Zn − a (log n) v

b (log n)
⇒ Ξ, (7)

where Ξ is Λ if ã = 0 or b̃ = 0, otherwise, it is given by the convolution of Λ and

Normal
(

0, ã2b̃2
)

v.
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Main Results Applications

Classical Set Up: Finite/Countable Color Set

Theorem 3

Suppose S is countable, S = ℘ (S), R is ergodic with stationary distribution π on
S . Then as n→∞,

Un

n + 1

p−→ π in P (S) . (8)

In particular,
E [Un]

n + 1
w−→ π, (9)

as n→∞.
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Main Results Applications

Classical Set Up: Block Diagonal Replacement Matrix

Theorem 4 [B. and Thacker (2017)]

Consider an urn model with colors indexed by a set S and replacement kernel given by

R =


R11 0 0 · · · 0
0 R22 0 · · · 0
0 0 R33 · · · 0
...

...
...

. . .
...

0 0 0 · · · Rkk

 ,

Then for every initial configuration U0, as n→∞,

Un

n + 1

p−→ Π in P (S) , (10)

where Π is a random probability measure on (S ,S) given by

Π (A) =
∑
i∈I

πi (A ∩ Ci ) νi , A ∈ S, (11)

and ν has Ferguson Distribution on the countable set I with parameter U0 ◦ φ−1.
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Main Results Applications

Non-Classical: Infinite Colors with Kernal as the Random
Walk

Theorem 5 [B. and Thacker (2015)]

Consider an infinite color urn model with colors indexed by S = Zd , and kernel R
is simple symmetric random walk. Suppose the starting configuration is U0. We
define,

Pcs
n (A) :=

Un

n + 1

(√
log nA

)
, A ∈ BRd ,

then, as n→∞,

Pcs
n

p−→ Φd in P
(
Rd
)
. (12)

In particular,
Zn√
log n

⇒ Normald(0, Id), (13)

as n→∞.
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Main Results Applications

Component Sizes of Random Recursive Tree

Theorem 6 [B. and Thacker (2017)]

Let T n be the random recursive tree on n + 2 vertices labeled as
{−1; 0, 1, 2, . . . , n} with −1 as the root. Let Nn be the degree of −1 in T n and
S1,S2, · · · ,SNn be the sizes of the subtrees rooted at the children of the root −1.
Let Ξn be the (finite) point process on (0, 1) obtained from the random points(

S1

n+1 ,
S2

n+1 , · · · ,
SNn

n+1

)
. Then almost surely,

Ξn
d−→ Dirichlet (dx) .
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Thank You
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