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Random Topology = Probability + Algebraic Topology

@ Emerging research area known as random topology = theoretical
results that characterize the asymptotic behavior of topological
properties of random objects.

@ In additions to the mathematical value, such results are also
motivated by many issues in manifold learning and topological data
analysis.

@ One aspect of random topology is the study of random geometric
complexes and their topological properties such as Betti numbers.

@ In this talk, we concentrate on a typical type of random geometric
complexes known as Cech complexes.
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Motivation from manifold learning

Assumption in manifold learning: Given data points as realizations of

i.i.d. random variables {Xi, X2, ...} supported on an unknown non-linear,

smooth and compact manifold (of intrinsic dimension << ambient
dimension).
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Figure: Swissroll Dataset
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After the Manifold Assumption...

Instructive to estimate the topological properties of the unknown
manifold- ‘Homology Inference’.

kth Betti number:
Rank of kth homology group

Oth Betti number Bo: (k > 1)th Betti number Sy:
Number of connected components | | Number of k-dimensional holes

Figure: 2D Torus - Bg = o = 1; B1 =
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One of the first results in this regard...

Let {Xi,...,X,} be drawn uniformly and independently from the unknown
compact manifold M C RN. Let B(X;,r) := closed Euclidean ball in
ambient dimension. Then the estimator

M= U B(X;,r),

i=1
has same Betti numbers as of unknown manifold with high probability
under certain conditions on n and r (Niyogi, Smale, and Weinberger 2008).
Note

o Bk(M) =0 for all k > ambient dimension;

o Bk(M) = B of random Cech complex of radius r, constructed on
{X1,...,Xn} (follows by Nerve Theorem).
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Cech complex
Definition 1.1.

Let (A, p) := metric space & X, = {x1,x2, ..., X, } := finite set of points
in A. For any r > 0, the Cech complex of radius r is

C(Xnr.p) = {o— C % () Bolxr) 2 @},

NS

where B,(x,r) = {y € A: p(x,y) < r}.

e o€ C(Xp,r,p)is k-simplex, if |o| = k + 1.
@ Dimension of C(X,, r, p) := (Maxscc(x,rp) l0]) — 1

Figure: Cech complex:

Bo=p1=1.

Akshay Goel 7 /40

Random Cech complexes Introduction



Limiting Regimes
Random geometric complexes - Higher dimensional analogues of Random
Geometric Graphs, from which we have

/
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. .
N
~ . —
Sparse regime: Thermodynamic regime: Dense regime:
/M — 0 n/mr, — r e (0,00) nt/Mr = 0o
Observation
In each regime, topological behavior is significantly different. J
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For the randomness...

Definition 1.2.

Let X;,i > 1 be i.i.d. RV-valued random variables with common
probability density function f(x). Then the union of first n points
{X1, Xz, ..., Xy} is called a binomial point process.

We consider binomial point process in two different yet related settings, on
the basis of the support of density function
e Manifold setting: support - m-dimensional compact C* manifold
M, embedded within RN(N > m).

o Euclidean setting: support - RV.
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For the randomness...

In stochastic geometry, the standard technique to prove results for
binomial point processes is to consider their Poissonized versions.
Suppose for given n > 0, T, is a Poisson random variable with
parameter n and independent of {Xj,i > 1}.

Then the point process P, := {Xi,...,Xr,} is called a Poissonized
version of the binomial point process.

e It is a Poisson point process on RN with intensity function nf. It is
denoted by P, and @, in Euclidean and manifold setting, respectively.
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For the randomness...

Definition 1.3.

A point process P on RV is said to be a Poisson point process with
intensity function A(x), denoted by P(A(x)), if it satisfies the following
two conditions

(i) for any bounded Borel set B C RV, the random variable P(B)
counting the number of points in B has Poisson distribution with
parameter \(B) 1= [z A(x)dx, i.e.,

k
P(P(B) = k) = e—A(B)A(f') , k=0,1,...;

(i) for disjoint bounded Borel sets By, By, ..., Bx, the random variables

P(B1), P(Bz),...,P(Bx) are independent.
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Dense Regime

Theorem 1.4 (Manifold setting; Bobrowski and Mukherjee
2015, Theorem 4.9).

Assume k to be bounded, measurable and supported on a m-dimensional
closed manifold M C RN, where m < N.Let kpin := inf,erq k(2) > 0 and
nt/mr, > C(log n)*/™.

(a) If C > (WmKmin)~™, then as n — oo,

P(Bk(Qny rn) = Bk(M), forall 0 < k < m) — 1.

(b) If C > 2™(wmkmin)~™, then almost surely there exists ng > 0 (which
is random), such that for all n > ng,

Brk(@ny ) = Bk(M), forall 0 < k < m,

where wy, = Leb™(B(0,1)).
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Dense Regime

Remarks

On comparing with the result of Niyogi et al., Theorem 1.4
@ holds for larger class of probability density functions;
@ require less prior information about the manifold;

@ is stronger in the sense that the convergence is shown to occur almost
surely.

Thermodynamic Regime

@ We do not know what happens in the thermodynamic regime clearly
since basic questions such as law of large numbers and central limit
theorems are not entirely understood yet.

@ In our work, we answer the question of law of large numbers in
thermodynamic regime.
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Another motivation

@ Besides this motivation from manifold learning, our motivation also
comes from stochastic geometry.

@ The estimator in the result of Niyogi et. al. is a special case of
‘Boolean model’, whose geometric properties such as volume and
surface area have been well studied.

@ Therefore, the next natural question arises about its topological
features.

@ Furthermore, in stochastic geometry, weak and strong laws of large
numbers have been established for a general class of local statistics,
however, Betti numbers do not belong to that class.

@ Thus, the study of Betti numbers need further development.
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Part 2
Prior Work & QOur Contribution
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Setting

Description

@ Manifold Setting:

M C RN- m-dimensional compact C! manifold, where m < N.
rn is a sequence of positive real numbers such that
n*/mr, — r € (0,00)-Thermodynamic regime.
9,- Poisson point process with intensity function nk.
C(Qn, rn)- random Cech complex in this setting.
o Euclidean Setting:
n*/Nr, — r € (0, 00).
P,- Poisson point process with intensity function nf.
C(Pn, rn, p)- random Cech complex in this setting, with the general
metric p, satisfying certain properties.

Aim: To establish the limiting behavior of the random variables 5x(Qp, ry)
and Bk(Pn, ra, p) in the thermodynamic regime.
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Literature
Bobrowski and Mukherjee 2015, Theorem 4.3

Assume M C RN to be closed and smooth manifold, and « to be bounded
and measurable. Then for 1 < k< m —1, as n — oo with
n*/Mr, — r € (0,00), there exists constants c;, ¢ > 0 such that

cin < E[Bk(Qn, )] < can.

Yogeshwaran, Subag, and Adler 2017; Trinh 2017, Corollary 1.4

Assume the support of f(x) is compact and convex and that

0< inf f(x)< sup f(x) < oo.
x€Esupp(f) xesupp(f)

Assume further that f is Riemann integrable. Then for 1 < kK < N —1, as
n — oo with n/Nr, — r € (0, 0),

Pn; n A
M — /RN BM(F(x), r)dx as.

v
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Limiting constant: BA,((N)()\, r)
Notation

@ P(\) := homogenous Poisson point process on RN with constant
intensity function A > 0.

@ Pr(A) := restriction of P()) on the window W, = (_Lzl/N, L12/N]N
where L > 0. It can also be denoted by P(X)|w,.

Yogeshwaran, Subag, and Adler 2017, Theorem 3.5
Then for 1 < k < (N —1), as L — o0,

B(PL(N), r)

T — BA,((N)()\, r) a.s.
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Limiting constant contd...
Explicit formula for Bk, except for k = 0, is unknown- (OPEN PROBLEM).

Trinh 2017, Lemma 2.3
(i) Scaling Property: For any 6 > 0,

A(N) ) r
k ()‘7 r) = aﬁk <)\97 W) .

(ii) Continuity and Positivity: BA,((N)()\, r) is a continuous function in both
Xand r. If A, r > 0 then 3M() r) > 0.

Follows from Bobrowski and Oliveira 2017, Proposition 6.1
Exponential decay: For r € (0, 00),

BN, ) < Cuprar™ exp(—enr?),

where Cp x4+1 and ¢y are constants, depending only on their subscripts.

v
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Our Main Results
Theorem 2.1 (For Manifolds).

Let M C RN to be a compact m-dimensional C1 manifold with m < N.
Assume that k(z) is a non-negative function, supported on M and for all
JEN, [\, K(zYdz < +00. Then as n — oo with n*/™r, — r € (0, 0),

/Bk(Qm n / B(m) )dZ as.,

where dz is a volume form on M.

It is worth mentioning the following lemma:

Lemma 2.2.

Under the same assumptions as in Theorem 2.1,

IE[Bk ern /,B(m) Z) )
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A key idea to deal with the manifold setting

@ Assume for instance that the support of x lies entirely in a single
chart (V,¢), i.e., supp(r) C ¢(V).

e Then {X; = ¢~(Z)}i>1 becomes an i.i.d. sequence of random
variables on V C R™.

o If we define the metric p on V by p(x,y) = ||¢(x) — &é(y)||, then
C(Qn, r) is identical with C(Py, r, p), the Cech complex of radius r,
constructed on P, C R™ using p.

@ Thus, the problem on a manifold is converted to that on the Euclidean
setting with a general metric p, which is easier for us to handle.

with

metric p.
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Main results contd...

Assumptions on the general metric p

Let for x € RV, B, be a positive definite N x N matrix such that the map
x — By is measurable. Let for y,z € RN, d,(y,z) := |Bx(y — 2)||. Let A
be a non-empty subset of RV, equipped with p.

(P1) For given x € A and ¢ > 0, there exists § = d, > 0 such that for
y,z € A, whenever y,z € B(x, ),

(1—¢)du(y,2) < ply,z) < (L+¢€)dx(y, 2).

(P2) There exist 9, c and C > 0 such that for y,z € A, whenever

ly —z| <9,
clly =zl < ply,z) < Clly — z||. )
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Main results contd...

Theorem 2.3 (For Euclidean spaces).

Let (A, p) be a metric space, where A is a Borel subset of RN with
LebN(D.A) = 0 and the metric p satisfies the properties (P1) and (P2).
Assume that f(x) is a non-negative function that satisfies for all j € N,
Jan f(xYdx < +o0. Then as n — oo with n/Nr, — r € (0,00),

—ﬂk(P"n’ mp) /RN 3N (g(();)),r) D(x)dx a.s.,

where D(x) := det(By).

Lemma 2.4.
Under the same assumptions as in Theorem 2.3,

S — L o
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Part 3
Idea of Proof
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Main tools

S;(KC) counts the number of j-simplices in a simplicial complex K.
Lemma 3.1 (Yogeshwaran, Subag, and Adler 2017).
Let K, K be two finite simplicial complexes such that K C K. Then for

every k > 0,

1B(K) = BK)| < D_ (S(K) = 5(K)).

Finite additivity of Betti numbers

Let /1, /K. .., K,y be a finite number of disjoint simplicial complexes.

Then for all kK > 0,
B <U Ki) = Bi(K)). (1)
i=1 i=1

v
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LLN for simplex counts S;(+)

o Number of j-simplices in C(X, r p) can be written as

:{ I'n, p Z hJ r,,,p (2)

ycx
where X C A is finite set and h;j ,, ,()) is the indicator function
which is equal to 1 iff ) is a j-simplex.
@ The above representation implies S;(-) are local statistics and
therefore, their LLN may follow from general theory of local functions
due to Penrose 2007; Penrose and Yukich 2003.

@ However, we give an elementary proof by calculating the order of the
fourth moments.

e For r € (0,00) and x = (x1, %2, - . ., x;) € (RVY, define
rNi

G+1) /(RN),' h;(0, x)dx,

where h;(0,x) and dx stand for h; 1 (0, x1, x2, ..., ;) and
dxy - - - dx; respectively.

(V)
Ai(r) =
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LLN for simplex counts S;(-) contd.

Proposition 3.2.

Assume that fA f(xyY*ldx < 400 and lim, oo r, = 0. Then

lim ry M~ UTOE[S; (P, ra, p)] = AM(1) / gz)];ld
n—o0 A X

In the thermodynamic regime, Proposition 3.2 is restated as follows.

Corollary 3.3.

Assume that [, f(x)ldx < +o0 and limp_ee n¥/Nr, = r € (0,00). Then

i E[S;(Pn, rn, p)] :A(N)(r)/ ng)J;l
n—o00 n J A
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LLN for simplex counts S;(-) contd.

Proposition 3.4.

Assume that fA f(x)%+dx < 400 and lim,_eo n'/Nr, = r € (0, 00).
Then as n — oo,

) s PAVES
LI A0 [ Ty

The above proposition is proved by using the standard technique:

o Let &, = S; — E[S;]. We show that E[¢}] < Kn?, where K is some
positive constant.

@ Then by Markov's inequality, P(|{s] > ne) < Kn—2e—%.

e Since Y. n~? < 0o, by the first Borel-Cantelli lemma,
P(limsup, [n~1¢,] > ¢) = 0.

@ This means n~1¢, converges to zero almost surely.

Random Cech complexes Idea of Proof Akshay Goel 28 / 40




Sufficient Requirement

To prove results for usual Betti numbers in Euclidean setting, it is
sufficient to prove the following proposition

Proposition 3.5.

Let (A, p) be a metric space, where A is a compact subset of RN with
LebN(D.A) = 0 and the metric p satisfies the property (P1). Assume that
f(x) is a non negative function on A and is bounded. Then as n — oo
with n*/Nr, — r € (0, 00),

ﬁ Pnarm /B(N)( ); )D(X)dX a.s.

Here, P, is a Poisson point process on A with intensity function nf(x).
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Proof of Proposition 3.5

For the proof, we partition the set A as follows

Ac l!

with

L>0,a, =1/r;
1/N

Divide RN acc. to (L—) ZN.
an

X = QX
On each C,;;

metric p.

@ The limiting behavior of Bx(Phn, rn, p) will be estimated by that of

/Bk (Uic(,Pn|C,,7;7 rn, p))
@ Consider the map x — apx and let W, ; be the image of C, ;. Define
a metric on apA as

Pr(x,y) = tnp (x/ctn, v an)

o Let 75n = apPp. Then 75,, is a Poisson point process on RN with

intensity function
n/a,’)lf(x/a,,) =: fn(x).
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Proof contd.

Then the proof of Proposition follows from the following lemma
Lemma 3.6.

For fixed L > 0, as n — oo,

s BIB(PL(F (). 7. &)
@ X Bk Palworoon) > [,

LX dx a.s.,

(b) %Zsj(ﬁnw,,r, 0n) = /A E[SJ(PL(fEX))’r’ D o as,

As L — oo,
o [ EB(PUFC)), rdd] 5 (FO) N boydx
@ |, L o | (D(x)’>D()d’
- /A E[S;(PL(f(x)).r )] | /A & (f(x)

L
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Part 4
Extension to Persistent Homology
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Persistent Homology

@ Persistent homology overcomes the issues of noise and sensitivity of
the parameter r.

@ The main idea behind persistent homology is to consider the whole
range of radius r instead of some particular value.

@ In other words, persistent homology is defined for a filtration of
simplicial complexes.

e Filtration of simplicial complexes := {/C,;},>0, such that if 0 < r <s
then IC, is a subcomplex of ks and for all r > 0, K, = N~ Ks. Let
K:= {IC,},ZO.

@ Persistent Betti numbers:= i’t(K) is the number of k-dimensional
holes that appear before or at s and still alive at t in the filtration K.

@ Persistent homology has unique representation, which is visualized by
the kth persistence diagram, defined as a multi-subset of
A={(xy) eR?2:0<x<y<o0},ie,

Dgm, (K) = {(bi,dj)) € A: i =1,2...,p}.
Akshay Goel 33/ 40



v3 v3 v3 v3 V3
°
°
V2 12\ 2 v 2 % 2 1% 2
°
V4 V4 V4 Va V4
r=20 r=1 r=2 r=3 r=4
(a)
death
6 e ol
3| e
5 % .
4 ° S
3 . o
2
.
1
.o
1273 4 5 g0 p) [ birth
(b) (c)
Random Cech complexes Extension

Akshay Goel 34 / 40



Our results for persistent Betti numbers

Theorem 4.1.

(a) Under the same assumptions as in Theorem 2.1, for any
0<s<t<oo asn— oo,

ls<7t (C(”% n

)> — /M Bf{m) (k(2),s,t) dz a.s.

(b) Under the same assumptions as in Theorem 2.3, for any
0<s<t<oo asn— oo,

5? (C(nNP,,,p,,)> _)/ Bl((N) (;((X))’S’ t) D(x)dx a.s.
n RN X

The definition of the limiting constant is given by Hiraoka, Shirai, and
Trinh 2018.
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Vague convergence of Persistence Diagrams

@ By identify persistence diagrams as an integer-valued Radon measures
on A (shown below), we also discuss their vague convergence. Let
Dgm, := Dgm,(K).

Dgm, (K) = Z 6(bi,di)'
(b,’,d,')Gngk
Let 2t be the set of all Radon measures on A.
Definition 4.2.

A sequence {pin}n>1 C D converges to € M vaguely (or in the vague
topology), denoted by i, % p, if for every continuous function f with
compact support, [, fdu, converges to [, fdpu.
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Vague convergence contd.
Theorem 4.3.

(a) Under the same assumptions as in Theorem 2.1, as n — oo,

Dgm, (C(n# Q,,))

n

—V> Vl((,:;) a.Ss
where for 0 < k < m—1 and A € R(A),
A = [ AT Ad = [ D) Ay,
M M

and for all k > m, 1/,(( ™ s a null measure.
(b) Under the same assumptions as in Theorem 2.3, as n — oo,

Dgm, (C(”%Pn, Pn))

n

—> I/i((/\,lc)/D a.s.

v
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For persistent Betti numbers

Results for persistent Betti numbers can be proved in a similar way as
results for usual Betti numbers will be proved. This is because of the
following lemma.

Lemma 4.4 (Hiraoka, Shirai, and Trinh 2018).

Let K= {,},>0 and K = {Iﬁ,},zo be filtrations of Cech complexes such

that for all r > 0, IC, C K. Then

. k+1 .
)~ BR)] < 3 (1K) - Si(Ke)).

J=k

Vague convergence of persistence diagrams follows from the results for
persistent Betti numbers and the general theory of vague convergence.
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