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Hillel Furstenberg

From the Abel prize website

When Hillel Furstenberg published one of his early papers, a rumor
circulated that he was not an individual but instead a pseudonym for a
group of mathematicians. The paper contained ideas from so many
different areas, surely it could not possibly be the work of one man?
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Gregory Margulis

Jacques Tits on Margulis

It is not exaggerated to say that, on several occasions, he has bewildered
the experts by solving questions which appeared to be completely out of
reach at the time.
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Armand Borel on Margulis

On more than one occasion, Borel mentioned that Margulis was the first
person who caused confusion between two Borels in the Borel measure and
the Borel subgroups, by using both Lie theory (or rather algebraic group
theory) and ergodic theory simultaneously. He also declared that he was
not related to the other Borel.

Ji Lizhen, A Summary of the Work of Gregory Margulis Pure and Applied
Mathematics Quarterly Volume 4, Number 1 (Special Issue: In honor of
Gregory Margulis, Part 2 of 2) 1–69, 2008
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Nostalgia
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Early beginnings

Furstenberg, Harry On the infinitude of primes. Amer. Math. Monthly 62
(1955), 353.

Kazhdan, D. A.; Margulis, G. A. A proof of Selberg’s hypothesis.
(Russian) Mat. Sb. (N.S.) 75 (117) 1968 163–168.
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Diverse achievements, common threads

There are (at least) three major common threads running through the
work of Furstenberg and Margulis

Rigidity

Connections to number theory

Connections to probability

Abel prize citation

“for pioneering the use of methods from probability and dynamics in group
theory, number theory and combinatorics.”
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Hillel Furstenberg

Introduced Ergodic theory in combinatorics (Szemerédi’s Theorem)

Non-commutative methods, products of random matrices

Unique ergodicity of horocycle flow

Disjointness

Fractal methods in ergodic theory,..

11 / 132



Hillel Furstenberg

Introduced Ergodic theory in combinatorics (Szemerédi’s Theorem)
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Non-commutative methods, products of random matrices

Unique ergodicity of horocycle flow

Disjointness

Fractal methods in ergodic theory,..

14 / 132



Hillel Furstenberg

Introduced Ergodic theory in combinatorics (Szemerédi’s Theorem)
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Gregory Margulis

Arithmeticity and Superrigidity theorems

Oppenheim’s conjecture

Construction of expander graphs

Baker-Sprindžuk conjectures in Diophantine approximation

Normal subgroup theorem, Margulis Lemma, Bowen-Margulis
measure, Random walks on homogeneous spaces..
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Baker-Sprindžuk conjectures in Diophantine approximation

Normal subgroup theorem, Margulis Lemma, Bowen-Margulis
measure, Random walks on homogeneous spaces..

18 / 132



Gregory Margulis

Arithmeticity and Superrigidity theorems

Oppenheim’s conjecture

Construction of expander graphs
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Baker-Sprindžuk conjectures in Diophantine approximation

Normal subgroup theorem, Margulis Lemma, Bowen-Margulis
measure, Random walks on homogeneous spaces..

20 / 132



Dynamical systems

×2 : T→ T

×2 : x → 2x mod 1

gt acting on SL(2,R)/ SL(2,Z)

gt =

(
et 0
0 e−t

)

Geodesic flow on the modular surface

Horocycle flow: ut =

(
1 t
0 1

)
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×2,×3

×p : x → px mod 1

X ⊂ T is invariant under ×p if ×p(X ) ⊂ X

There are many invariant closed subsets for ×p

Example: the circle is invariant. So is the middle third Cantor set (for
×3)
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The point is that ×p is (semi-)conjugated to a Bernoulli shift with p
symbols and any sub-shift gives an invariant Cantor set.

Every x ∈ [0, 1] has a base p expansion

x = 0.x1x2 · · · =
∑∞

i=1 xip
−i , xi ∈ {0, 1, . . . , p − 1}

This expansion is unique (except for rational numbers which have two)

A number is rational if and only if its expansion is eventually periodic
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For p ≥ 2 let ×p be as before the multiplication by p on the circle

×p shifts the expansion of a number by 1

×p(0.x1x2 . . . ) = 0.x2x3 . . .
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Plenty of invariant subsets for each map

Are there many joint ones?

Do expansions in base 2 and base 3 have anything in common?

If A,B are closed and invariant under ×2,×3 respectively, do A and
B have common structure?
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Two integers p, q > 1 are multiplicatively independent if they are not
both rational powers of a single integer.

i.e. log p/ log q /∈ Q

Examples: 2 and 3, 2 and 6. Non-example 4 and 8.

Sp,q = {pmqn : m, n ∈ Z,m, n ≥ 0}.

Sp,q is a semigroup of the natural numbers.
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Topological Rigidity

Theorem (Furstenberg 1967): If p, q are multiplicatively independent
and X ⊂ T is closed and invariant under Sp,q

Then either X = T or X is finite (and so X ⊂ Q).
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A Diophantine consequence

Theorem (Furstenberg): If Sp,q is as above and α ∈ R is an irrational,
then

{sα mod 1 : s ∈ Sp,q}

is dense in [0, 1].

This is a strengthening of (a consequence of) Weyl’s equidistribution
theorem.
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Key idea: disjointness

Suppose G acts continuously on two spaces X and Y . A joining of
(X ,G ) and (Y ,G ) is a closed subset Z ⊂ X × Y invariant under the
diagonal action of G on X × Y whose projection to the first
coordinate is X and to the second coordinate is Y .

The two systems (X ,G ) and (Y ,G ) are said to be disjoint if the only
joining between them is the trivial product joining Z = X × Y .
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Measure theoretic Rigidity

Invariant measures: a measure µ on a measurable space (X ,B) on
which a semigroup G acts is said to be invariant if for every g ∈ G
and any A ∈ B we have that µ(g−1A) = µ(A)

Ergodic measures: an invariant measure is said to be ergodic if every
set A ∈ B which is invariant under every g ∈ G satisfies that
µ(A) = 0 or µ(X\A) = 0.
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Measure theoretic rigidity contd.

Conjecture (Furstenberg 1967): Let p, q be two multiplicative
independent positive integers. Any Borel measure µ on T ergodic
under the action of Sp,q is either Lebesgue measure or an atomic
measure supported on finitely many rational points.

This is possibly the most famous open problem in ergodic theory

Furstenberg, Harry Disjointness in ergodic theory, minimal sets, and a
problem in Diophantine approximation. Math. Systems Theory 1
(1967), 1–49.
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Measure theoretic rigidity continued

Theorem (Rudolph): Let p, q be relatively prime positive integers,
and µ a Sp,q-ergodic measure on T. Assume that the Z+-action
generated by one of these maps, say ×p, has positive entropy. Then µ
is Lebesgue measure.

The entropy of Dirac measures supported on periodic orbits is zero.
However non-atomic invariant measures can have zero entropy.
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Rigidity in Dynamics

The dynamics of ×p and ×q do not share any common structure unless
there is an obvious algebraic reason.
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Furstenberg’s conjecture asks whether the intersection of two very
large sets of measures is small

One major problem is that even though µ is ×p,×q-ergodic it need
not be ×q-ergodic.

Closely connected to Littlewood’s conjecture, arithmetic quantum
unique ergodicity
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Ergodic Ramsey theory

Theorem (van der Waerden 1927): If we colour Z using c colours,
then for every k , there is a monochromatic k-term arithmetic
progression.

Theorem (Szemerédi 1974):Any subset of Z with positive upper
density contains arbitrarily long arithmetic progressions.

Conjectured by Erdős and Turán in 1936. One of the landmark results
in combinatorics.

Upper density: lim supn→∞
1

2n+1 |A ∩ {−n,−n + 1, . . . , n − 1, n}|
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Conjectured by Erdős and Turán in 1936. One of the landmark results
in combinatorics.

Upper density: lim supn→∞
1

2n+1 |A ∩ {−n,−n + 1, . . . , n − 1, n}|

67 / 132



Ergodic Ramsey theory

Theorem (van der Waerden 1927): If we colour Z using c colours,
then for every k , there is a monochromatic k-term arithmetic
progression.
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Finitary versions

Theorem (van der Waerden 1927): Let k and r be positive integers.
Then there exists a positive integer M = M(k, r) such that, however
the set {1, 2, . . . ,M} is partitioned into r subsets, at least one of the
subsets contains an arithmetic progression of length k .

Theorem (Szemerédi 1974): Let k be a positive integer and let δ > 0.
There exists a positive integer N = N(k , δ) such that every subset of
the set {1, 2, . . . ,N} of size at least δN contains an arithmetic
progression of length k.

Furstenberg in 1977 gave a new, completely different proof of
Szemerédi’s theorem.

70 / 132



Finitary versions

Theorem (van der Waerden 1927): Let k and r be positive integers.
Then there exists a positive integer M = M(k, r) such that, however
the set {1, 2, . . . ,M} is partitioned into r subsets, at least one of the
subsets contains an arithmetic progression of length k .
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Furstenberg’s proof

Idea: translate the problem into dynamics via the Furstenberg
correspondence principle

What is the dynamical system to consider?

2Z along with the shift map

2Z can be viewed as the set of Z-indexed {0, 1}-valued sequences

The shift map sends the sequence (xn)n∈Z to (xn−1)n∈Z

Equip 2Z with the product topology where each component {0, 1} has
the discrete topology. By Tychonoff, this is compact.
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Furstenberg’s proof

Topological multiple recurrence

Let (Uα) be an open cover of X . Then there exists Uα such that for
every k ≥ 1, we have

Uα ∩ T nUα ∩ · · · ∩ T (k−1)nUα 6= ∅
for some n > 0.

This is equivalent to van der Waerden’s theorem

Measure theoretic multiple recurrence

Let (X , µ,T ) be a measure preserving system, and k a positive
integer. Then for any E ⊂ X with µ(E ) > 0 there exists n > 0 such
that

µ(E ∩ T n(E ) ∩ · · · ∩ T (k−1)nE ) > 0

This implies Szemerédi’s theorem
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Quadratic forms

Meyer’s theorem: A rational quadratic form in ≥ 5 variables has a
non-trivial integer solution.

This is classical and a consequence of the Hasse-Minkowski local
global principle.

Oppenheim’s conjecture (circa 1929): If Q is an irrational, indefinite,
nondegenerate quadratic form in at least 3 variables, then Q(Zn) is
dense in R.

Q(x , y , z) = x2 −
√

2xy +
√

3z2.
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Dynamics on the space of Lattices

SL(n,Z) is a lattice in SL(n,R), so the quotient carries a finite
SL(n,R)-invariant probability measure.

SL(n,R)/SL(n,Z) can be identified with the space of unimodular
lattices in Rn.

A subgroup of SL(n,R) acts on SL(n,R)/SL(n,Z) by translation.

The resulting dynamics is rich and complicated.

Raghunathan: Oppenheim’s conjecture follows from the statement:

Any orbit of SO(Q) on SL(3,R)/SL(3,Z) is either closed and carries
an SO(Q)-invariant probability measure, or is dense.
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Some remarks

It is easy to see that Oppenheim’s conjecture can be reduced to 3
variables.

SO(2, 1) is generated by unipotent one parameter subgroups.

Raghunathan conjectured very general topological rigidity statements
for such actions.

Margulis proved an instance of Raghunathan’s conjecture for SO(Q)
acting on SL(3,R)/SL(3,Z)

Thereby proving Oppenheim’s conjecture.

In full generality, the conjectures of Raghunathan and Dani were
proved in a series of landmark papers by Marina Ratner.
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Dynamics ←→ Diophantine analysis

Let Q0(x , y , z) = x2 + y2 − z2

Let Q be as in the Theorem, Q(v) = λQ0(gv)

And SO(Q) = g SO(2, 1)g−1

Let H = SO(2, 1), G = SL(3,R) and Γ = SL(3,Z).

We consider the H orbit of gΓ on G/Γ.
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If HgΓ is dense in G , we have that

Q(Z3) = Q0(gZ3) = Q0(gΓZ3)

= Q0(HgΓZ3)

= Q0(GZ3)

= Q0(R3 − {0}) = R
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If HgΓ is closed and has a SO(Q)-invariant probability measure

Then Γ ∩ gHg−1 is a lattice in gHg−1

By the Borel density theorem, SO(Q) is contained in the Zariski
closure of Γ ∩ gHg−1.

So, SO(Q) is defined over Q

Which implies that Q is not irrational.
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Quantitative versions of Oppenheim
conjecture

NQ,I (t) = #{v ∈ Zn | Q(v) ∈ I , ‖v‖ ≤ t}, (1)

For any indefinite, irrational and nondegenerate quadratic form Q in
n ≥ 3 variables there is cQ > 0 such that

lim inf
t→∞

NQ,I (t)

tn−2
≥ cQ |I |,

while for n ≥ 5 the limit exists and equals cQ |I |.

These are famous results of Dani-Margulis (lower bound)

And Eskin-Margulis-Mozes (upper bound)
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Nondivergence of unipotent flows

Let Xn denote the space of unimodular lattices in Rn. Let Xn(ε) be
the set of lattices whose shortest non-zero vector has norm at least ε

Mahler’s compactness criterion: for any ε > 0, Xn(ε) is compact

Theorem (Margulis): Let {ux} be a one-parameter unipotent
subgroup of SL(n,R). Then there exists ε > 0 such that the set
{x ∈ R+ : uxΛ ∈ Xn(ε)} is unbounded

Conjectured by Piatetski-Shapiro and used by Margulis in his proof of
the arithmeticity theorem
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Nondivergence of unipotent flows contd.

Dani proved a quantitative version of Margulis’ theorem

Further improvements by Kleinbock-Margulis who used it to prove the
Baker-Sprindžuk conjecture

Kleinbock-Lindenstrauss-Weiss (fractal measures)

Eskin-Margulis (random walks)
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gs,t =

es 0 0
0 et 0
0 0 e−s−t

 acting on SL(3,R)/ SL(3,Z)

H = gs,t : s, t ∈ R

Conjecture (Margulis, 1997): Any compact H-invariant subset of
SL(3,R)/SL(3,Z) is a union of compact H-orbits.

Conjecture (Littlewood, circa 1930): lim inf
n→∞

n ‖nα‖ ‖nβ‖ = 0,

128 / 132



gs,t =

es 0 0
0 et 0
0 0 e−s−t

 acting on SL(3,R)/ SL(3,Z)

H = gs,t : s, t ∈ R

Conjecture (Margulis, 1997): Any compact H-invariant subset of
SL(3,R)/SL(3,Z) is a union of compact H-orbits.

Conjecture (Littlewood, circa 1930): lim inf
n→∞

n ‖nα‖ ‖nβ‖ = 0,

129 / 132



gs,t =

es 0 0
0 et 0
0 0 e−s−t

 acting on SL(3,R)/ SL(3,Z)

H = gs,t : s, t ∈ R

Conjecture (Margulis, 1997): Any compact H-invariant subset of
SL(3,R)/SL(3,Z) is a union of compact H-orbits.

Conjecture (Littlewood, circa 1930): lim inf
n→∞

n ‖nα‖ ‖nβ‖ = 0,

130 / 132



gs,t =

es 0 0
0 et 0
0 0 e−s−t

 acting on SL(3,R)/ SL(3,Z)

H = gs,t : s, t ∈ R

Conjecture (Margulis, 1997): Any compact H-invariant subset of
SL(3,R)/SL(3,Z) is a union of compact H-orbits.

Conjecture (Littlewood, circa 1930): lim inf
n→∞

n ‖nα‖ ‖nβ‖ = 0,

131 / 132



Thank You!
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