WORKSHOP IN HONOUR OF PROF. JEAN SERRA

MATHEMATICAL MORPHOLOGY

(25–26 Oct 2010)

Application to Pavement Distress Assessment

Chakravarthy Bhagvati Dept. of Computer & Information Sciences University of Hyderabad

October 25, 2010

INDIAN STATISTICAL INSTITUTE, BENGALURU

OVERVIEW

- Experiences with Mathematical Morphology
- Normalized Opening Distributions (pravda?)
 - \circ matched and mis-matched geometries
 - \circ normalized distributions
 - morphological algorithm for Texture Defect Analysis
 - \circ application to pavement distress assessment
- Some other ideas
 - o non-linear scale-spaces?
 - o morphological Gabor filters?
 - \circ colour morphological applications?

WHY SHOULD I BE HERE?

- 1988: First encounters with Mathematical Morphology at Rensselaer Polytechnic Institute
 - purchased my copy of Image Analysis and Mathematical Morphology
- 1989: Centroid movements induced by opening and closing operations as shape signatures
- 1990 1994: Normalized opening distributions for texture defect analysis
- 1992 1996: Application of normalized distributions to pavement distress assessment
- 1995 2002: Dabbling in crazy ideas!
- 2005 2006: Area morphology
- 2000 present: Forensic applications

TEXTURE ANALYSIS

Texture:

- distribution of gray scales...
- repetition of elementary patterns...

Common Uses of Texture:

Classification: Types, Similarities, Differences Description: Characteristics Segmentation: Boundaries, Regions *Retrieval: Databases, Image Archives*

TEXTURE DEFECT ANALYSIS

Textures reflect variations in physical properties... roughness, graininess, porosity, etc.

Inhomogeneities or regions of no texture

Texture defects

Multiple textures or regions of secondary texture

DEFECT ANALYSIS

Detection: Identifying the presence of a defect. How *small* a defect can be detected?

- Characterization: Classifying into different types
- **Measurement:** Calculating areas, dimensions, aspect ratios and other geometric properties

Desirable to search for features that may be correlated to physical properties

- *derive* texture features from physical properties
- estimate surface properties from image textures

Relationship between dolerite texture and porosity[Serra82]

MATHEMATICAL MORPHOLOGY

- Serra and Matheron (1967–1970)
- roots in materials analysis
- non-linear image processing technique

- basic elements images and structuring elements (SE)
- non-linear operations
 - $\circ \text{ hit-or-miss}$
 - \circ minima or maxima
 - \circ union or intersection
- Manipulates pixel coordinates and not intensities as in signal processing based techniques
- Operators:
 - Dilation (\oplus) and Erosion (\ominus)
 - Opening (\circ) and Closing (\bullet)

OPENING DISTRIBUTION

Measures particle size distributions — plot of the area remaining in the image after opening vs. size of structuring element

OPENING DISTRIBUTIONS (contd.)

The presence of cracks is revealed in the opening distributions with linear (horizontal) structuring elements

PROBLEMS WITH OPENING DISTRIBUTIONS

- Scales of defect and normal texture must be different
- Choice of structuring element is critical
 - \circ Linear structuring element highly sensitive to inhomogeneities
 - \circ Circular structuring element sensitive to multiple textures

Some proposed solutions in literature

- Battery of structuring elements
- Restrict domain of application
- Search for an optimal structuring element
- Use multiple approaches
 - \circ Edge-detection for inhomogeneities
 - \circ Texture analysis methods for multiple textures

NORMALIZED DISTRIBUTIONS

We explore a different approach

Basic Idea: Image texture = Ideal texture + Defective texture ⇒ Particle distribution = Ideal particle distribution + Deviations due to defects

Normalized distributions *remove* ideal particle distributions – emphasize deviations due to defects

 $\eta = \frac{\text{Particle distribution from an image}}{\text{Ideal particle distribution}}$ $= \frac{\text{Ideal particle distribution} + Defects}{\text{Ideal particle distribution}}$

 η is a flat-line(= 1.0) if there are no defects Undershoot, i.e., $\eta < 1.0$ indicates a deficiency of particles Overshoot, i.e., $\eta > 1.0$ indicates an excess of particles

IDEAL PARTICLE DISTRIBUTION

Ideal particle distributions obtained in three ways:

- A-priori or theoretical knowledge
 - \circ specified or known from porosity, roughness, strength, etc.
 - e.g., highway materials, X-ray crystallography, materials engineering applications...
- Empirical measurements
 - computed from known non-defective images
 - results in *training* and *operational* phases
- Standard mathematical families of distributions
 - Several natural processes may be approximated by well-known mathematical distributions
 - o e.g., Gaussian, Raleigh, Exponential, Weibull, etc.

GAUSSIAN NUMBER OF PARTICLES MODEL

Gaussian distribution describes several textures that have

• a specific scale

• large numbers of particles Most of the particles are of a specific size and all the rest cluster around the *mean* size.

Number of particles at a scale x $N(x) = \mu_T e^{-\frac{(x-T)^2}{2\sigma^2}}$

NORMALIZED DISTRIBUTIONS FOR GAUSSIAN MODEL

Area in the image at scale \boldsymbol{x} for the Gaussian model

$$\begin{aligned} A_x &= \text{Number of particles at } x \times \text{Area of each particle} \\ &= \left(\mu_T e^{\frac{(x-T)^2}{2\sigma^2}} \right) \Phi(x) \end{aligned}$$

 $\Phi(x)$ governs structuring element/texture interaction For matched geometry,

$$\begin{split} \Phi(x) &= 0, & \text{if } x \leq D \\ &= \text{Area of particle}, & \text{if } x > D \end{split}$$

For *mis-matched geometry*,

$$\Phi(x) = \mathcal{F}(\mathsf{Particles of sizes} > x)$$

MATCHED GEOMETRY

SQUARE particles and linear SEs

$$\eta_G(x) = \begin{cases} \frac{A(0)}{\sqrt{2\pi}\sigma\mu_T T^2}, & x = 0\\ \frac{[A(x-1) - A(x)]}{\mu_T x^2 e^{-\frac{(x-T)^2}{2\sigma^2}}}, & T - 3\sigma \le x \le T + 3\sigma\\ \frac{[A(x-1) - A(x)]}{x^2} + 1, \text{ otherwise} \end{cases}$$

MIS-MATCHED GEOMETRY

$$A'(l) = \sqrt{2\pi}\sigma\mu_{T}\frac{2l+1}{2} \left[2.180 \left\{ \operatorname{erf}\left(\frac{\frac{10l}{9} - 1 - T}{\sqrt{2}\sigma}\right) - \operatorname{erf}\left(\frac{l - T}{\sqrt{2}\sigma}\right) \right\} + 0.545 \left\{ \operatorname{erf}\left(\frac{2l - 1 - T}{\sqrt{2}\sigma}\right) - \operatorname{erf}\left(\frac{\frac{10l}{9} - T}{\sqrt{2}\sigma}\right) \right\} + 0.134 \left\{ \operatorname{erf}\left(\frac{3}{\sqrt{2}}\right) - \operatorname{erf}\left(\frac{2l - T}{\sqrt{2}\sigma}\right) \right\} \right]$$

Area removed between successive openings = $\frac{(2l+1)\Delta h}{2}$

ı r

h

EXAMPLES OF NORMALIZED DISTRIBUTIONS

Matched Geometry Model

of Particles

Mis-matched Geometry Model

FEATURES FOR TEXTURE DEFECT ANALYSIS

Location of overshoot/undershoot: l_h or l_v Width of overshoot/undershoot: w_h or w_v Height/width ratio of overshoot Magnitude of overshoot/undershoot

DETECTING INHOMOGENEITIES

Dependent on orientation with respect to SE Let l and w be the length and width of the inhomogeneity

When θ is *small*

 $\bullet \ \theta$ is obtained from *normalized area*

•
$$l = l_h \cos(\theta)$$

• $w = l_v \cos(\theta)$

When θ is *large* • $\theta = \tan^{-1}(l_v/l_h)$

•
$$w = l_h \sin(\theta)$$

Critical angle: θ_{cr} separates small and large

DEFECT ANALYSIS ALGORITHM

- 1. Compute $\eta(x)$ in horizontal and vertical directions
- 2. If the height-to-width ratio > 1, then *linear inhomogeneity* 3. if $\theta < \theta_{cr}$
 - compute heta, l as $l_h \cos(heta)$, w as $l_v \cos(heta)$
- 4. else

- compute heta as $an^{-1}(l_v/l_h)$, w as $l_h \sin(heta)$

- 5. Else
 - if l_h and $l_v > T_{max}$, then *circular inhomogeneity*
 - compute diameter as maximum scale of overshoot
- 6. else
 - multiple texture is present
 - compute scales of multiple texture as scales of deviations
 - compute area of the defect from height of overshoot

APPLICATION: PAVEMENT DISTRESS ASSESSMENT

New York State Thruway Authority's distress classification scheme

- detection of defects on pavement surfaces
- both inhomogeneities and multiple textures are present

DEFECT FEATURE	DESCRIPTION
Cracking	Separation of pavement surface
Pitting	A small region where material is lost from surface due to freeze-thaw action and aggregate expan- sion
Spalling	Breakdown of material especially along the sides of a crack
Material Loss	Wearing away of surface due to loss of asphalt or tar binder

Further classification based on pavement type and other non-visual factors

PAVEMENT CLASSIFICATION EXAMPLES

Length > 48 (256)
Width = 12 (12)
$$\theta = 89^{\circ} (90^{\circ})$$

Ht/Wd ≈ 4.0

$$l_h = 20$$
, $l_v = 32$
Height/Width ≈ 0.8
Area = 24.72%

CRACKING DISTRESS EXAMPLES

(a) n_ml

(c) g_mg

Image	Horizontal			Vertical			Class
	l_h	w_h	Ht/Wd	l_v	w_v	Ht/Wd	
n_ml13	16	8	2.63	14	4	11.25	Linear Cracking
	22	8	2.25	16	10	1.40	
	>48	4	13.75	30	6	2.67	Open
				36	4	3.00	Transverse
e_sl15	12	6	5.83	16	12	0.33	Linear Cracking
	18	8	1.38	>48	4	3.00	Open
							Longitudinal
g_mg19	12	6	7.33	14	12	4.16	Linear Cracking
	18	4	6.50	26	4	8.00	Alligator
	28	6	2.33				Dominant direction:
	38	6	1.5				Transverse
	>48	4	5.25				

SPALLING DISTRESS EXAMPLES

(a) m_ml10

(b) m_ll04

	(c)	n	_t,	g07

Image	Horizontal		Vertical		Area (%)	Rating
	l_h	Ht/Wd	l_v	Ht/Wd		
m_ml10	18	0.70	20	0.80	10.14	Circular
			36	0.83		Inhomoheneity
						Medium Spalling
m_1104	20	< 0.78	32	< 0.50	24.72	Circular
						Inhomogeneity
						Large Spalling
n_tg07	24	0.93	22	3.07	25.39	Circular
	>48	8.87	36	0.88		Inhomogeneity +
						Horizontal cracking
						Wide spalled crack

CONCLUSIONS

- Introduced the idea of normalized opening distributions for texture defect analysis
- Showed results from a pavement distress assessment application
 - \circ in reality, nearly 425 pavement images for the year 1993 1994 were analyzed
 - \circ distress assessment matched human performance on 401 images (i.e., an accuracy of $\approx 92\%$)
- Opening distributions are powerful tools for texture as well as texture defect analysis
- The approach presented brings out the interplay between pravda and istina in a very interesting manner!