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Random Topology = Probability + Algebraic Topology

Emerging research area known as random topology = theoretical
results that characterize the asymptotic behavior of topological
properties of random objects.

In additions to the mathematical value, such results are also
motivated by many issues in manifold learning and topological data
analysis.

One aspect of random topology is the study of random geometric
complexes and their topological properties such as Betti numbers.

In this talk, we concentrate on a typical type of random geometric
complexes known as Čech complexes.
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Motivation from manifold learning

Assumption in manifold learning: Given data points as realizations of
i.i.d. random variables {X1,X2, . . .} supported on an unknown non-linear,
smooth and compact manifold (of intrinsic dimension << ambient
dimension).

Figure: Swissroll Dataset
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After the Manifold Assumption...

Instructive to estimate the topological properties of the unknown
manifold- ‘Homology Inference’.

kth Betti number:
Rank of kth homology group

0th Betti number β0:
Number of connected components

(k ≥ 1)th Betti number βk :
Number of k-dimensional holes

Figure: 2D Torus - β0 = β2 = 1; β1 = 2
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One of the first results in this regard...

Let {X1, . . . ,Xn} be drawn uniformly and independently from the unknown
compact manifold M⊂ RN . Let B(Xi , r) := closed Euclidean ball in
ambient dimension. Then the estimator

M̂ :=
n⋃

i=1

B(Xi , r),

has same Betti numbers as of unknown manifold with high probability
under certain conditions on n and r (Niyogi, Smale, and Weinberger 2008).

Note

βk(M̂) = 0 for all k ≥ ambient dimension;

βk(M̂) = βk of random Čech complex of radius r , constructed on
{X1, . . . ,Xn} (follows by Nerve Theorem).
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Čech complex

Definition 1.1.

Let (A, ρ) := metric space & Xn = {x1, x2, . . . , xn} := finite set of points
in A. For any r > 0, the Čech complex of radius r is

C(Xn, r , ρ) =

{
σ ⊂ Xn :

⋂
x∈σ

Bρ(x , r) 6= ∅
}
,

where Bρ(x , r) = {y ∈ A : ρ(x , y) ≤ r}.

σ ∈ C(Xn, r , ρ) is k-simplex, if |σ| = k + 1.
Dimension of C(Xn, r , ρ) := (maxσ∈C(Xn,r ,ρ) |σ|)− 1.

Figure: Čech complex:
β0 = β1 = 1.
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Limiting Regimes
Random geometric complexes - Higher dimensional analogues of Random
Geometric Graphs, from which we have

Sparse regime:
n1/mrn → 0

Thermodynamic regime:
n1/mrn → r ∈ (0,∞)

Dense regime:
n1/mrn →∞

Observation

In each regime, topological behavior is significantly different.
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For the randomness...

Definition 1.2.

Let Xi , i ≥ 1 be i.i.d. RN -valued random variables with common
probability density function f (x). Then the union of first n points
{X1,X2, . . . ,Xn} is called a binomial point process.

We consider binomial point process in two different yet related settings, on
the basis of the support of density function

Manifold setting: support - m-dimensional compact C 1 manifold
M, embedded within RN(N > m).

Euclidean setting: support - RN .
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For the randomness...

In stochastic geometry, the standard technique to prove results for
binomial point processes is to consider their Poissonized versions.

Suppose for given n > 0, Tn is a Poisson random variable with
parameter n and independent of {Xi , i ≥ 1}.
Then the point process Pn := {X1, . . . ,XTn} is called a Poissonized
version of the binomial point process.

It is a Poisson point process on RN with intensity function nf . It is
denoted by Pn and Qn in Euclidean and manifold setting, respectively.
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For the randomness...

Definition 1.3.

A point process P on RN is said to be a Poisson point process with
intensity function λ(x), denoted by P(λ(x)), if it satisfies the following
two conditions

(i) for any bounded Borel set B ⊂ RN , the random variable P(B)
counting the number of points in B has Poisson distribution with
parameter λ(B) :=

∫
B λ(x)dx , i.e.,

P(P(B) = k) = e−λ(B)λ(B)k

k!
, k = 0, 1, . . . ;

(ii) for disjoint bounded Borel sets B1,B2, . . . ,Bk , the random variables
P(B1), P(B2), . . . ,P(Bk) are independent.
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Dense Regime

Theorem 1.4 (Manifold setting; Bobrowski and Mukherjee
2015, Theorem 4.9).

Assume κ to be bounded, measurable and supported on a m-dimensional
closed manifold M⊂ RN , where m < N.Let κmin := infz∈M κ(z) > 0 and
n1/mrn ≥ C (log n)1/m.
(a) If C > (ωmκmin)−m, then as n→∞,

P(βk(Qn, rn) = βk(M), for all 0 ≤ k ≤ m)→ 1.

(b) If C > 2m(ωmκmin)−m, then almost surely there exists n0 > 0 (which
is random), such that for all n > n0,

βk(Qn, rn) = βk(M), for all 0 ≤ k ≤ m,

where ωm = Lebm(B(0, 1)).
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Dense Regime

Remarks

On comparing with the result of Niyogi et al., Theorem 1.4

holds for larger class of probability density functions;

require less prior information about the manifold;

is stronger in the sense that the convergence is shown to occur almost
surely.

Thermodynamic Regime

We do not know what happens in the thermodynamic regime clearly
since basic questions such as law of large numbers and central limit
theorems are not entirely understood yet.

In our work, we answer the question of law of large numbers in
thermodynamic regime.
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Another motivation

Besides this motivation from manifold learning, our motivation also
comes from stochastic geometry.

The estimator in the result of Niyogi et. al. is a special case of
‘Boolean model’, whose geometric properties such as volume and
surface area have been well studied.

Therefore, the next natural question arises about its topological
features.

Furthermore, in stochastic geometry, weak and strong laws of large
numbers have been established for a general class of local statistics,
however, Betti numbers do not belong to that class.

Thus, the study of Betti numbers need further development.
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Part 2
Prior Work & Our Contribution
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Setting

Description

Manifold Setting:
I M⊂ RN - m-dimensional compact C 1 manifold, where m < N.
I rn is a sequence of positive real numbers such that

n1/mrn → r ∈ (0,∞)-Thermodynamic regime.
I Qn- Poisson point process with intensity function nκ.
I C(Qn, rn)- random Čech complex in this setting.

Euclidean Setting:
I n1/N rn → r ∈ (0,∞).
I Pn- Poisson point process with intensity function nf .
I C(Pn, rn, ρ)- random Čech complex in this setting, with the general

metric ρ, satisfying certain properties.

Aim: To establish the limiting behavior of the random variables βk(Qn, rn)
and βk(Pn, rn, ρ) in the thermodynamic regime.
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Literature

Bobrowski and Mukherjee 2015, Theorem 4.3

Assume M⊂ RN to be closed and smooth manifold, and κ to be bounded
and measurable. Then for 1 ≤ k ≤ m − 1, as n→∞ with
n1/mrn → r ∈ (0,∞), there exists constants c1, c2 > 0 such that

c1n ≤ E[βk(Qn, rn)] ≤ c2n.

Yogeshwaran, Subag, and Adler 2017; Trinh 2017, Corollary 1.4

Assume the support of f (x) is compact and convex and that

0 < inf
x∈supp(f )

f (x) ≤ sup
x∈supp(f )

f (x) <∞.

Assume further that f is Riemann integrable. Then for 1 ≤ k ≤ N − 1, as
n→∞ with n1/N rn → r ∈ (0,∞),

βk(Pn, rn)

n
→
∫
RN

β̂
(N)
k (f (x), r)dx a.s.
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Limiting constant: β̂
(N)
k (λ, r)

Notation

P(λ) := homogenous Poisson point process on RN with constant
intensity function λ > 0.

PL(λ) := restriction of P(λ) on the window WL = (−L
1/N

2 , L
1/N

2 ]N ,
where L > 0. It can also be denoted by P(λ)|WL

.

Yogeshwaran, Subag, and Adler 2017, Theorem 3.5

Then for 1 ≤ k ≤ (N − 1), as L→∞,

βk(PL(λ), r)

L
→ β̂

(N)
k (λ, r) a.s.
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Random Čech complexes Prior Work Akshay Goel 18 / 40



Limiting constant contd...
Explicit formula for β̂k , except for k = 0, is unknown- (OPEN PROBLEM).

Trinh 2017, Lemma 2.3

(i) Scaling Property: For any θ > 0,

β̂
(N)
k (λ, r) =

1

θ
β̂

(N)
k

(
λθ,

r

θ1/N

)
.

(ii) Continuity and Positivity: β̂
(N)
k (λ, r) is a continuous function in both

λ and r . If λ, r > 0 then β̂
(N)
k (λ, r) > 0.

Follows from Bobrowski and Oliveira 2017, Proposition 6.1

Exponential decay: For r ∈ (0,∞),

β̂
(N)
k (1, r) ≤ CN,k+1r

Nk exp(−cN rN),

where CN,k+1 and cN are constants, depending only on their subscripts.
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Our Main Results

Theorem 2.1 (For Manifolds).

Let M⊂ RN to be a compact m-dimensional C 1 manifold with m < N.
Assume that κ(z) is a non-negative function, supported on M and for all
j ∈ N,

∫
M κ(z)jdz < +∞. Then as n→∞ with n1/mrn → r ∈ (0,∞),

βk(Qn, rn)

n
→
∫
M
β̂

(m)
k (κ(z), r)dz a.s.,

where dz is a volume form on M.

It is worth mentioning the following lemma:

Lemma 2.2.

Under the same assumptions as in Theorem 2.1,

E[βk(Qn, rn)]

n
→
∫
M
β̂

(m)
k (κ(z), r)dz .
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A key idea to deal with the manifold setting

Assume for instance that the support of κ lies entirely in a single
chart (V , φ), i.e., supp(κ) ⊂ φ(V ).

Then {Xi = φ−1(Zi )}i≥1 becomes an i.i.d. sequence of random
variables on V ⊂ Rm.

If we define the metric ρ on V by ρ(x , y) = ‖φ(x)− φ(y)‖, then
C(Qn, r) is identical with C(Pn, r , ρ), the Čech complex of radius r ,
constructed on Pn ⊂ Rm using ρ.

Thus, the problem on a manifold is converted to that on the Euclidean
setting with a general metric ρ, which is easier for us to handle.

Ø Simplest assumption in manifold learning: Given data points as realizations of 
independent and identically distributed (i.i.d.) random variables !" "#$% having support on 
an unknown non linear, smooth and compact &-dimensional manifold ℳ ⊂ ℝ*	 , ≥ & .

Ø It is instructive then to estimate the topological features of ℳ, in terms of its Betti 
numbers, from random points !" "#$% . 

Ø One of the first results in this regard [NSW]: Consider . points, drawn uniformly and 
independently from the compact manifold ℳ. Then, the estimator 

ℳ/ = ⋃ 2(!", 5)%"#$ , where 2 !", 5 = {8 ∈ ℳ: 8 − !" ≤ 5}, 
has the same topological features as of ℳ with high probability under certain conditions 
on . and 5. 

Random Čech Complexes on Manifolds in 
the Thermodynamic Regime

Akshay Goel, Ph.D. 3rd year, Graduate School of  Mathematics,  
Kyushu University 

1. Introduction & Model  Specification

>th Betti number: Rank of >th 
homology group.

?@ ℳ = 5A.> B@ ℳ

0th Betti number ?D: Number of     
connected components.

(> ≥ 1)th Betti number ?@: 
Number of >-dimensional holes.

Ø Setting: We assume &-dimensional manifold ℳ ⊂ ℝ* to be F$ and compact.
Examples:

Ø We generate binomial point process G% = !" "#$% , with probability density 
function H I and construct random Čech complex F G%, 5% :
i) The 0-simplices (vertices) are the points in G%.
ii) A >-simplex !"J, !"K, … , !"M ∈ F G%, 5% if ⋂ 2 !"O, 5% ≠ ∅@R#D .

Example:

Ø Goal: To establish limiting behavior of the Betti numbers of random Čech
complexes in the thermodynamic regime.

Ø For Manifolds [BM]: Assume ℳ to be closed and smooth &-dimensional manifold and
H I to be bounded and measurable then for 0 ≤ > ≤ (& − 1),

Ø For Euclidean Spaces [T,YSA]:  Assume H I is Riemann integrable, and the support 
of H I is compact and convex and that 0 < inf H I ≤ supH I < ∞. Then for 
1 ≤ > ≤ (, − 1), as . → ∞ with .$ *⁄ 5% → 5 ∈ 0,∞ almost surely,

2a. Known Results

]^. ≤ _ ?@ F G%, 5% ≤ ]$. as	. → ∞ (]$, ]^ > 0).	

?@ F G%, 5%
. → a ?b@(*) H I , 5 	,I

�

ℝd
.

Ø For Manifolds: Assume ℳ to be F$	 and compact &-dimensional manifold, 
and H I is supported on ℳ such that for all f ∈ ℕ, ∫ H I R�

ℳ ,I < ∞.Then for 
0 ≤ > ≤ (, − 1), as . → ∞ with .$ i⁄ 5% → 5 ∈ 0,∞ almost surely,

?@ F G%, 5%
. → a ?b@i H I , 5 	,I

�

ℳ
.

?@ F G%, 5%
. → a ?b@* H I , 5 	,I

�

ℝd
.

Ø For Euclidean Spaces:  Assume H I satisfies for all f ∈ ℕ, ∫ H I R�
ℝd ,I < ∞. 

Then for 0 ≤ > ≤ (, − 1), as . → ∞ with .$ *⁄ 5% → 5 ∈ 0,∞ almost surely,

2b. Our Contribution 

Ø Goel, A., Trinh, K.D., Tsunoda, K.,O., Strong law of large numbers for Betti numbers in the 
thermodynamic regime. Accepted at Journal of Statistical Physics.

[BM] Bobrowski, O., Mukherjee, S.: Probab. Theory Related Fields 161(3-4), 651-686 (2015).
[NSW] Niyogi, P., Smale, S., Weinberger, S.: Discrete Comput. Geom. 39(1-3), 419-441 (2008).
[T] Trinh, K.D.: Pac. J. Math. Ind. 9, Art. 4, 7 (2017).
[YSA] Yogeshwaran, D., Subag, E., Adler, R.J.: Probab. Theory Related Fields 167(1-2), 107-142 (2017).

References
Ø Conclusion: Our results are new and stronger than the previous results given in the
literature. Our method is general enough to be implemented in other problems.
Ø Future Work: i) To derive the explicit formula of the limiting constant, and

ii) To establish central limit theorem for the Betti numbers.

4. Conclusion & Future Work

3. Idea of Proof

As	. → ∞ with .$ i⁄ 5% → 5 ∈ 0,∞ ,
?@ F j%, 5%

. 	− 1.k?@ F j% lmn , 5%
�

"
≤ k oR F j%, 5%

. − 1.koR F j% lmn , 5%
�

"

@p$

R#@
→ 0

?@ F j%|mn, 5% = ?@ F r%|sn, 5%, t where r% is Poisson point process with intensity
%u vn w xyn w

∫ u w *w�
zn

; where {vn I = det �vn I Ä�vn I
� and t I, 8 = Å" 8 − Å" I .

Letting first . → ∞ and then Ç → ∞, almost surely

?@ F r%|sn, 5%, t
. − 1.k?@ F rÉ% lÑÖ,Ü

, 5, t%
�

á
→ 0,

1
.k?@ F rÉ% lÑÖ,Ü

, 5, t%
�

á
→ a ?b@i H I , 5 ,I

�

mn
.

Enough to establish results for Poissonized version of binomial point process: 
j% ≔ !$, !^,… , !âÖ , where ä%~åçéèèç.(.) and intensity of j% is .H.

Ø If ê ⊂ êë (Čech complexes) then ∀> ≥ 0, 

?@ ê − ?@ êë ≤ ∑ oR êë − oR ê 	@p$R#@ .

Ø If ê" "#$% are disjoint Čech complexes then

?@ ⋃ ê"%"#$ = ∑ ?@(ê")%"#$ .

Idea: To estimate Betti numbers by functions 
oR ⋅ : number of f-simplices, whose limiting 
behavior is well-known.

Å(V) 		Åñ$
(ó%,á, t%)
			⊂ ℝ^.Ç > 0, ò% = 5 5%⁄ ;

Divide ℝ^ acc. to ô�
öÖ ℤ^. 

I → .� ò%I
On each F%,á

Fig. 1: Swissroll Dataset.
Ambient dimension , = 3 but data is 
supported on a set of dimension 2.

Fig. 3a: 2-dimensional
torus.
?D = ?^ = 1; ?$ = 2

Fig. 3b: 2-dimensional
sphere.
?D = ?^ = 1; ?$ = 0

Fig.	4:	F Gû, ü
Ø 0-simplices = I$, I^, I†, I°, I¢, Iû	 ;
Ø 1-simplices = { I$, I^ , I$, I† , I^, I†

, I†, I° , I°, I¢ , I°, Iû , I¢, Iû };
Ø 2-simplex = I$, I^, I† .
Ø ?D = ?$ = 1; ?^ = 0.

Limiting regimes: Qualitatively limiting behavior of Betti numbers falls into 
three main categories. In each regime, 5% → 0 as . → ∞.

1D Random Čech Complexes (Random Geometric Graphs)

Sparse Regime
.$ i⁄ 5% → 0

Thermodynamic Regime
.$ i⁄ 5% → 5 ∈ 0,∞

Dense Regime
.$ i⁄ 5% → ∞

?b@i = 0 for all > ≥ &.

§ ⊂ ℝ^
with 

metric ρ.

		F%,á

Fig. 2c: . =
1000, 5 = 0.2,
?@ ℳ = ?@(ℳ/ )
for	all	> ≥ 0

Fig. 2a: . = 100, 5 =
0.2, ?D ℳ ≠ ?D ℳ/

Fig. 2b: . = 300, 5 =
0.2, ?$ ℳ ≠ ?$ ℳ/

Example:ℳ = 2-dimensional annulus

Nerve
Theorem

?@ ℳ/ = ?@(random Čech complex, 
constructed on !" "#$% ).

?@ ℳ/ = 0
for all > ≥ ,. 

Consider 2D sphere. Partition it by finitely 
many charts. ™", Å" is a chart where ™" is 
compact.  

Ø Properties of ?b@(*) 1 ≤ > ≤ , − 1 : Explicit formula is unknown.
i) Continuity and Positivity: ?b@* ´, 5 is continuous in both ´ and 5. If ´ > 0	and 5 > 0

then ?b@* ´, 5 > 0.
ii) Scaling Property: For any ¨ > 0, ?b@* ´, 5 = $

≠ ?b@
* ´¨, Æ

≠K/d .
Ø We contribute by: 
§ establishing almost sure convergence of Betti numbers in Manifold setting, 
§ improving the result in Euclidean setting by weakening the assumption on probability 

density function H I ,
§ giving another important property of the limiting constant – exponential decay of 
?b@* ´, 5 .

Ø Exponential decay: For 5 ∈ 0,∞ , 
?b@* 1, 5 ≤ F*,@p$5*@exp	(−]*5*),

where F*,@p$and ]* are constants which depend 
only on their subscripts.

Plots of ?b@† 1, 5 vs 5, for > = 0, 1 and 2.  

Fig. 3a: 2-dimensional
torus.
?D = ?^ = 1; ?$ = 2
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Main results contd...

Assumptions on the general metric ρ

Let for x ∈ RN , Bx be a positive definite N × N matrix such that the map
x 7→ Bx is measurable. Let for y , z ∈ RN , dx(y , z) := ‖Bx(y − z)‖. Let A
be a non-empty subset of RN , equipped with ρ.

(P1) For given x ∈ A and ε > 0, there exists δ = δx ,ε > 0 such that for
y , z ∈ A, whenever y , z ∈ B(x , δ),

(1− ε)dx(y , z) ≤ ρ(y , z) ≤ (1 + ε)dx(y , z).

(P2) There exist δ, c and C > 0 such that for y , z ∈ A, whenever
‖y − z‖ ≤ δ,

c‖y − z‖ ≤ ρ(y , z) ≤ C‖y − z‖.
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Main results contd...

Theorem 2.3 (For Euclidean spaces).

Let (A, ρ) be a metric space, where A is a Borel subset of RN with
LebN(∂A) = 0 and the metric ρ satisfies the properties (P1) and (P2).
Assume that f (x) is a non-negative function that satisfies for all j ∈ N,∫
RN f (x)jdx < +∞. Then as n→∞ with n1/N rn → r ∈ (0,∞),

βk(Pn, rn, ρ)

n
→
∫
RN

β̂
(N)
k

(
f (x)

D(x)
, r

)
D(x)dx a.s.,

where D(x) := det(Bx).

Lemma 2.4.

Under the same assumptions as in Theorem 2.3,

E[βk(Pn, rn, ρ)]

n
→
∫
RN

β̂
(N)
k

(
f (x)

D(x)
, r

)
D(x)dx .
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Part 3
Idea of Proof
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Main tools

Sj(K) counts the number of j-simplices in a simplicial complex K.

Lemma 3.1 (Yogeshwaran, Subag, and Adler 2017).

Let K, K̃ be two finite simplicial complexes such that K̃ ⊂ K. Then for
every k ≥ 0,

∣∣βk(K)− βk(K̃)
∣∣ ≤ k+1∑

j=k

(
Sj(K)− Sj(K̃)

)
.

Finite additivity of Betti numbers

Let K1,K2 . . . ,Kn be a finite number of disjoint simplicial complexes.
Then for all k ≥ 0,

βk

(
n⋃

i=1

Ki

)
=

n∑
i=1

βk(Ki ). (1)
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LLN for simplex counts Sj(·)
Number of j-simplices in C(X, r , ρ) can be written as

Sj(X, rn, ρ) =
∑
Y⊂X

hj ,rn,ρ(Y), (2)

where X ⊂ A is finite set and hj ,rn,ρ(Y) is the indicator function
which is equal to 1 iff Y is a j-simplex.

The above representation implies Sj(·) are local statistics and
therefore, their LLN may follow from general theory of local functions
due to Penrose 2007; Penrose and Yukich 2003.

However, we give an elementary proof by calculating the order of the
fourth moments.

For r ∈ (0,∞) and x = (x1, x2, . . . , xj) ∈ (RN)j , define

A
(N)
j (r) =

rNj

(j + 1)!

∫
(RN)j

hj(0, x)dx,

where hj(0, x) and dx stand for hj ,1,‖·‖(0, x1, x2, . . . , xj) and
dx1 · · · dxj respectively.
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LLN for simplex counts Sj(·) contd.

Proposition 3.2.

Assume that
∫
A f (x)j+1dx < +∞ and limn→∞ rn = 0. Then

lim
n→∞

r−Nj
n n−(j+1)E[Sj(Pn, rn, ρ)] = A

(N)
j (1)

∫
A

f (x)j+1

D(x)j
dx .

In the thermodynamic regime, Proposition 3.2 is restated as follows.

Corollary 3.3.

Assume that
∫
A f (x)j+1dx < +∞ and limn→∞ n1/N rn = r ∈ (0,∞). Then

lim
n→∞

E[Sj(Pn, rn, ρ)]

n
= A

(N)
j (r)

∫
A

f (x)j+1

D(x)j
dx .
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LLN for simplex counts Sj(·) contd.

Proposition 3.4.

Assume that
∫
A f (x)4j+1dx < +∞ and limn→∞ n1/N rn = r ∈ (0,∞).

Then as n→∞,

Sj(Pn, rn, ρ)

n
→ A

(N)
j (r)

∫
A

f (x)j+1

D(x)j
dx a.s.

The above proposition is proved by using the standard technique:

Let ξn = Sj − E[Sj ]. We show that E[ξ4
n] ≤ Kn2, where K is some

positive constant.

Then by Markov’s inequality, P(|ξn| ≥ nε) ≤ Kn−2ε−4.

Since
∑

n−2 <∞, by the first Borel–Cantelli lemma,
P(lim supn |n−1ξn| ≥ ε) = 0.

This means n−1ξn converges to zero almost surely.
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Sufficient Requirement

To prove results for usual Betti numbers in Euclidean setting, it is
sufficient to prove the following proposition

Proposition 3.5.

Let (A, ρ) be a metric space, where A is a compact subset of RN with
LebN(∂A) = 0 and the metric ρ satisfies the property (P1). Assume that
f (x) is a non negative function on A and is bounded. Then as n→∞
with n1/N rn → r ∈ (0,∞),

βk(Pn, rn, ρ)

n
→
∫
A
β̂

(N)
k

(
f (x)

D(x)
, r

)
D(x)dx a.s.

Here, Pn is a Poisson point process on A with intensity function nf (x).
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Proof of Proposition 3.5
For the proof, we partition the set A as follows

Ø Simplest assumption in manifold learning: Given data points as realizations of 
independent and identically distributed (i.i.d.) random variables !" "#$% having support on 
an unknown non linear, smooth and compact &-dimensional manifold ℳ ⊂ ℝ*	 , ≥ & .

Ø It is instructive then to estimate the topological features of ℳ, in terms of its Betti 
numbers, from random points !" "#$% . 

Ø One of the first results in this regard [NSW]: Consider . points, drawn uniformly and 
independently from the compact manifold ℳ. Then, the estimator 

ℳ/ = ⋃ 2(!", 5)%"#$ , where 2 !", 5 = {8 ∈ ℳ: 8 − !" ≤ 5}, 
has the same topological features as of ℳ with high probability under certain conditions 
on . and 5. 

Random Čech Complexes on Manifolds in 
the Thermodynamic Regime

Akshay Goel, Ph.D. 3rd year, Graduate School of  Mathematics,  
Kyushu University 

1. Introduction & Model  Specification

>th Betti number: Rank of >th 
homology group.

?@ ℳ = 5A.> B@ ℳ

0th Betti number ?D: Number of     
connected components.

(> ≥ 1)th Betti number ?@: 
Number of >-dimensional holes.

Ø Setting: We assume &-dimensional manifold ℳ ⊂ ℝ* to be F$ and compact.
Examples:

Ø We generate binomial point process G% = !" "#$% , with probability density 
function H I and construct random Čech complex F G%, 5% :
i) The 0-simplices (vertices) are the points in G%.
ii) A >-simplex !"J, !"K, … , !"M ∈ F G%, 5% if ⋂ 2 !"O, 5% ≠ ∅@R#D .

Example:

Ø Goal: To establish limiting behavior of the Betti numbers of random Čech
complexes in the thermodynamic regime.

Ø For Manifolds [BM]: Assume ℳ to be closed and smooth &-dimensional manifold and
H I to be bounded and measurable then for 0 ≤ > ≤ (& − 1),

Ø For Euclidean Spaces [T,YSA]:  Assume H I is Riemann integrable, and the support 
of H I is compact and convex and that 0 < inf H I ≤ supH I < ∞. Then for 
1 ≤ > ≤ (, − 1), as . → ∞ with .$ *⁄ 5% → 5 ∈ 0,∞ almost surely,

2a. Known Results

]^. ≤ _ ?@ F G%, 5% ≤ ]$. as	. → ∞ (]$, ]^ > 0).	

?@ F G%, 5%
. → a ?b@(*) H I , 5 	,I

�

ℝd
.

Ø For Manifolds: Assume ℳ to be F$	 and compact &-dimensional manifold, 
and H I is supported on ℳ such that for all f ∈ ℕ, ∫ H I R�

ℳ ,I < ∞.Then for 
0 ≤ > ≤ (, − 1), as . → ∞ with .$ i⁄ 5% → 5 ∈ 0,∞ almost surely,

?@ F G%, 5%
. → a ?b@i H I , 5 	,I

�

ℳ
.

?@ F G%, 5%
. → a ?b@* H I , 5 	,I

�

ℝd
.

Ø For Euclidean Spaces:  Assume H I satisfies for all f ∈ ℕ, ∫ H I R�
ℝd ,I < ∞. 

Then for 0 ≤ > ≤ (, − 1), as . → ∞ with .$ *⁄ 5% → 5 ∈ 0,∞ almost surely,

2b. Our Contribution 

Ø Goel, A., Trinh, K.D., Tsunoda, K.,O., Strong law of large numbers for Betti numbers in the 
thermodynamic regime. Accepted at Journal of Statistical Physics.

[BM] Bobrowski, O., Mukherjee, S.: Probab. Theory Related Fields 161(3-4), 651-686 (2015).
[NSW] Niyogi, P., Smale, S., Weinberger, S.: Discrete Comput. Geom. 39(1-3), 419-441 (2008).
[T] Trinh, K.D.: Pac. J. Math. Ind. 9, Art. 4, 7 (2017).
[YSA] Yogeshwaran, D., Subag, E., Adler, R.J.: Probab. Theory Related Fields 167(1-2), 107-142 (2017).

References
Ø Conclusion: Our results are new and stronger than the previous results given in the
literature. Our method is general enough to be implemented in other problems.
Ø Future Work: i) To derive the explicit formula of the limiting constant, and

ii) To establish central limit theorem for the Betti numbers.

4. Conclusion & Future Work

3. Idea of Proof

As	. → ∞ with .$ i⁄ 5% → 5 ∈ 0,∞ ,
?@ F j%, 5%

. 	− 1.k?@ F j% lmn , 5%
�

"
≤ k oR F j%, 5%

. − 1.koR F j% lmn , 5%
�

"

@p$

R#@
→ 0

?@ F j%|mn, 5% = ?@ F r%|sn, 5%, t where r% is Poisson point process with intensity
%u vn w xyn w

∫ u w *w�
zn

; where {vn I = det �vn I Ä�vn I
� and t I, 8 = Å" 8 − Å" I .

Letting first . → ∞ and then Ç → ∞, almost surely

?@ F r%|sn, 5%, t
. − 1.k?@ F rÉ% lÑÖ,Ü

, 5, t%
�

á
→ 0,

1
.k?@ F rÉ% lÑÖ,Ü

, 5, t%
�

á
→ a ?b@i H I , 5 ,I

�

mn
.

Enough to establish results for Poissonized version of binomial point process: 
j% ≔ !$, !^,… , !âÖ , where ä%~åçéèèç.(.) and intensity of j% is .H.

Ø If ê ⊂ êë (Čech complexes) then ∀> ≥
?@ ê − ?@ êë ≤ ∑ oR êë − oR ê 	@p$R#@

Ø If ê" "#$% are disjoint Čech complexes then

?@ ⋃ ê"%"#$ = ∑ ?@(ê")%"#$ .

Idea: To estimate Betti numbers by functions 
oR ⋅ : number of f-simplices, whose limiting 
behavior is well-known.

Å(V)		Åñ$
(ó%,", t%)
			⊂ ℝâ.Ç > 0, ò% = 5 5%⁄ ;

Divide ℝâ acc. to ôK/õ
úÖ ℤâ. 

I → ò%I
On each F%,"

Fig. 1: Swissroll Dataset.
Ambient dimension , = 3 but data is 
supported on a set of dimension 2.

Fig. 3a: 2-dimensional
torus.
?D = ?^ = 1; ?$ = 2

Fig. 3b: 2-dimensional
sphere.
?D = ?^ = 1; ?$ = 0

Fig.	4:	F G†, °
Ø 0-simplices = I$, I^, I¢, I£, I§, I†	 ;
Ø 1-simplices = { I$, I^ , I$, I¢ , I^, I¢

, I¢, I£ , I£, I§ , I£, I† , I§, I† };
Ø 2-simplex = I$, I^, I¢ .
Ø ?D = ?$ = 1; ?^ = 0.

Limiting regimes: Qualitatively limiting behavior of Betti numbers falls into 
three main categories. In each regime, 5% → 0 as . → ∞.

1D Random Čech Complexes (Random Geometric Graphs)

Sparse Regime
.$ i⁄ 5% → 0

Thermodynamic Regime
.$ i⁄ 5% → 5 ∈ 0,∞

Dense Regime
.$ i⁄ 5% → ∞

?b@i = 0 for all > ≥ &.

A ⊂ ℝâ
with 

metric ρ.

		F%,"

Fig. 2c: . =
1000, 5 = 0.2,
?@ ℳ = ?@(ℳ/ )
for	all	> ≥ 0

Fig. 2a: . = 100, 5 =
0.2, ?D ℳ ≠ ?D ℳ/

Fig. 2b: . = 300, 5 =
0.2, ?$ ℳ ≠ ?$ ℳ/

Example:ℳ = 2-dimensional annulus

Nerve
Theorem

?@ ℳ/ = ?@(random Čech complex, 
constructed on !" "#$% ).

?@ ℳ/ = 0
for all > ≥ ,. 

Consider 2D sphere. Partition it by finitely 
many charts. "̈ , Å" is a chart where "̈ is 
compact.  

Ø Properties of ?b@(*) 1 ≤ > ≤ , − 1 : Explicit formula is unknown.
i) Continuity and Positivity: ?b@* ≠, 5 is continuous in both ≠ and 5. If ≠ > 0	and 5 > 0

then ?b@* ≠, 5 > 0.
ii) Scaling Property: For any Æ > 0, ?b@* ≠, 5 = $

Ø ?b@
* ≠Æ, ∞

ØK/d .
Ø We contribute by: 
§ establishing almost sure convergence of Betti numbers in Manifold setting, 
§ improving the result in Euclidean setting by weakening the assumption on probability 

density function H I ,
§ giving another important property of the limiting constant – exponential decay of 
?b@* ≠, 5 .

Ø Exponential decay: For 5 ∈ 0,∞ , 
?b@* 1, 5 ≤ F*,@p$5*@exp	(−]*5*),

where F*,@p$and ]* are constants which depend 
only on their subscripts.

Plots of ?b@¢ 1, 5 vs 5, for > = 0, 1 and 2.  

Fig. 3a: 2-dimensional
torus.
?D = ?^ = 1; ?$ = 2

The limiting behavior of βk(Pn, rn, ρ) will be estimated by that of
βk
(
∪iC(Pn|Cn,i

, rn, ρ)
)

Consider the map x 7→ αnx and let Wn,i be the image of Cn,i . Define
a metric on αnA as

ρn(x , y) := αnρ (x/αn, y/αn) .

Let P̃n = αnPn. Then P̃n is a Poisson point process on RN with
intensity function

n/αN
n f (x/αn) =: fn(x).
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Proof contd.
Then the proof of Proposition follows from the following lemma

Lemma 3.6.

For fixed L > 0, as n→∞,

(a)
1

n

∑
i

βk(P̃n|Wn,i
, r , ρn)→

∫
A

E[βk(PL(f (x)), r , dx)]

L
dx a.s.,

(b)
1

n

∑
i

Sj(P̃n|Wn,i
, r , ρn)→

∫
A

E[Sj(PL(f (x)), r , dx)]

L
dx a.s.

As L→∞,

(c)

∫
A

E[βk(PL(f (x)), r , dx)]

L
dx →

∫
A
β̂

(N)
k

(
f (x)

D(x)
, r

)
D(x)dx ,

(d)

∫
A

E[Sj(PL(f (x)), r , dx)]

L
dx →

∫
A
Ŝ

(N)
j

(
f (x)

D(x)
, r

)
D(x)dx .
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Part 4
Extension to Persistent Homology
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Persistent Homology

Persistent homology overcomes the issues of noise and sensitivity of
the parameter r .

The main idea behind persistent homology is to consider the whole
range of radius r instead of some particular value.

In other words, persistent homology is defined for a filtration of
simplicial complexes.

Filtration of simplicial complexes := {Kr}r≥0, such that if 0 ≤ r ≤ s
then Kr is a subcomplex of Ks and for all r ≥ 0, Kr = ∩s>rKs . Let
K := {Kr}r≥0.

Persistent Betti numbers:= βs,tk (K) is the number of k-dimensional
holes that appear before or at s and still alive at t in the filtration K.

Persistent homology has unique representation, which is visualized by
the kth persistence diagram, defined as a multi-subset of
∆ = {(x , y) ∈ R̄2 : 0 ≤ x < y ≤ ∞}, i.e.,

Dgmk(K) = {(bi , di ) ∈ ∆: i = 1, 2 . . . , p}.
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Our results for persistent Betti numbers

Theorem 4.1.

(a) Under the same assumptions as in Theorem 2.1, for any
0 ≤ s ≤ t <∞, as n→∞,

βs,tk

(
C(n

1
mQn)

)
n

→
∫
M
β̂

(m)
k (κ(z), s, t) dz a.s.

(b) Under the same assumptions as in Theorem 2.3, for any
0 ≤ s ≤ t <∞, as n→∞,

βs,tk

(
C(n

1
NPn, ρn)

)
n

→
∫
RN

β̂
(N)
k

(
f (x)

D(x)
, s, t

)
D(x)dx a.s.

The definition of the limiting constant is given by Hiraoka, Shirai, and
Trinh 2018.
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Vague convergence of Persistence Diagrams

By identify persistence diagrams as an integer-valued Radon measures
on ∆ (shown below), we also discuss their vague convergence. Let
Dgmk := Dgmk(K).

Dgmk(K) =
∑

(bi ,di )∈Dgmk

δ(bi ,di ).

Let M be the set of all Radon measures on ∆.

Definition 4.2.

A sequence {µn}n≥1 ⊂M converges to µ ∈M vaguely (or in the vague

topology), denoted by µn
v→ µ, if for every continuous function f with

compact support,
∫

Λ fdµn converges to
∫

Λ fdµ.
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Vague convergence contd.

Theorem 4.3.

(a) Under the same assumptions as in Theorem 2.1, as n→∞,

Dgmk

(
C(n

1
mQn)

)
n

v→ ν
(m)
k,κ a.s.,

where for 0 ≤ k ≤ m − 1 and A ∈ R(∆),

ν
(m)
k,κ (A) =

∫
M
ν

(m)
k,κ(z)(A)dz =

∫
M
ν

(m)
k,1 (κ(z)1/mA)dz ,

and for all k ≥ m, ν
(m)
k,κ is a null measure.

(b) Under the same assumptions as in Theorem 2.3, as n→∞,

Dgmk

(
C(n

1
NPn, ρn)

)
n

v→ ν
(N)
k,f /D a.s.
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For persistent Betti numbers

Results for persistent Betti numbers can be proved in a similar way as
results for usual Betti numbers will be proved. This is because of the
following lemma.

Lemma 4.4 (Hiraoka, Shirai, and Trinh 2018).

Let K = {Kr}r≥0 and K̃ = {K̃r}r≥0 be filtrations of Čech complexes such
that for all r ≥ 0, K̃r ⊂ Kr . Then

∣∣∣βs,tk (K)− βs,tk (K̃)
∣∣∣ ≤ k+1∑

j=k

(
Sj(Kt)− Sj(K̃t)

)
.

Vague convergence of persistence diagrams follows from the results for
persistent Betti numbers and the general theory of vague convergence.
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