Disorder relevance and the random field Ising model

Adam Bowditch, NUS

Based on joint work with Rongfeng Sun

Bangalore Probability Seminar, September 2019

Contents

 $1\,$ Disorder relevance and the Ising model

- i Importance of disorder relevance
- ii The pure Ising model
- iii Infinite volume limits
- iv The Harris criterion
- v Approach using chaos expansions
- 2 Recent progress for the pure Ising model
 - i Spin correlations
 - ii Magnetisation
- 3 The random field Ising model
 - i Convergence of partition functions
 - ii Magnetisation
 - iii Fractional moment method

What is disorder relevance?

Disorder enters modelling in a very natural way \sim objects are irregular.

It may reasonable to assume the irregularities are negligible.

It is natural to question the stability of the results.

What is disorder relevance?

Disorder enters modelling in a very natural way \sim objects are irregular.

It may reasonable to assume the irregularities are negligible.

It is natural to question the stability of the results.

Does disorder destroy critical points by smoothing the singularities?

Sometimes, an arbitrarily small amount of disorder can change the critical behaviour of the underlying homogeneous model. In this case, we say the model is disorder relevant.

What is disorder relevance?

Disorder enters modelling in a very natural way \sim objects are irregular.

It may reasonable to assume the irregularities are negligible.

It is natural to question the stability of the results.

Does disorder destroy critical points by smoothing the singularities?

Sometimes, an arbitrarily small amount of disorder can change the critical behaviour of the underlying homogeneous model. In this case, we say the model is disorder relevant.

Examples include

- 1 Anderson localisation;
- 2 Directed polymers;
- 3 Sinai's random walk;
- 4 Ising model;
- 5 Pinning models.

Description

- Fix a bounded domain: $\Omega \subset \mathbb{Z}^d$,
- Inverse temperature: $\beta \geq 0$,
- Strength of the *external field*: $h \in \mathbb{R}$.

Description

Fix a bounded domain: $\Omega \subset \mathbb{Z}^d$,

Inverse temperature: $\beta \geq 0$,

Strength of the *external field*: $h \in \mathbb{R}$.

We then define the law over spins $\sigma \in \{\pm 1\}^{\Omega}$ as

$$\mathcal{P}_{\Omega}(\sigma) = rac{1}{Z_{\Omega}} \exp\left(-\mathcal{H}_{\Omega}(\sigma)
ight)$$

where

$$\mathcal{H}_{\Omega}(\sigma) = -eta \sum_{x \sim y} \sigma_x \sigma_y - h \sum_{x \in \Omega} \sigma_x, \quad ext{and} \quad Z_{\Omega} = \sum_{\sigma} \exp\left(-eta \mathcal{H}_{\Omega}(\sigma)
ight)$$

are the Hamiltonian and the partition function respectively.

Description

Fix a bounded domain: $\Omega \subset \mathbb{Z}^d$,

Inverse temperature: $\beta \geq 0$,

Strength of the *external field*: $h \in \mathbb{R}$.

We then define the law over spins $\sigma \in \{\pm 1\}^{\Omega}$ as

$$\mathcal{P}_{\Omega}(\sigma) = rac{1}{Z_{\Omega}} \exp\left(-\mathcal{H}_{\Omega}(\sigma)
ight)$$

where

$$\mathcal{H}_{\Omega}(\sigma) = -eta \sum_{x \sim y} \sigma_x \sigma_y - h \sum_{x \in \Omega} \sigma_x, \quad ext{and} \quad Z_{\Omega} = \sum_{\sigma} \exp\left(-eta \mathcal{H}_{\Omega}(\sigma)
ight)$$

are the Hamiltonian and the partition function respectively.

Write P_{Ω}^+ and P_{Ω}^- for the model with + and - boundary conditions respectively.

It is well known that as $\Omega \uparrow \mathbb{Z}^d$ the sequence of probability measures P_{Ω}^+ has an infinite volume limit $P_{\mathbb{Z}^d}^+$.

It is well known that as $\Omega \uparrow \mathbb{Z}^d$ the sequence of probability measures P_{Ω}^+ has an infinite volume limit $P_{\mathbb{Z}^d}^+$.

The limiting measure depends on β , h and, in particular,

$$E^+_{\mathbb{Z}^d}[\sigma_0] \neq E^-_{\mathbb{Z}^d}[\sigma_0] \iff \beta > \beta_c, \ h = 0$$

where

- 1) if d = 1 then $\beta_c = \infty$;
- 2) if $d \geq 2$ then $\beta_c \in (0, \infty)$.

It is well known that as $\Omega \uparrow \mathbb{Z}^d$ the sequence of probability measures P_{Ω}^+ has an infinite volume limit $P_{\mathbb{Z}^d}^+$.

The limiting measure depends on β , h and, in particular,

$$E^+_{\mathbb{Z}^d}[\sigma_0] \neq E^-_{\mathbb{Z}^d}[\sigma_0] \iff \beta > \beta_c, \ h = 0$$

where

- 1) if d = 1 then $\beta_c = \infty$;
- 2) if $d \ge 2$ then $\beta_c \in (0, \infty)$.

There is a *unique infinite volume limit* if and only if $\beta \leq \beta_c$ or $h \neq 0$. We say there is a *first order phase transition* for $\beta > \beta_c$ and h = 0.

It is well known that as $\Omega \uparrow \mathbb{Z}^d$ the sequence of probability measures P_{Ω}^+ has an infinite volume limit $P_{\mathbb{Z}^d}^+$.

The limiting measure depends on β , h and, in particular,

$$E^+_{\mathbb{Z}^d}[\sigma_0] \neq E^-_{\mathbb{Z}^d}[\sigma_0] \iff \beta > \beta_c, \ h = 0$$

where

- 1) if d = 1 then $\beta_c = \infty$;
- 2) if $d \ge 2$ then $\beta_c \in (0, \infty)$.

There is a *unique infinite volume limit* if and only if $\beta \leq \beta_c$ or $h \neq 0$. We say there is a *first order phase transition* for $\beta > \beta_c$ and h = 0. Is this picture changed by the addition of a small random external field?

Correlation length

A key quantity should be the *correlation length* $\xi(h)$ where

$$|E_{\mathbb{Z}^d}[\sigma_x \sigma_y] - E_{\mathbb{Z}^d}[\sigma_x]E_{\mathbb{Z}^d}[\sigma_y]| pprox \exp\left(-rac{|x-y|}{\xi(h)}
ight)$$

as $|x - y| \to \infty$.

Correlation length

A key quantity should be the *correlation length* $\xi(h)$ where

$$|\mathcal{E}_{\mathbb{Z}^d}[\sigma_x \sigma_y] - \mathcal{E}_{\mathbb{Z}^d}[\sigma_x]\mathcal{E}_{\mathbb{Z}^d}[\sigma_y]| pprox \exp\left(-rac{|x-y|}{\xi(h)}
ight)$$

as $|x - y| \to \infty$.

Close to the critical point h = 0, we should have $\xi(h) \approx h^{-\nu}$.

Call ν the correlation length exponent.

Correlation length

A key quantity should be the *correlation length* $\xi(h)$ where

$$|E_{\mathbb{Z}^d}[\sigma_x \sigma_y] - E_{\mathbb{Z}^d}[\sigma_x]E_{\mathbb{Z}^d}[\sigma_y]| \approx \exp\left(-\frac{|x-y|}{\xi(h)}\right)$$

as $|x - y| \to \infty$.

Close to the critical point h = 0, we should have $\xi(h) \approx h^{-\nu}$.

Call ν the correlation length exponent.

Key idea: disorder relevance can be understood by observing the pure system.

 $\xi(h)$ is a quantity of the pure system in terms of a fixed external field.

Harris' idea was to use a perturbative argument using coarse graining.

1 Suppose a disordered system has critical inverse temperature $\beta_c(p)$ and consider inverse temperature β close to $\beta_c(p)$. Specifically, so that

$$\xi(\mathbf{p}) \approx |\beta - \beta_c(\mathbf{p})|^{-\nu(\mathbf{p})}$$

where $\nu(p)$ is smooth around 0.

Harris' idea was to use a perturbative argument using coarse graining.

1 Suppose a disordered system has critical inverse temperature $\beta_c(p)$ and consider inverse temperature β close to $\beta_c(p)$. Specifically, so that

$$\xi(\mathbf{p}) \approx |\beta - \beta_c(\mathbf{p})|^{-\nu(\mathbf{p})}$$

where $\nu(p)$ is smooth around 0.

2 Suppose disorder is irrelevant and view the infinite system as a collection of approximately independent systems with disorder strength p > 0:

Divide the system into volumes $\Omega^{(d)}$ with ξ^d spins and correlation length ξ .

Harris' idea was to use a perturbative argument using coarse graining.

1 Suppose a disordered system has critical inverse temperature $\beta_c(p)$ and consider inverse temperature β close to $\beta_c(p)$. Specifically, so that

$$\xi(\mathbf{p}) \approx \left|\beta - \beta_c(\mathbf{p})\right|^{-\nu(\mathbf{p})}$$

where $\nu(p)$ is smooth around 0.

2 Suppose disorder is irrelevant and view the infinite system as a collection of approximately independent systems with disorder strength p > 0:

Divide the system into volumes $\Omega^{(d)}$ with ξ^d spins and correlation length ξ .

3 Typical number of defects in a volume is $p\xi(p)^d$ with variance $p(1-p)\xi(p)^d$.

Harris' idea was to use a perturbative argument using coarse graining.

1 Suppose a disordered system has critical inverse temperature $\beta_c(p)$ and consider inverse temperature β close to $\beta_c(p)$. Specifically, so that

$$\xi(\mathbf{p}) \approx \left|\beta - \beta_c(\mathbf{p})\right|^{-\nu(\mathbf{p})}$$

where $\nu(p)$ is smooth around 0.

2 Suppose disorder is irrelevant and view the infinite system as a collection of approximately independent systems with disorder strength p > 0:

Divide the system into volumes $\Omega^{(d)}$ with ξ^d spins and correlation length ξ .

- 3 Typical number of defects in a volume is $p\xi(p)^d$ with variance $p(1-p)\xi(p)^d$.
- 4 Standard deviation of the density of defects in a volume is $\sqrt{p(1-p)}\xi(p)^{-d/2}$.

Harris' idea was to use a perturbative argument using coarse graining.

1 Suppose a disordered system has critical inverse temperature $\beta_c(p)$ and consider inverse temperature β close to $\beta_c(p)$. Specifically, so that

$$\xi(\mathbf{p}) \approx \left|\beta - \beta_c(\mathbf{p})\right|^{-\nu(\mathbf{p})}$$

where $\nu(p)$ is smooth around 0.

2 Suppose disorder is irrelevant and view the infinite system as a collection of approximately independent systems with disorder strength p > 0:

Divide the system into volumes $\Omega^{(d)}$ with ξ^d spins and correlation length ξ .

- 3 Typical number of defects in a volume is $p\xi(p)^d$ with variance $p(1-p)\xi(p)^d$.
- 4 Standard deviation of the density of defects in a volume is $\sqrt{p(1-p)}\xi(p)^{-d/2}$.
- 5 Each box has its own critical inverse temperature which should differ from $\beta_c(p)$ proportionally to the standard deviation of the density of defects.

6 For disorder to be irrelevant, the fluctuations in the critical inverse temperature cannot be larger than the variation in the temperature we have taken.

- 6 For disorder to be irrelevant, the fluctuations in the critical inverse temperature cannot be larger than the variation in the temperature we have taken.
- 7 This means that we must have

$$\sqrt{p(1-p)}\xi(p)^{-d/2} \leq |\beta - \beta_c(p)| \approx \xi(p)^{-1/\nu(p)}$$

- 6 For disorder to be irrelevant, the fluctuations in the critical inverse temperature cannot be larger than the variation in the temperature we have taken.
- 7 This means that we must have

$$\sqrt{p(1-p)}\xi(p)^{-d/2} \leq |\beta - \beta_c(p)| \approx \xi(p)^{-1/\nu(p)}$$

8 Taking $\beta \to \beta_c$ we have that $\xi(p) \to \infty$ and thus $\nu(p) > 2/d$ for p arbitrarily small.

- 6 For disorder to be irrelevant, the fluctuations in the critical inverse temperature cannot be larger than the variation in the temperature we have taken.
- 7 This means that we must have

$$\sqrt{p(1-p)}\xi(p)^{-d/2} \leq |\beta - \beta_c(p)| \approx \xi(p)^{-1/\nu(p)}$$

8 Taking $\beta \to \beta_c$ we have that $\xi(p) \to \infty$ and thus $\nu(p) > 2/d$ for p arbitrarily small.

9 Likewise, one can argue the reverse to suggest disorder relevance requires $\nu(p) < 2/d$ for p arbitrarily small.

- 6 For disorder to be irrelevant, the fluctuations in the critical inverse temperature cannot be larger than the variation in the temperature we have taken.
- 7 This means that we must have

$$\sqrt{p(1-p)}\xi(p)^{-d/2} \leq |\beta - \beta_c(p)| \approx \xi(p)^{-1/\nu(p)}$$

8 Taking $\beta \to \beta_c$ we have that $\xi(p) \to \infty$ and thus $\nu(p) > 2/d$ for p arbitrarily small.

- 9 Likewise, one can argue the reverse to suggest disorder relevance requires $\nu(p) < 2/d$ for p arbitrarily small.
- 10 Gives Harris criterion:
 - i Disorder relevant: $\nu(0) < 2/d$.
 - ii Disorder irrelevant: $\nu(0) > 2/d$.
 - iii Disorder marginally relevant: $\nu(0) = 2/d$.

Fix a bounded, simply connected domain with piecewise smooth boundary $\Omega \subset \mathbb{R}^d$. For a > 0, define $\Omega_a := \Omega \cap a\mathbb{Z}^d$ and $P^a_{\Omega} := P_{\Omega_a}$.

Fix a bounded, simply connected domain with piecewise smooth boundary $\Omega \subset \mathbb{R}^d$. For a > 0, define $\Omega_a := \Omega \cap a\mathbb{Z}^d$ and $P^a_{\Omega} := P_{\Omega_a}$.

Let $\omega = (\omega_x)_{x \in \Omega_a}$ be i.i.d. with,

- $\mathbb{E}[\omega_x] = 0;$
- $\operatorname{Var}_{\mathbb{P}}(\omega_x) = 1;$
- $\mathbb{E}[e^{u\omega_x}] < \infty$ for all $u \in \mathbb{R}$.

Fix a bounded, simply connected domain with piecewise smooth boundary $\Omega \subset \mathbb{R}^d$. For a > 0, define $\Omega_a := \Omega \cap a\mathbb{Z}^d$ and $P^a_{\Omega} := P_{\Omega_a}$.

Let $\omega = (\omega_x)_{x \in \Omega_a}$ be i.i.d. with,

- $\mathbb{E}[\omega_x] = 0;$
- $\operatorname{Var}_{\mathbb{P}}(\omega_x) = 1;$
- $\mathbb{E}[e^{u\omega_x}] < \infty$ for all $u \in \mathbb{R}$.

For $\varepsilon > 0$ define the disordered Hamiltonian by

$$\mathcal{H}^{\omega}_{\Omega}(\sigma) = -eta \sum_{x \sim y} \sigma_x \sigma_y - \sum_{x \in \Omega_{a}} arepsilon \omega_x \sigma_x.$$

Recall, previously

$$\mathcal{H}_{\Omega}(\sigma) = -\beta \sum_{x \sim y} \sigma_x \sigma_y - h \sum_{x \in \Omega_a} \sigma_x.$$

For ω fixed we define the random field Ising model as

$$P_{\Omega;\varepsilon}^{\omega,\mathfrak{s}}(\sigma) = \frac{\exp\left(\sum_{x\in\Omega_\mathfrak{s}}\varepsilon\omega_x\sigma_x\right)}{Z_{\Omega;\varepsilon}^{\omega,\mathfrak{s}}}P_{\Omega}^{\mathfrak{s}}(\sigma)$$

where

$$Z_{\Omega;\varepsilon}^{\omega,a} = E_{\Omega}^{a} \left[\exp \left(\sum_{x \in \Omega_{a}} \varepsilon \omega_{x} \sigma_{x} \right) \right]$$

is the random partition function.

These are both random with respect to the disorder.

We want to answer the question of whether an arbitrarily small amount of disorder changes the critical behaviour.

That is, is the phase transition (re)moved for arbitrarily small $\varepsilon > 0$?

We want to answer the question of whether an arbitrarily small amount of disorder changes the critical behaviour.

```
That is, is the phase transition (re)moved for arbitrarily small \varepsilon > 0?
```

For $d \ge 3$ we have that $\nu > 2/d$ which suggests disorder irrelevance.

We want to answer the question of whether an arbitrarily small amount of disorder changes the critical behaviour.

That is, is the phase transition (re)moved for arbitrarily small $\varepsilon > 0$?

For $d \ge 3$ we have that $\nu > 2/d$ which suggests disorder irrelevance.

For d = 2 we have that $\nu = 8/15 < 1 = 2/d$ which suggests disorder relevance.

We want to answer the question of whether an arbitrarily small amount of disorder changes the critical behaviour.

That is, is the phase transition (re)moved for arbitrarily small $\varepsilon > 0$?

For $d \ge 3$ we have that $\nu > 2/d$ which suggests disorder irrelevance.

For d = 2 we have that $\nu = 8/15 < 1 = 2/d$ which suggests disorder relevance.

Bricmont, Kupiainen (1988)

For d \geq 3, β sufficiently large and ε sufficiently small, there is a first order phase transition.

We want to answer the question of whether an arbitrarily small amount of disorder changes the critical behaviour.

That is, is the phase transition (re)moved for arbitrarily small $\varepsilon > 0$?

For $d \ge 3$ we have that $\nu > 2/d$ which suggests disorder irrelevance.

For d = 2 we have that $\nu = 8/15 < 1 = 2/d$ which suggests disorder relevance.

Bricmont, Kupiainen (1988)

For $d \ge 3$, β sufficiently large and ε sufficiently small, there is a first order phase transition.

Aizenman, Wehr (1990)

For $d \leq 2$, any $\varepsilon > 0$ and almost every ω , there is a unique infinite volume limit.

Partition functions and free energy

The *quenched free energy* is defined as the rate of exponential growth of the partition function:

$$F(\varepsilon, h) := \limsup_{a \to 0} \frac{1}{|\Omega_a|} \mathbb{E} \left[\log \left(Z^{\omega, a}_{\Omega; \varepsilon}
ight)
ight].$$

Partition functions and free energy

The *quenched free energy* is defined as the rate of exponential growth of the partition function:

$$F(\varepsilon, h) := \limsup_{a \to 0} \frac{1}{|\Omega_a|} \mathbb{E} \left[\log \left(Z^{\omega, a}_{\Omega; \varepsilon}
ight)
ight].$$

Discontinuities in the derivatives of the free energy correspond to phase transitions. Discontinuity of the first derivative corresponds to spontaneous magnetisation.

Partition functions and free energy

The *quenched free energy* is defined as the rate of exponential growth of the partition function:

$$F(\varepsilon, h) := \limsup_{a \to 0} \frac{1}{|\Omega_a|} \mathbb{E} \left[\log \left(Z^{\omega, a}_{\Omega; \varepsilon}
ight)
ight].$$

Discontinuities in the derivatives of the free energy correspond to phase transitions. Discontinuity of the first derivative corresponds to spontaneous magnetisation. Perhaps, $F(\varepsilon, h)$ or $Z_{\Omega;\varepsilon}^{\omega,a}$ is the right thing to look at.

This is central to the idea of chaos expansions.

Supposing $\sigma_x \in \{0, 1\}$, using a high temperature expansion

$$egin{aligned} Z^{\omega,a}_{\Omega;arepsilon} &= E^a_\Omega \left[\exp\left(\sum_{x\in\Omega_a}arepsilon\omega_x\sigma_x
ight)
ight] \ &= E^a_\Omega \left[\prod_{x\in\Omega_a} (1+(e^{arepsilon\omega_x}-1)\sigma_x)
ight] \end{aligned}$$

Supposing $\sigma_x \in \{0, 1\}$, using a high temperature expansion

$$\begin{split} Z_{\Omega;\varepsilon}^{\omega,a} &= E_{\Omega}^{a} \left[\exp\left(\sum_{x \in \Omega_{a}} \varepsilon \omega_{x} \sigma_{x}\right) \right] \\ &= E_{\Omega}^{a} \left[\prod_{x \in \Omega_{a}} (1 + (e^{\varepsilon \omega_{x}} - 1) \sigma_{x}) \right] \\ &= \sum_{I \subseteq \Omega_{a}} E_{\Omega}^{a} \left[\prod_{x \in I} \sigma_{x} \right] \prod_{x \in I} (e^{\varepsilon \omega_{x}} - 1) \end{split}$$

Supposing $\sigma_x \in \{0, 1\}$, using a high temperature expansion

$$\begin{split} Z_{\Omega;\varepsilon}^{\omega,a} &= E_{\Omega}^{a} \left[\exp\left(\sum_{x \in \Omega_{a}} \varepsilon \omega_{x} \sigma_{x}\right) \right] \\ &= E_{\Omega}^{a} \left[\prod_{x \in \Omega_{a}} \left(1 + \left(e^{\varepsilon \omega_{x}} - 1\right)\sigma_{x}\right) \right] \\ &= \sum_{I \subseteq \Omega_{a}} E_{\Omega}^{a} \left[\prod_{x \in I} \sigma_{x} \right] \prod_{x \in I} \left(e^{\varepsilon \omega_{x}} - 1\right) \\ &\approx \sum_{k \geq 0} \frac{1}{k!} \sum_{(x_{1}, \dots, x_{k}) \in \Omega_{a}^{a}} \varepsilon^{k} E_{\Omega}^{a} \left[\sigma_{x_{1}} \dots \sigma_{x_{k}}\right] \omega_{x_{1}} \dots \omega_{x_{k}} \end{split}$$

Supposing $\sigma_x \in \{0,1\}$, using a high temperature expansion

$$\begin{split} Z_{\Omega;\varepsilon}^{\omega,a} &= E_{\Omega}^{a} \left[\exp\left(\sum_{x \in \Omega_{a}} \varepsilon \omega_{x} \sigma_{x}\right) \right] \\ &= E_{\Omega}^{a} \left[\prod_{x \in \Omega_{a}} \left(1 + \left(e^{\varepsilon \omega_{x}} - 1\right)\sigma_{x}\right) \right] \\ &= \sum_{l \subseteq \Omega_{a}} E_{\Omega}^{a} \left[\prod_{x \in l} \sigma_{x} \right] \prod_{x \in l} \left(e^{\varepsilon \omega_{x}} - 1\right) \\ &\approx \sum_{k \ge 0} \frac{1}{k!} \sum_{(x_{1}, \dots, x_{k}) \in \Omega_{a}^{d}} \varepsilon^{k} E_{\Omega}^{a} \left[\sigma_{x_{1}} \dots \sigma_{x_{k}}\right] \omega_{x_{1}} \dots \omega_{x_{k}} \\ &\approx \sum_{k \ge 0} \frac{1}{k!} \varepsilon^{k} a^{-dk/2} \int \cdots \int_{\Omega^{k}} E_{\Omega}^{a} \left[\sigma_{x_{1}} \dots \sigma_{x_{k}}\right] W(\mathrm{d}\mathbf{x}) \end{split}$$

replacing ω_x with a white noise approximation $a^{-d/2}W(x + \Delta)$ for $\Delta = (-a/2, a/2)^d$.

This suggests that the model should be disorder relevant if

$$a^{-k\gamma} E_{\Omega}^{a} [\sigma_{x_1} ... \sigma_{x_k}]$$

converges in L^2 to a non-trivial limit as $a \rightarrow 0$ for some $\gamma > 0$.

This suggests that the model should be disorder relevant if

 $a^{-k\gamma}E_{\Omega}^{a}[\sigma_{x_{1}}...\sigma_{x_{k}}]$

converges in L^2 to a non-trivial limit as $a \to 0$ for some $\gamma > 0$. Specifically, we need $\gamma < d/2$ to compensate $a^{-d/2}$.

This suggests that the model should be disorder relevant if

 $a^{-k\gamma}E_{\Omega}^{a}[\sigma_{x_{1}}...\sigma_{x_{k}}]$

converges in L^2 to a non-trivial limit as $a \to 0$ for some $\gamma > 0$. Specifically, we need $\gamma < d/2$ to compensate $a^{-d/2}$.

Chelkak, Hongler, Izyurov (2015)

Let d = 2. For any $k \ge 1$ and $x_1, ..., x_k \in \Omega$ distinct,

$$\lim_{a\to 0} a^{-\frac{k}{8}} E_{\Omega}^{a,+} \left[\prod_{i=1}^k \sigma_{x_i} \right] = \mathcal{C}^k \phi_{\Omega}^+(x_1,...,x_k).$$

This suggests that the model should be disorder relevant if

 $a^{-k\gamma}E_{\Omega}^{a}[\sigma_{x_{1}}...\sigma_{x_{k}}]$

converges in L^2 to a non-trivial limit as $a \to 0$ for some $\gamma > 0$. Specifically, we need $\gamma < d/2$ to compensate $a^{-d/2}$.

Chelkak, Hongler, Izyurov (2015)

Let d = 2. For any $k \ge 1$ and $x_1, ..., x_k \in \Omega$ distinct,

$$\lim_{a\to 0} a^{-\frac{k}{8}} E_{\Omega}^{a,+} \left[\prod_{i=1}^k \sigma_{x_i} \right] = \mathcal{C}^k \phi_{\Omega}^+(x_1,...,x_k).$$

In dimension 2, we have $\gamma = 1/8$.

Convergence of partition functions

Choose

$$\begin{split} \varepsilon_{\chi}^{a} &:= \lambda a^{7/8} & \text{for } \lambda > 0, \\ \tilde{Z}_{\Omega;\varepsilon}^{\omega,a,+} &:= \theta_{a} Z_{\Omega;\varepsilon}^{\omega,a,+} & \text{where } \theta_{a} &:= \exp\left(-\frac{1}{2}a^{-1/4}\lambda^{2}\right). \end{split}$$

Convergence of partition functions

Choose

$$\begin{split} \varepsilon^{a}_{\chi} &:= \lambda a^{7/8} & \text{for } \lambda > 0, \\ \tilde{Z}^{\omega,a,+}_{\Omega;\varepsilon} &:= \theta_{a} Z^{\omega,a,+}_{\Omega;\varepsilon} & \text{where } \theta_{a} := \exp\left(-\frac{1}{2}a^{-1/4}\lambda^{2}\right). \end{split}$$

Caravenna, Sun, Zygouras (2017)

The rescaled partition function $\tilde{Z}^{\omega,a,+}_{\Omega;\varepsilon}$ converges in $\mathbb P$ -distribution to the Wiener chaos expansion

$$\mathcal{Z}^{W,+}_{\Omega;\lambda} = 1 + \sum_{n=1}^{\infty} \frac{\mathcal{C}^n \lambda^n}{n!} \int \cdots \int_{\Omega^n} \phi^+_{\Omega}(x_1,...,x_n) \prod_{i=1}^n W(\mathrm{d} x_i)$$

where W is white noise and ϕ_{Ω}^+ is the spin correlation function.

Pure Ising magnetisation field

We define the magnetisation field as

$$\Phi_{\Omega}^{a} = a^{15/8} \sum_{x \in \Omega_{a}} \sigma_{x} \delta_{x}.$$

Pure Ising magnetisation field

We define the magnetisation field as

$$\Phi_{\Omega}^{a} = a^{15/8} \sum_{x \in \Omega_{a}} \sigma_{x} \delta_{x}.$$

Camia, Garban, Newman (2015)

Consider the critical Ising model with + boundary. The magnetisation field Φ^a_{Ω} converges in law to a limiting random distribution Φ_{Ω} .

Random field Ising magnetisation field

Does the magnetisation still converge under the influence of the random field?

Random field Ising magnetisation field

Does the magnetisation still converge under the influence of the random field?

Let $arphi\in \mathcal{C}^\infty_c(\Omega)$ and write $arphi_x^{\mathsf{a}}:=a^{15/8}arphi(x)$ then

$$E_{\Omega;\varepsilon}^{\omega,a,+}\left[\exp\left(i\left\langle\varphi,\Phi_{\Omega}^{a}\right\rangle\right)\right] = \frac{E_{\Omega}^{a,+}\left[\exp\left(\sum_{x\in\Omega_{a}}\left(\varepsilon_{x}^{a}\omega_{x}+i\varphi_{x}^{a}\right)\sigma_{x}\right)\right]}{Z_{\Omega;\varepsilon}^{\omega,a,+}} = \frac{Z_{\Omega;\varepsilon,\varphi}^{\omega,a,+}}{Z_{\Omega;\varepsilon}^{\omega,a,+}}$$

Random field Ising magnetisation field

Does the magnetisation still converge under the influence of the random field?

Let $\varphi \in C^\infty_c(\Omega)$ and write $\varphi^a_x := a^{15/8} \varphi(x)$ then

$$E_{\Omega;\varepsilon}^{\omega,a,+}\left[\exp\left(i\left\langle\varphi,\Phi_{\Omega}^{a}\right\rangle\right)\right] = \frac{E_{\Omega}^{a,+}\left[\exp\left(\sum_{x\in\Omega_{a}}\left(\varepsilon_{x}^{a}\omega_{x}+i\varphi_{x}^{a}\right)\sigma_{x}\right)\right]}{Z_{\Omega;\varepsilon}^{\omega,a,+}} = \frac{Z_{\Omega;\varepsilon,\varphi}^{\omega,a,+}}{Z_{\Omega;\varepsilon}^{\omega,a,+}}.$$

We want to consider joint convergence of $\tilde{Z}^{\omega,a,+}_{\Omega;\varepsilon,\varphi}$ for $\varphi \in \mathcal{C}^{\infty}_{c}$.

We should have marginal limits

$$\mathcal{Z}^{W,+}_{\Omega;\lambda,arphi} = 1 + \sum_{n=1}^{\infty} \frac{\mathcal{C}^n}{n!} \int \cdots \int_{\Omega^n} \phi^+_\Omega(x_1,...,x_n) \prod_{j=1}^n (\lambda W(\mathrm{d} x_j) + i \varphi(x_j) \mathrm{d} x_j).$$

Convergence of the magnetisation field

Write

$$W^{\omega,a} = a \sum_{x \in \Omega_a} \omega_x \delta_x$$
 and $W^{\omega,a}_{\psi} = \langle W^{\omega,a}, \psi \rangle$.

Then, $W^{\omega,a}$ converges in \mathbb{P} -distribution to white noise W.

Convergence of the magnetisation field

Write

$$W^{\omega,a} = a \sum_{x \in \Omega_a} \omega_x \delta_x$$
 and $W^{\omega,a}_{\psi} = \langle W^{\omega,a}, \psi \rangle$.

Then, $W^{\omega,a}$ converges in \mathbb{P} -distribution to white noise W.

B, Sun (2019+) Let $A, B \subset C_c^{\infty}(\Omega)$ be finite. Then, as $a \to 0$, $\left((\tilde{Z}_{\Omega;\varepsilon,\varphi}^{\omega,a,+})_{\varphi \in A}, (W_{\psi}^{\omega,a})_{\psi \in B} \right) \to \left((\mathcal{Z}_{\Omega;\lambda,\varphi}^{W,+})_{\varphi \in A}, (W_{\psi})_{\psi \in B} \right)$ in \mathbb{P} -distribution.

Convergence of the magnetisation field

Write

$$W^{\omega,a} = a \sum_{x \in \Omega_a} \omega_x \delta_x$$
 and $W^{\omega,a}_{\psi} = \langle W^{\omega,a}, \psi \rangle$.

Then, $W^{\omega,a}$ converges in \mathbb{P} -distribution to white noise W.

B, Sun (2019+) Let $A, B \subset C^{\infty}_{c}(\Omega)$ be finite. Then, as $a \to 0$, $\left((\tilde{Z}^{\omega,a,+}_{\Omega;\varepsilon,\varphi})_{\varphi \in A}, (W^{\omega,a}_{\psi})_{\psi \in B} \right) \to \left((\mathcal{Z}^{W,+}_{\Omega;\lambda,\varphi})_{\varphi \in A}, (W_{\psi})_{\psi \in B} \right)$

in \mathbb{P} -distribution.

In particular, the random distribution $\mu_{\Omega,\varepsilon}^{\omega,a}$ over the magnetisation field Φ_{Ω}^{a} converges in \mathbb{P} -distribution to a random probability measure $\mu_{\Omega,\lambda}^{W}$.

Relation to the case without disorder

B, Sun (2019+)

For \mathbb{P} -a.e. W, the probability measure $\mu_{\Omega;\lambda}^W$ is singular with respect to $\mu_{\Omega;0}^W$.

Relation to the case without disorder

B, Sun (2019+)

For \mathbb{P} -a.e. W, the probability measure $\mu_{\Omega;\lambda}^W$ is singular with respect to $\mu_{\Omega;0}^W$.

Let
$$\mathcal{F}_N := \sigma\left(\left\{\left\langle \Phi, \mathbf{1}_{B_{i,j}^N}\right\rangle\right\}_{i,j=1}^N\right)$$
 where $\{B_{i,j}^N\}_{i,j=1}^N$ is a partition of Ω .

It suffices to show that for \mathbb{P} -a.e. W,

$$\mathcal{R}_{N} := \frac{\mathrm{d}\mu_{\Omega;\lambda}^{W}}{\mathrm{d}\mu_{\Omega;0}^{W}}\Big|_{\mathcal{F}_{\Lambda}}$$

converges to 0 in $\mu_{\Omega;0}^W$ probability.

Relation to the case without disorder

B, Sun (2019+)

For \mathbb{P} -a.e. W, the probability measure $\mu_{\Omega;\lambda}^W$ is singular with respect to $\mu_{\Omega;0}^W$.

Let
$$\mathcal{F}_N := \sigma\left(\left\{\left\langle \Phi, \mathbf{1}_{B_{i,j}^N}\right\rangle\right\}_{i,j=1}^N\right)$$
 where $\{B_{i,j}^N\}_{i,j=1}^N$ is a partition of Ω .

It suffices to show that for \mathbb{P} -a.e. W,

$$\mathcal{R}_{\mathcal{N}} := \frac{\mathrm{d}\mu_{\Omega;\lambda}^{W}}{\mathrm{d}\mu_{\Omega;0}^{W}}\Big|_{\mathcal{F}_{\mathcal{N}}}$$

converges to 0 in $\mu_{\Omega;0}^W$ probability.

In particular, it suffices to show that

$$\lim_{N\to\infty}\mathbb{E}\left[E_{\Omega}\left[\left(\mathcal{R}_{N}\right)^{1/2}\right]\right]=0.$$

Fractional moment method

Let $g_N = g_N(W, \Phi) > 0$ such that, for W fixed, g_N is \mathcal{F}_N measurable. By the Cauchy-Schwarz inequality we have

$$\begin{split} \mathbb{E}\left[\mathcal{E}_{\Omega}\left[\mathcal{R}_{N}^{1/2}\right] \right] &= \mathbb{E}\left[\mathcal{E}_{\Omega}\left[g_{N}^{1/2}\mathcal{R}_{N}^{1/2}g_{N}^{-1/2} \right] \right] \\ &\leq \mathbb{E}\left[\mathcal{E}_{\Omega}\left[g_{N}\mathcal{R}_{N} \right] \right]^{1/2} \mathbb{E}\left[\mathcal{E}_{\Omega}\left[g_{N}^{-1} \right] \right]^{1/2} \\ &\leq \mathbb{E}\left[\mathcal{E}_{\Omega}^{W}\left[g_{N} \right] \right]^{1/2} \mathbb{E}\left[\mathcal{E}_{\Omega}\left[g_{N}^{-1} \right] \right]^{1/2}. \end{split}$$

Fractional moment method

Let $g_N = g_N(W, \Phi) > 0$ such that, for W fixed, g_N is \mathcal{F}_N measurable.

By the Cauchy-Schwarz inequality we have

$$\begin{split} \mathbb{E}\left[\mathcal{E}_{\Omega}\left[\mathcal{R}_{N}^{1/2}\right] \right] &= \mathbb{E}\left[\mathcal{E}_{\Omega}\left[g_{N}^{1/2}\mathcal{R}_{N}^{1/2}g_{N}^{-1/2} \right] \right] \\ &\leq \mathbb{E}\left[\mathcal{E}_{\Omega}\left[g_{N}\mathcal{R}_{N} \right] \right]^{1/2} \mathbb{E}\left[\mathcal{E}_{\Omega}\left[g_{N}^{-1} \right] \right]^{1/2} \\ &\leq \mathbb{E}\left[\mathcal{E}_{\Omega}^{W}\left[g_{N} \right] \right]^{1/2} \mathbb{E}\left[\mathcal{E}_{\Omega}\left[g_{N}^{-1} \right] \right]^{1/2}. \end{split}$$

Aim to choose g_N such that the first term converges to 0 and the second term is bounded.

Fractional moment method

Let $g_N = g_N(W, \Phi) > 0$ such that, for W fixed, g_N is \mathcal{F}_N measurable.

By the Cauchy-Schwarz inequality we have

$$\begin{split} \mathbb{E}\left[\mathcal{E}_{\Omega}\left[\mathcal{R}_{N}^{1/2}\right] \right] &= \mathbb{E}\left[\mathcal{E}_{\Omega}\left[g_{N}^{1/2}\mathcal{R}_{N}^{1/2}g_{N}^{-1/2} \right] \right] \\ &\leq \mathbb{E}\left[\mathcal{E}_{\Omega}\left[g_{N}\mathcal{R}_{N} \right] \right]^{1/2} \mathbb{E}\left[\mathcal{E}_{\Omega}\left[g_{N}^{-1} \right] \right]^{1/2} \\ &\leq \mathbb{E}\left[\mathcal{E}_{\Omega}^{W}\left[g_{N} \right] \right]^{1/2} \mathbb{E}\left[\mathcal{E}_{\Omega}\left[g_{N}^{-1} \right] \right]^{1/2}. \end{split}$$

Aim to choose g_N such that the first term converges to 0 and the second term is bounded.

For $M_N, K_N \nearrow \infty$, we choose

$$g_N(W, \Phi) := \exp\left(-K_N \mathbf{1}_{\{X_N \ge M_N\}}\right)$$

where

$$X_N = X_N(W, \Phi) \approx rac{\mathrm{d} \mu^W_{\Omega; \lambda}}{\mathrm{d} \mu^W_{\Omega; 0}}$$

is measurable with respect to \mathcal{F}_N for each W fixed.

Ising loops and interfaces

An Ising configuration corresponds uniquely to a loop configuration in the dual graph.

Dobrushin boundary: fix two points $u, v \in \partial \Omega$ and set $\sigma_x = -1$ for x in the boundary arc (u, v) and 1 in the boundary arc (v, u).

There is a unique Ising interface from u to v - a simple curve from u to v with +1 on the left and -1 on the right.

Ising loops and interfaces

An Ising configuration corresponds uniquely to a loop configuration in the dual graph.

Dobrushin boundary: fix two points $u, v \in \partial \Omega$ and set $\sigma_x = -1$ for x in the boundary arc (u, v) and 1 in the boundary arc (v, u).

There is a unique Ising interface from u to v - a simple curve from u to v with +1 on the left and -1 on the right.

Chelkak, Duminil-Copin, Hongler, Kemppainen and Smirnov (2014)

Consider the critical Ising model with Dobrushin boundary. The unique Ising interface converges weakly to the chordal SLE(3).

Ising loops and interfaces

An Ising configuration corresponds uniquely to a loop configuration in the dual graph.

Dobrushin boundary: fix two points $u, v \in \partial \Omega$ and set $\sigma_x = -1$ for x in the boundary arc (u, v) and 1 in the boundary arc (v, u).

There is a unique Ising interface from u to v - a simple curve from u to v with +1 on the left and -1 on the right.

Chelkak, Duminil-Copin, Hongler, Kemppainen and Smirnov (2014)

Consider the critical Ising model with Dobrushin boundary. The unique Ising interface converges weakly to the chordal SLE(3).

Benoist and Hongler (2016+)

Consider the critical Ising model with + boundary. The set of all Ising loops converges to CLE(3).

FK-Ising clusters

Camia, Garban and Newman (2015)

The limiting magnetisation field Φ_{Ω} for the pure Ising model is measurable with respect to the macroscopic FK-Ising clusters.

FK-Ising clusters

Camia, Garban and Newman (2015)

The limiting magnetisation field Φ_{Ω} for the pure Ising model is measurable with respect to the macroscopic FK-Ising clusters.

The field can be represented as

$$\Phi_\Omega = \sum_j \eta_j \mu_j^{FK}$$

where η_j are i.i.d. signs and μ_j^{FK} are rescaled area measures associated to FK-Ising clusters.

Thank you for listening

- Aizenman, M. and Wehr, J.: Rounding effects of quenched randomness on first-order phase transitions, *Comm. Math. Phys.* (1990)
- Benoist, S., Hongler, C.: The scaling limit of critical Ising interfaces is CLE(3), arXiv preprint (2016)
- Bricmont, J., Kupiainen, A.: Phase transition in the 3d random field Ising model, *Comm. Math. Phys.* (1988)
- Camia, F., Garban, C., Newman, C.: Planar Ising magnetization field I: Uniqueness of the critical scaling limit, *Ann. Probab.* (2015)
- Caravenna, F., Sun, R., Zygouras, N.: Polynomial chaos and scaling limits of disordered systems, J. Eur. Math. Soc. (JEMS) (2017)
- Chelkak, D., Duminil-Copin, H., Hongler, C., Kemppainen, A., Smirnov, S.: Convergence of Ising interfaces to Schramms SLE curves, *C. R. Math. Acad. Sci. Paris* (2014)
- Chelkak, D., Hongler, C., Izyurov, K.: Conformal invariance of spin correlations in the planar Ising model, Ann. of Math. (2) (2015)