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What is disorder relevance?

Disorder enters modelling in a very natural way ∼ objects are irregular.

It may reasonable to assume the irregularities are negligible.

It is natural to question the stability of the results.

Does disorder destroy critical points by smoothing the singularities?

Sometimes, an arbitrarily small amount of disorder can change the critical behaviour of
the underlying homogeneous model. In this case, we say the model is disorder relevant.

Examples include

1 Anderson localisation;

2 Directed polymers;

3 Sinai’s random walk;

4 Ising model;

5 Pinning models.
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Description

Fix a bounded domain: Ω ⊂ Zd ,

Inverse temperature: β ≥ 0,

Strength of the external field: h ∈ R.

We then define the law over spins σ ∈ {±1}Ω as

PΩ(σ) =
1

ZΩ
exp (−HΩ(σ))

where
HΩ(σ) = −β

∑
x∼y

σxσy − h
∑
x∈Ω

σx , and ZΩ =
∑
σ

exp (−βHΩ(σ))

are the Hamiltonian and the partition function respectively.

Write P+
Ω and P−Ω for the model with + and − boundary conditions respectively.

Adam Bowditch, NUS Disorder relevance and the random field Ising model 4 / 26



Description

Fix a bounded domain: Ω ⊂ Zd ,

Inverse temperature: β ≥ 0,

Strength of the external field: h ∈ R.

We then define the law over spins σ ∈ {±1}Ω as

PΩ(σ) =
1

ZΩ
exp (−HΩ(σ))

where
HΩ(σ) = −β

∑
x∼y

σxσy − h
∑
x∈Ω

σx , and ZΩ =
∑
σ

exp (−βHΩ(σ))

are the Hamiltonian and the partition function respectively.

Write P+
Ω and P−Ω for the model with + and − boundary conditions respectively.

Adam Bowditch, NUS Disorder relevance and the random field Ising model 4 / 26



Description

Fix a bounded domain: Ω ⊂ Zd ,

Inverse temperature: β ≥ 0,

Strength of the external field: h ∈ R.

We then define the law over spins σ ∈ {±1}Ω as

PΩ(σ) =
1

ZΩ
exp (−HΩ(σ))

where
HΩ(σ) = −β

∑
x∼y

σxσy − h
∑
x∈Ω

σx , and ZΩ =
∑
σ

exp (−βHΩ(σ))

are the Hamiltonian and the partition function respectively.

Write P+
Ω and P−Ω for the model with + and − boundary conditions respectively.

Adam Bowditch, NUS Disorder relevance and the random field Ising model 4 / 26



Infinite volume limits

It is well known that as Ω ↑ Zd the sequence of probability measures P+
Ω has an infinite

volume limit P+
Zd .

The limiting measure depends on β, h and, in particular,

E +
Zd [σ0] 6= E−Zd [σ0] ⇐⇒ β > βc , h = 0

where

1) if d = 1 then βc =∞;

2) if d ≥ 2 then βc ∈ (0,∞).

There is a unique infinite volume limit if and only if β ≤ βc or h 6= 0.

We say there is a first order phase transition for β > βc and h = 0.

Is this picture changed by the addition of a small random external field?
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Correlation length

A key quantity should be the correlation length ξ(h) where

|EZd [σxσy ]− EZd [σx ]EZd [σy ]| ≈ exp

(
−|x − y |

ξ(h)

)
as |x − y | → ∞.

Close to the critical point h = 0, we should have ξ(h) ≈ h−ν .

Call ν the correlation length exponent.

Key idea: disorder relevance can be understood by observing the pure system.

ξ(h) is a quantity of the pure system in terms of a fixed external field.
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Harris criterion

Harris’ idea was to use a perturbative argument using coarse graining.

1 Suppose a disordered system has critical inverse temperature βc(p) and consider
inverse temperature β close to βc(p). Specifically, so that

ξ(p) ≈ |β − βc(p)|−ν(p)

where ν(p) is smooth around 0.

2 Suppose disorder is irrelevant and view the infinite system as a collection of
approximately independent systems with disorder strength p > 0:

Divide the system into volumes Ω(d) with ξd spins and correlation length ξ.

3 Typical number of defects in a volume is pξ(p)d with variance p(1− p)ξ(p)d .

4 Standard deviation of the density of defects in a volume is
√

p(1− p)ξ(p)−d/2.

5 Each box has its own critical inverse temperature which should differ from βc(p)
proportionally to the standard deviation of the density of defects.
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Harris criterion

6 For disorder to be irrelevant, the fluctuations in the critical inverse temperature
cannot be larger than the variation in the temperature we have taken.

7 This means that we must have√
p(1− p)ξ(p)−d/2 ≤ |β − βc(p)| ≈ ξ(p)−1/ν(p).

8 Taking β → βc we have that ξ(p)→∞ and thus ν(p) > 2/d for p arbitrarily small.

9 Likewise, one can argue the reverse to suggest disorder relevance requires
ν(p) < 2/d for p arbitrarily small.

10 Gives Harris criterion:
i Disorder relevant: ν(0) < 2/d .

ii Disorder irrelevant: ν(0) > 2/d .

iii Disorder marginally relevant: ν(0) = 2/d .
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Random field Ising model

Fix a bounded, simply connected domain with piecewise smooth boundary Ω ⊂ Rd .

For a > 0, define Ωa := Ω ∩ aZd and Pa
Ω := PΩa .

Let ω = (ωx)x∈Ωa be i.i.d. with,

- E[ωx ] = 0;

- VarP(ωx) = 1;

- E[euωx ] <∞ for all u ∈ R.

For ε > 0 define the disordered Hamiltonian by

HωΩ(σ) = −β
∑
x∼y

σxσy −
∑
x∈Ωa

εωxσx .

Recall, previously

HΩ(σ) = −β
∑
x∼y

σxσy − h
∑
x∈Ωa

σx .
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Random field Ising model

For ω fixed we define the random field Ising model as

Pω,aΩ;ε (σ) =
exp

(∑
x∈Ωa

εωxσx

)
Zω,a

Ω;ε

Pa
Ω(σ)

where

Zω,a
Ω;ε = E a

Ω

[
exp

(∑
x∈Ωa

εωxσx

)]

is the random partition function.

These are both random with respect to the disorder.
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Disorder

We want to answer the question of whether an arbitrarily small amount of disorder
changes the critical behaviour.

That is, is the phase transition (re)moved for arbitrarily small ε > 0?

For d ≥ 3 we have that ν > 2/d which suggests disorder irrelevance.

For d = 2 we have that ν = 8/15 < 1 = 2/d which suggests disorder relevance.

Bricmont, Kupiainen (1988)

For d ≥ 3, β sufficiently large and ε sufficiently small, there is a first order phase
transition.

Aizenman, Wehr (1990)

For d ≤ 2, any ε > 0 and almost every ω, there is a unique infinite volume limit.
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Partition functions and free energy

The quenched free energy is defined as the rate of exponential growth of the partition
function:

F (ε, h) := lim sup
a→0

1

|Ωa|
E
[
log
(
Zω,a

Ω;ε

)]
.

Discontinuities in the derivatives of the free energy correspond to phase transitions.

Discontinuity of the first derivative corresponds to spontaneous magnetisation.

Perhaps, F (ε, h) or Zω,a
Ω;ε is the right thing to look at.

This is central to the idea of chaos expansions.
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Chaos expansion

Supposing σx ∈ {0, 1}, using a high temperature expansion

Zω,a
Ω;ε = E a

Ω

[
exp

(∑
x∈Ωa

εωxσx

)]

= E a
Ω

[∏
x∈Ωa

(1 + (eεωx − 1)σx)

]
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∑
k≥0

1

k!

∑
(x1,...,xk )∈Ωd

a

εkE a
Ω [σx1 ...σxk ]ωx1 ...ωxk

≈
∑
k≥0

1

k!
εka−dk/2

ˆ
· · ·
ˆ

Ωk

E a
Ω [σx1 ...σxk ]W (dx)

replacing ωx with a white noise approximation a−d/2W (x + ∆) for ∆ = (−a/2, a/2)d .
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Spin correlations

This suggests that the model should be disorder relevant if

a−kγE a
Ω [σx1 ...σxk ]

converges in L2 to a non-trivial limit as a→ 0 for some γ > 0.

Specifically, we need γ < d/2 to compensate a−d/2.

Chelkak, Hongler, Izyurov (2015)

Let d = 2. For any k ≥ 1 and x1, ..., xk ∈ Ω distinct,

lim
a→0

a−
k
8 E a,+

Ω

[
k∏

i=1

σxi

]
= Ckφ+

Ω(x1, ..., xk).

In dimension 2, we have γ = 1/8.
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Convergence of partition functions

Choose

εax := λa7/8 for λ > 0,

Z̃ω,a,+
Ω;ε := θaZω,a,+

Ω;ε where θa := exp

(
−1

2
a−1/4λ2

)
.

Caravenna, Sun, Zygouras (2017)

The rescaled partition function Z̃ω,a,+
Ω;ε converges in P-distribution to the Wiener chaos

expansion

ZW ,+
Ω;λ = 1 +

∞∑
n=1

Cnλn

n!

ˆ
· · ·
ˆ

Ωn

φ+
Ω(x1, ..., xn)

n∏
i=1

W (dxi )

where W is white noise and φ+
Ω is the spin correlation function.
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Pure Ising magnetisation field

We define the magnetisation field as

Φa
Ω = a15/8

∑
x∈Ωa

σxδx .

Camia, Garban, Newman (2015)

Consider the critical Ising model with + boundary. The magnetisation field Φa
Ω converges

in law to a limiting random distribution ΦΩ.

Adam Bowditch, NUS Disorder relevance and the random field Ising model 19 / 26



Pure Ising magnetisation field

We define the magnetisation field as

Φa
Ω = a15/8

∑
x∈Ωa

σxδx .

Camia, Garban, Newman (2015)

Consider the critical Ising model with + boundary. The magnetisation field Φa
Ω converges

in law to a limiting random distribution ΦΩ.

Adam Bowditch, NUS Disorder relevance and the random field Ising model 19 / 26



Random field Ising magnetisation field

Does the magnetisation still converge under the influence of the random field?

Let ϕ ∈ C∞c (Ω) and write ϕa
x := a15/8ϕ(x) then

Eω,a,+Ω;ε [exp (i 〈ϕ,Φa
Ω〉)] =

E a,+
Ω

[
exp

(∑
x∈Ωa

(εaxωx + iϕa
x)σx

)]
Zω,a,+

Ω;ε

=
Zω,a,+

Ω;ε,ϕ

Zω,a,+
Ω;ε

.

We want to consider joint convergence of Z̃ω,a,+
Ω;ε,ϕ for ϕ ∈ C∞c .

We should have marginal limits

ZW ,+
Ω;λ,ϕ = 1 +

∞∑
n=1

Cn

n!

ˆ
· · ·
ˆ

Ωn

φ+
Ω(x1, ..., xn)

n∏
j=1

(λW (dxj) + iϕ(xj)dxj).
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Convergence of the magnetisation field

Write

W ω,a = a
∑
x∈Ωa

ωxδx and W ω,a
ψ = 〈W ω,a, ψ〉 .

Then, W ω,a converges in P-distribution to white noise W .

B, Sun (2019+)

Let A,B ⊂ C∞c (Ω) be finite. Then, as a→ 0,(
(Z̃ω,a,+

Ω;ε,ϕ )ϕ∈A, (W ω,a
ψ )ψ∈B

)
→
(

(ZW ,+
Ω;λ,ϕ)ϕ∈A, (Wψ)ψ∈B

)
in P-distribution.

In particular, the random distribution µω,aΩ,ε over the magnetisation field Φa
Ω converges in

P-distribution to a random probability measure µW
Ω,λ.
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Relation to the case without disorder

B, Sun (2019+)

For P-a.e. W , the probability measure µW
Ω;λ is singular with respect to µW

Ω;0.

Let FN := σ

({〈
Φ, 1BN

i,j

〉}N

i,j=1

)
where {BN

i,j}Ni,j=1 is a partition of Ω.

It suffices to show that for P-a.e. W ,

RN :=
dµW

Ω;λ

dµW
Ω;0

∣∣∣∣
FN

converges to 0 in µW
Ω;0 probability.

In particular, it suffices to show that

lim
N→∞

E
[
EΩ

[
(RN)1/2

]]
= 0.
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Fractional moment method

Let gN = gN(W ,Φ) > 0 such that, for W fixed, gN is FN measurable.

By the Cauchy-Schwarz inequality we have

E
[
EΩ

[
R1/2

N

]]
= E

[
EΩ

[
g

1/2
N R

1/2
N g

−1/2
N

]]
≤ E [EΩ [gNRN ]]1/2 E

[
EΩ

[
g−1
N

]]1/2

≤ E
[
EW

Ω [gN ]
]1/2

E
[
EΩ

[
g−1
N

]]1/2

.

Aim to choose gN such that the first term converges to 0 and the second term is
bounded.

For MN ,KN ↗∞, we choose

gN(W ,Φ) := exp
(
−KN1{XN≥MN}

)
where

XN = XN(W ,Φ) ≈
dµW

Ω;λ

dµW
Ω;0

is measurable with respect to FN for each W fixed.
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Ising loops and interfaces

An Ising configuration corresponds uniquely to a loop configuration in the dual graph.

Dobrushin boundary: fix two points u, v ∈ ∂Ω and set σx = −1 for x in the boundary arc
(u, v) and 1 in the boundary arc (v , u).

There is a unique Ising interface from u to v - a simple curve from u to v with +1 on the
left and −1 on the right.

Chelkak, Duminil-Copin, Hongler, Kemppainen and Smirnov (2014)

Consider the critical Ising model with Dobrushin boundary. The unique Ising interface
converges weakly to the chordal SLE(3).

Benoist and Hongler (2016+)

Consider the critical Ising model with + boundary. The set of all Ising loops converges to
CLE(3).
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FK-Ising clusters

Camia, Garban and Newman (2015)

The limiting magnetisation field ΦΩ for the pure Ising model is measurable with respect
to the macroscopic FK-Ising clusters.

The field can be represented as

ΦΩ =
∑
j

ηjµ
FK
j

where ηj are i.i.d. signs and µFK
j are rescaled area measures associated to FK-Ising

clusters.
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