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Introduction

Introduction
A problem in pattern matching is to design efficient
algorithms for testing how closely a query set Q of
k points resembles a sample set P of n points, where
k ≤ n.
In image processing, computer vision and related
applications like finger print matching, point sets
represent some spatial features.
The problem has several variants [Alt and Guibas, 1999]
based on:

class of allowable transformations
exact or approximate matching
equal cardinality, subset, or largest common point set
matching
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Problem Variants

Allowable Transformations
Translation
Translation and Rotation - Rigid Motion Transform
Translation, Rotation and Scaling - Similarity Transform

Distances are preserved in Translation and rigid motion.

Types of Matching
Exact matching: points in query set match exactly with
points in sample set after the requisite transform.
Approximate matching: points in query set after the
requisite transform go to a neighborhood of points in the
sample set.
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Motivation
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Exact Matching under Rigid Motion

centroid

P

Q

Exact Matching

|P | = |Q|

Anchor
Anchor centroids and match distances.
But anchoring centroids do not help when we match Q with
a set of points P ′ ⊆ P.
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Approximate Partial Matching under Rigid Motion

P

Q

|Q| ≤ |P |

ε neighborhoods

may or may not overlap.

Given two point sets P and Q (|P| = |Q|), check if there is a
bijection ` : Q → P and a congruence T , such that
T (q) ∈ Uε(`(q)), ∀ q ∈ Q′, where Q′ ⊆ Q, and Uε(p) denotes
the closed ε-neighborhood of a point p ∈ P.
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Previous Work

Exact Matching

Rezende and Lee (1995) proposed an O(knd ) time algorithm for
partial point set pattern matching, where
d (* dimension of the plane *)
n = |P| (* size of sample set *)
k = |Q| (* size of pattern set *).
It allows translation, rotation and scaling.

Akutsu, Tamaki and Tokuyama (1998) proposed an O(kn
4
3 +A)

time algorithm for testing the congruence in 2D,
where A = time complexity for locating r -th smallest distance
among a set of n points in 2D.
= O(n

4
3 log

8
3 n) (on an average).

Akutsu, Tamaki and Tokuyama (1998) proposed a Las Vegas
expected time algorithm of time complexity
O(n

4
3 log

8
3 n + min(k0.77n1.43 log n,n

4
3 k log n)) using parametric

search.
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Previous Work

Approximate Matching (for k = n case)

Alt et al. (1988) designed a general algorithm of O(n8)
time that works for overlapping and non-overlapping
ε-circles and ε-boxes.
They use a geometric fact and bipartite graph matching.
A valid matching of Q with P exists iff there is a matching
where qi ,qj ∈ Q are matched exactly to the boundaries of
Uε(pα), Uε(pβ) of two points pα,pβ ∈ P.
The algorithms are of high time complexity and involve
computing the intersection of complex algebraic curves.
Heffernan and Schirra (1994) show that this O(n8)
algorithm is indeed optimal for ε-circles.
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Previous Work

Approximate Matching (for k 6= n case)

Chew et al. (1997) proposed an (n2k3 log2 kn) time
algorithm for approximate partial point set pattern matching
under rigid motion.
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Exact Point Set Pattern Matching

The Problem
Input: P = {p1,p2, . . . ,pn} (* Sample Set *)

Q = {q1,q2, . . . ,qk} (* Query Set *),
k ≤ n.

Output: A subset of points in P that are matched with the
points in Q if match exists under rigid motion.

Trivial Algorithm

Choose all possible
(n

k

)
subset of P and test for a match under

rigid motion.



intro Previous Work Exact Point Set Pattern Matching Approximate Point Set Pattern Matching Translation Rigid Motion

Exact Point Set Pattern Matching

The Problem
Input: P = {p1,p2, . . . ,pn} (* Sample Set *)

Q = {q1,q2, . . . ,qk} (* Query Set *),
k ≤ n.

Output: A subset of points in P that are matched with the
points in Q if match exists under rigid motion.

Trivial Algorithm

Choose all possible
(n

k

)
subset of P and test for a match under

rigid motion.



intro Previous Work Exact Point Set Pattern Matching Approximate Point Set Pattern Matching Translation Rigid Motion

Exact Point Set Pattern Matching

An obvious improvement
Preprocessing: Use circular sorting to create a data structure

attached with each point in P.
Space: O(n2)

Time: O(n2).

Query: Sort the query point set angularly.
Anchor a pair of query point with each pair of
sample point.
It determines the rotation angle and scaling.
Match the other query points with a subset of
sample points.

Time: O(k log k + kn(n − 1))
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Demonstration

P

q1

q5 q2

q3q4

q6

q7

Q
q1

q2

q3

q4

q5

q6
q7
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p2
p3
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p5 p6 p7
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p10 p11
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An Efficient Algorithm for Rigid Motion

Fact 1

All the
(k

2

)
distances must occur in the

(n
2

)
distances in P

Fact 2
[Szekely 1997] In a sample set P of size n, the maximum
number of equidistant pairs of points is O(n

4
3 ) in the worst case.
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An Efficient Algorithm for Rigid Motion

Preprocessing

Sort the
(n

2

)
distances of P distances in P.

Create a height balanced binary tree T with distinct
distances.
Attach an array χδ with each element δ of the tree.
Its each element is a triple (pi ,pj , ψij), where ψij is the
angle of the line (pi ,pj) with x-axis.
Each point pi ∈ P is attched with a height-balanced binary
tree Si . Its elements are tuples (rij , θij).

Time Complexity: O(n2 log n)
Space Complexity: O(n2)
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An Efficient Algorithm for Rigid Motion

Query

Take two points (q1,q2), and check whether λ(q1,q2) ∈ T .
If not, report no match found.
Let λ(q1,q2) = δ.
We consider each member λ(pi ,pj) ∈ χδ.
Anchor (q1,q2) with (pi ,pj), and search in Si for the
presence of a match.

Time Complexity

For each λ(pipj) = δ, searching for a match needs O(k log n)
time. So,
Time Complexity: O(n

4
3 k log n)
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An Important Note

Though the worst case number of equidistant pairs in a point
set of size n is O(n

4
3 ), in a random instance actually the number

is very less.

Number of points (n) 100 200 500 1000
dn 4

3 e 465 1170 3969 10001
Maximum number of 4 6 20 53
Equidistant pairs observed
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Experimental Results

No. of No. of No. of CPU time for CPU time %
points in points in anchoring Rezende for our savings
sample query and Lee Algorithm

200 50 1 730.0 22.0 97.0
100 1 807.4 23.4 97.0
150 2 867.6 31.2 96.0

500 100 2 1905.0 32.2 98.0
200 1 1937.2 23.0 99.0
400 2 1952.8 32.0 98.0

1000 300 12 4037.6 129.0 97.0
500 7 4054.0 76.0 98.0
800 11 4098.0 11.0 97.0
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Approximate Point Set Pattern Matching

Our Effort
We assume that

the ε-neighborhoods are axis-parallel squares of side
length ε.
P is well separated, i.e. each pair of points p,p′ ∈ P satisfy
either |x(p)− x(p′)| ≥ ε or |y(p)− y(p′)| ≥ 3ε or both.
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A Necessary Characterization for a Matching

ε
q i

 - Points in P - Points in Q

q i

2 ε

A B

C

F

D

E

q j

by Lemma 1 and 2

zoneep

zoneeb

ε-box
{
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Lemma (an iff condition)

If ∃ a transformation T (Q) for the said match, then ∃ another
transformation T ′(Q), such that one point of Q lies on the left
boundary of the ε-box of a point in P, and one point of Q lies on
the top boundary of the ε-box of a point in P.

Definition
Consider an ε-box ABCD around p ∈ P. The extended ε-box of
p is a ε× 2ε box formed by attaching another ε× ε square
CDFE above the ε-box ABCD. CDFE is called the extended
portion of the ε-box.
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Lemma (an if condition)

If ∃ a transformation T (Q) for the said match, ∃ another
transformation T ′(Q), such that

a point q ∈ Q lies at the top-left corner of the ε-box of a
point in P.
at least one point lies in the extended portion of the ε-box
each of the remaining members in Q lie in the extended
ε-box



intro Previous Work Exact Point Set Pattern Matching Approximate Point Set Pattern Matching Translation Rigid Motion

Anchorings for Finding the Transformation

Anchoring for Translation[
x ′

y ′

]
=

[
tx
ty

]
+

[
x
y

]

Two unknown parameters, tx and ty . So, one anchoring is
needed.

Anchoring for Rigid Motion[
x ′

y ′

]
=

[
tx
ty

]
+

[
cos θ sin θ
− sin θ cos θ

]
·
[

x
y

]

Three unknown parameters, tx , ty and θ. So, two
anchorings are needed.
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Matching under Translation

ε
q i

 - Points in P - Points in Q

q i

2 ε

A B

C

F

D

E

q j

by Lemma 1 and 2

zoneep

zoneeb

ε-box
{
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Translation

The Algorithm
Position q at the top-left corner of the ε-box of p, and check
whether each point in Q \ {q} lies inside the extended box
of some point of P.
If the above checking returns false, then no match exists
with q at the top-left corner of the ε-box of p.
If it returns true, then the points in Q \ {q} can be
partitioned into Q1 and Q2. Each q1 ∈ Q1 lies in the ε-box
of some point in P. Each q2 ∈ Q2 lies in the extended
portion of ε-box of some member in P.
Push points in Q2 down such that points in Q1 do not go
out.
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The Analysis

The Algorithm

Maintain a planar straight line graph (PSLG) data structure
with the ε-boxes around each point in P.
Anchoring a point q ∈ Q with the top-left corner of an
ε-box, we perform k point location queries in the PSLG.
This needs O(k logn) time.
Pushing points down take another O(k) time.
There can be O(nk) anchorings in the worst case.

Theorem
The worst case time complexity of the approximate matching of
Q with a k -subset of P in 2D when only translation is
considered is O(nk2logn).
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considered is O(nk2logn).
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Matching under Rigid Motion
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The Algorithm

Consider the k − 1 concentric circles Cij ∀ qj ∈ Q \ {qi}.
Each circle Cij intersects some extended ε-boxes.
As P is well-separated, these intersections contribute a set
of non-overlapping arcs that define a circular arc graph G.
Each circle Cij may intersect O(n) boxes making O(nk)
nodes in G. So, there can be O(nk) cliques of size k − 1.
Each clique χ corresponding to an anchoring of q
represents an angular interval I∗ = [θ∗1, θ

∗
2] such that all

points in Q \ q lie in some extended ε-box.
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One of the k − 1 concentric circles shown.
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Processing Each Clique

Processing Cliques
Each clique χ represents an angular interval (an arc)
I∗ = [θ∗1, θ

∗
2]. For any angle of rotation θ ∈ I∗, each of the

k − 1 point of Q \ qi lies inside k − 1 disjoint extended
ε-boxes.
Partition the arcs corresponding to the points in Q \ {qi}
into two subsets Q1 and Q2. Arcs in Q1 are all inside the
ε-boxes, and those in Q2 are all inside the extended portion
of the ε-boxes.
Now we need to push down the points so that a match, if it
exists, can be found.
We do this for all arcs together.



intro Previous Work Exact Point Set Pattern Matching Approximate Point Set Pattern Matching Translation Rigid Motion

Processing Each Clique

Processing Cliques
Each clique χ represents an angular interval (an arc)
I∗ = [θ∗1, θ

∗
2]. For any angle of rotation θ ∈ I∗, each of the

k − 1 point of Q \ qi lies inside k − 1 disjoint extended
ε-boxes.
Partition the arcs corresponding to the points in Q \ {qi}
into two subsets Q1 and Q2. Arcs in Q1 are all inside the
ε-boxes, and those in Q2 are all inside the extended portion
of the ε-boxes.
Now we need to push down the points so that a match, if it
exists, can be found.
We do this for all arcs together.



intro Previous Work Exact Point Set Pattern Matching Approximate Point Set Pattern Matching Translation Rigid Motion

Processing Each Clique

Processing Cliques
Each clique χ represents an angular interval (an arc)
I∗ = [θ∗1, θ

∗
2]. For any angle of rotation θ ∈ I∗, each of the

k − 1 point of Q \ qi lies inside k − 1 disjoint extended
ε-boxes.
Partition the arcs corresponding to the points in Q \ {qi}
into two subsets Q1 and Q2. Arcs in Q1 are all inside the
ε-boxes, and those in Q2 are all inside the extended portion
of the ε-boxes.
Now we need to push down the points so that a match, if it
exists, can be found.
We do this for all arcs together.



intro Previous Work Exact Point Set Pattern Matching Approximate Point Set Pattern Matching Translation Rigid Motion

Processing Each Clique

Processing Cliques
Each clique χ represents an angular interval (an arc)
I∗ = [θ∗1, θ

∗
2]. For any angle of rotation θ ∈ I∗, each of the

k − 1 point of Q \ qi lies inside k − 1 disjoint extended
ε-boxes.
Partition the arcs corresponding to the points in Q \ {qi}
into two subsets Q1 and Q2. Arcs in Q1 are all inside the
ε-boxes, and those in Q2 are all inside the extended portion
of the ε-boxes.
Now we need to push down the points so that a match, if it
exists, can be found.
We do this for all arcs together.



intro Previous Work Exact Point Set Pattern Matching Approximate Point Set Pattern Matching Translation Rigid Motion

The Pushing Down
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Figure: Finding a suitable translation for a match.
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Homogeneous Splitting

Homogeneous splitting of I∗
Consider a θ ∈ I∗.
For each q ∈ Q1, let f 1

q (θ) denotes the distance of q from
the bottom of the corresponding ε-box.
For each q ∈ Q2, f 2

q (θ) denotes the distance of q from the
top of the corresponding ε-box.
The functions f i

q(θ) i = 1,2 are like qaq sin(α + θ)− c.

Observation
For a given q ∈ Qi , the above functions are univariate,
continuous, and unimodular.
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Envelope of Functions

Definition(L(θ) for θ ∈ I∗)
L(θ) denotes the lower envelope of |Q1| functions, namely
f 1
q (θ), q ∈ Q1.

Definition(U(θ) for θ ∈ I∗)
U(θ) denotes the upper envelope of |Q2| functions, namely
f 2
q (θ), q ∈ Q2.
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Envelope of Functions

Minimum Amount of Downward Translation for Q2

At a rotation angle θ ∈ I∗, the minimum amount of downward
translation required to place the points in Q2 in the
corresponding ε-box is maxq∈Q2 f 2

q (θ) = U(θ).

Maximum Amount of Downward Translation for Q1

Similarly, the maximum amount of downward translation that
may retain all the points in Q1 in its corresponding ε-box is
minq∈Q1 f 1

q (θ) = L(θ).
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Definition
A rotation angle θ is said to be a break-point in L if
L(θ) = f 1

qa(θ) = f 1
qb

(θ) for qa,qb ∈ Q1, qa 6= qb. Similarly, the
break-points of the U function is defined.

Lemma

A pair of functions f 1
q′(θ) and f 1

q′′(θ)
(corresponding to q′,q′′ ∈ Q1,
q′ 6= q′′) w.r.t. θ ∈ I∗ may intersect in
at most two points. The same is true
for a pair of functions f 2

q′(θ) and f 2
q′′(θ)

for a pair of points q′,q′′ ∈ Q2.

f 2q’’(α)

f 2q’(α)

qi

(b)
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Envelope of Functions

Observation

The collection of functions {f 1
q (θ),q ∈ Q1} follows a

(k ,2)-Davenport-Schinzel sequence. The same result is true
for the collection of functions {f 2

q (θ),q ∈ Q2}.

Lemma
The maximum number of break-points in the function L(θ) is
λ2(|Q1|) = 2|Q1| − 1, and it can be computed in O(|Q1| log |Q1|)
time. Similarly, for U(θ).

Moral of Homogeneous Splitting of I∗
I∗ = [θ∗1, θ

∗
2] is split into O(k) sub-intervals defined by

break-points of L(θ) and U(θ).
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Critical Angle

Definition (Critical Angle)

If a match is found by a rotation of Q by the angle θ∗ ∈ I∗ and a
vertical downward shift, then θ∗ is said to be a critical angle.

Figure: Envelopes and break points.
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Computation of Critical Angle
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Critical Angle Computation

For θ ∈ [θ1, θ2], the vertical downward shift will be determined
by two points, qa,qb ∈ Q, where qa and qb are such that
f 1
qa(θ) = L(θ) and f 2

qb
(θ) = U(θ).
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Computation of Critical Angle

Critical Angle Computation
∆1 = Minimum amount of downward shift required to bring qa

inside the ε-box of p′. Thus,
∆1 = δ(qi ,qα)sin(θ + θ1)− (y(p′) + ε

2).
∆2 = Maximum amount of permissible downward shift keeping

qb inside the ε-box of p′′. Thus,
∆2 = δ(qi ,qβ)sin(θ + θ1 + ψ)− (y(p′′)− ε

2).
A feasible solution θ (if it exists) must satisfy ∆1 ≤ ∆2.
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Complexity Analysis

Complexity Analysis
Each point of Q needs to be anchored at the top-left corner
of the ε-box of each point in P.
The nodes of the circular arc graph G are obtained in
O(nk) time and the cliques of G can be obtained in
O(nk logn) time.
While processing a clique, computation of functions U and
L needs O(k logk) time.
Number of elements in U ∪ L is O(k) in the worst case.
The algebraic computation for processing each element in
U ∪ L needs O(1) time.
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The Final Result

Theorem
The time complexity of the proposed algorithm for
ε-approximate matching of Q with a subset of P where the
neighbourhood around a point (in P) is defined as an ε-box, is
O(n2k2(logn + k logk)).
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Thank You!
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