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Introduction

The two major phases involved in analyzing the spatial

and topological information from remotely sensed and

topographic data include

 (a) extraction of features from DEMs.

(b) generation of non network space from network.

Several algorithms have been proposed to extract features

from DEMs.
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Objectives

 To propose morphology based method via fragmentation

rules to compute scale invariant but shape-dependent

measures of non-network space of a basin.

 To make comparisons between morphometry based

parameters / dimensions and dimensions derived for non-

network space.

6

Derivation of maps from remotely sensed 

and topographic data sources – Phase II

 Data Used: Following illustration shows SPOT X band

data of Machap Baru reservoir catchment.

 Following figure illustrates the mapped features within

this catchment.
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SPOT data of Machap Baru catchment and its 

surroundings 


8

Machap Baru reservoir catchment area 
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9Schematically represented networks 

10

Fractal dimension of non-network space of a 

catchment basin

 Data used: Stream network of Machap Baru catchment

basin traced from topographic map.

 Non-network space: It is similar to the space that is

achieved by subtracting channelized portions from the

watershed space.

 A technique proposed (i) to generate non-network space of

a catchment basin, and (ii) to compute an alternative shape

dependent quantity like fractal dimension to characterize the

non-network space.
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Proposed Technique 

 Step1: Channel network is traced from topographic map.

 Step2: Channel network is dilated and eroded iteratively

until the entire basin is filled up with white space. This step is

to generate catchment boundary automatically. Dilation

followed by erosion is called structural closing, which will

smoothen the image.

 Step3: Generate the basin with channel network and non-

network space with boundary by subtracting the channel

network from the catchment boundary achieved in Step2.

12

Proposed Technique 

 Step4: Structural opening (erosion followed by dilation) is

performed recursively in basin achieved in Step3 to fill the

entire basin of non-network space with varying size of

octagons.

 Step5: Assign unique color for each size of octagons.

 Step6: Compute morphometry for the basin.

 Step7: Compute shape dependent dimension.
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13Channel network of Machap Baru reservoir

14Non-network space within Catchment basin
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(a) (b)

(a) Appollonian Space, and (b) after decomposition by 

means of octagon.

16

Decomposition of Non-network space in to 

non-overlapping disks of octagon shape of 

several sizes
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Transition lines between the packed objects

18

Morphometry and shape dependent dimension 

computation 

 The ratio of logarithms of bifurcation and mean length

ratios of the network yields fractal dimension of 1.77.

 Power law exponent is determined for NOD’s number and

size distributions.

 Number of NODs smaller than the specified threshold

radius of structuring template and their contributing areas are

computed.

 Simple Power law relationship is derived by employing

these numbers, their contributing areas and the corresponding

radius of template.
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Double logarithmic plot between radii of 

structuring templates and corresponding 

number and area of NODs 

20

Double logarithmic plot between area and 

number of NOD’s with increasing radius of 

structuring element 
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Power law relationship 

 As in previous Fig., the slopes of the best-fit lines (N and

A) for number-radius and area-radius relationships yield

2.37 and 1.34.

 These slope values of the best-fit lines provide shape

dependent dimensions as DN = N – 1 and DA = A.

 As in previous Fig., DN and DA for non-network space

yield 1.37 and 1.34.

 A Power-law relationship is shown in earlier Fig. with an

exponent value 1.79 between the area and number of NODs

observed with increasing radius of structuring template

22

Morphometry of Network and Non-Network 

space
 Data Used: Digital Elevation Model of Gunung Ledang

region.

 This technique is adopted to generate non-network space of

eight sub-basins of Gunung Ledang region.

 In this phase, relationships between the dimensions

estimated via morphometries of the network and their

corresponding non-network spaces is shown.
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DEM of Gunung Ledang with 8 sub watershed 

partition 

 

24Channel network of sub basin 1 
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25Iterative dilation of channel network of basin 1 

26Iterative erosion applied to previous Fig 
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27Non-network space of basin 1 

28Iterative erosion applied to previous Fig. 
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29Iterative dilation applied to previous Fig. 

30

Decomposition of Non-network space in to non-overlapping 

disks of octagon shape of several sizes for basin 1
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31Sub basin 2 

32Sub basin 3 
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33Sub basin 4 

34Sub basin 5 
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35Sub basin 6 

36
Sub basin 7 
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37Sub basin 8 

38Basic measures of networks of eight basins 

Order Number Stream length (in pixels) Basin 

No 
1 2 3 4 1 2 3 4 

RB RL 

1 85 18 4 2 4891 1611 551 849 3.45 1.90 

2 58 15 3 1 2818 775 187 767 3.97 2.33 

3 45 11 1 0 2346 594 770 0 6.64 3.87 

4 53 11 4 1 2789 748 703 328 3.64 1.90 

5 55 17 3 1 2834 961 659 374 3.96 2.07 

6 70 18 4 1 3671 1182 518 431 4.16 2.01 

7 46 8 1 0 2042 562 479 0 6.78 3.28 

8 89 17 3 1 2477 809 194 294 4.57 2.09 
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Number & corresponding contributing areas of non-

overlapping disks of various sizes decomposed from non-

network space of 8 basins

Basin Number 

1 2 3 4 5 6 7 8 

SE 

N A N A N A N A N A N A N A N A 

34 - - - - - - - - 316 10914

9 

- - - - - - 

32 520 182014 - - - - - - 168 10116

4 

- - - - - - 

30 273 168813 - - - - - - 118 93769 - - - - - - 

28 273 168813 28

2 

84673 - - - - 118 93769 - - - - - - 

26 273 168813 14

3 

77373 203 68151 288 91357 77 81823 367 12578

2 

- - 440 13061

5 

24 185 157455 93 70093 115 63288 152 83715 58 73992 200 11637

8 

179 48876 243 12060

4 

22 132 142011 93 70093 115 63288 104 77487 44 65496 144 10811

1 

100 44098 162 10779

7 

20 97 128123 70 63895 77 57872 77 68878 32 54786 96 94175 68 40018 106 89579 

18 69 114338 52 55265 77 57872 58 61020 24 47302 65 80715 41 31764 70 74589 

16 58 102690 33 42182 58 53641 40 50716 17 39672 52 72943 41 31764 46 58422 

14 39 79374 24 35485 45 48404 28 39683 13 33652 34 58100 26 25760 34 49679 

12 31 67158 17 27707 31 38240 17 28488 10 27837 22 45704 13 17946 22 37938 

10 20 48742 10 19564 19 28316 10 20138 8 23638 17 40300 9 13669 11 21426 

8 11 32274 7 14762 12 20895 7 15941 6 19163 14 36029 5 9833 8 16888 

6 6 18356 4 9486 8 16249 5 12226 4 12004 10 28786 4 8888 4 10145 

4 4 14019 2 5784 3 8794 2 5587 2 6088 6 16009 2 5435 2 6078 

2 2 5859 1 3339 2 6711 1 2753 1 2407 2 5978 1 2360 1 2632 

 

40

Dimensions derived from morphometry of network and non 

network space

Basin 

Number 

Network FD (Log RB /Log RL) R vs A R vs N A vs N 

1 1.83 193 1.34 2.04 1.50 

2 0.86 1.63 1.33 1.23 1.59 

3 0.98 1.41 1.02 1.87 1.80 

4 2.07 2.01 1.43 2.17 1.52 

5 1.73 1.90 1.34 1.94 1.43 

6 1.84 2.04 1.13 1.87 1.63 

7 1.33 1.61 1.23 2.08 1.70 

8 1.65 2.06 1.61 2.38 1.49 

 



J. Serra, J. Cousty, B. S. Daya Sagar                

Indian Stat. Inst., Univ Paris-Est 21

41

Graphical plot between stream order and 

order-wise stream number 
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Graphical plot between stream order and 

order-wise stream lengths 

0

2000

4000

6000

1 2 3 4

Stream Orders

O
rd

e
r-

w
is

e
 s

tr
e

a
m

 

le
n

g
th

s
 (

8
 b

a
s

in
s

)

Series1 Series2 Series3
Series4 Series5 Series6
Series7 Series8



J. Serra, J. Cousty, B. S. Daya Sagar                

Indian Stat. Inst., Univ Paris-Est 22

43

Graphical plot between stream order versus 

logarithm of order-wise numbers for basin 1
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Graphical plot between stream order versus 

order-wise mean stream lengths for basin 1

y = 0.2791x + 1.4219

R
2
 = 0.9358
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Morphometric parameter computations 

achieved through decomposition of non-

network space

46

Basin number versus varied dimensions 

derived from morphometry of networks and 

non-network spaces
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47

Granulometric analysis of digital 

topography

48

Granulometric analysis

• Morphological multiscaling transformations are shown to be a potential tool in 
deriving meaningful terrain roughness indices. Resolution constraints is one of 
the limitations in DEM analyses. In order to overcome these limitations, 
granulometric approach (a branch of mathematical morphology) is a potential 
approach because it provides scale-independent surficial roughness indices.

• Consider two different basins of two different physiographic setups (Cameron 
and Petaling regions) that possess similar topological quantities, their networks 
may be topologically similar to each other. But the processes involved therein 
may be highly contrasting due to their different physiographic origins. Under 
such circumstances, the results that exhibit similarities in terms of topological 
quantities and scaling exponents would be insufficient to make an appropriate 
relationship with involved processes.

• Therefore, granulometric approach is proposed to derive shape-size 
complexity measures of basins. This approach is based on probability 
distribution functions computed for both protrusions and intrusions (in other 
words supremums and infimums) of various degrees of sub-basins. 

• This granulometry-based technique is tested on sub-basins with various sizes 
and shapes decomposed from DEM’s of two distinct geomorphic regions, i.e. 
Cameron Highlands and Petaling region of Peninsular Malaysia.
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Granulometric analysis 

• Multiscale opening till completely black

• Multiscale closing till completely white

• Subtraction

• Probability function

• Average size

• Average roughness
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Granulometric analysis :

Multiscale opening/closing by rhombus

• Scale 1 , 40, 80, 120, 160
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Granulometric analysis :

Multiscale opening/closing by octagon

• Scale 1 , 30, 60, 90, 120

52

Granulometric analysis :

Multiscale opening/closing by square

• Scale 1 , 20, 40, 60, 80
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Granulometric analysis : 

Basin wise analysis

• Average size – 14 sub-basins

• Average roughness – 14 sub-basins

54

Granulometric analysis : 

Basin wise analysis
• The number of iterations required to make each sub-basin either become darker or 

brighter depends on the size, shape, origin, orientation of considered primitive template 
used to perform multiscale openings or closings, and also on the size of the basin and its 
physiographic composition. More opening/closing cycles are needed when structuring 
element rhombus is used, and it is followed by octagon and square. 

• Mean roughness indicates the shape-content of the basins. If the shape of SE is 
geometrically similar to basin regions, the average roughness result possesses lower 
analytical values. If the topography of basin is very different from the shape of SE, high 
roughness results are produced, which indicate that the basin is rough relative to that SE. 
In general, all basins are rougher relative to square shape as highest roughness indices 
are derived when square is used as SE.

• A clear distinction is obvious between the Cameron and Petaling basins. Generally, 
roughness values of Cameron basins are significantly higher than that of Petaling basins. 

• The terrain complexity measures derived granulometrically are scale-independent, but 
strictly shape-dependent. The shape dependent complexity measures are sensitive to 
record the variations in basin shape, topology, and geometric organisation of hillslopes. 

• Granulometric analysis of basin-wise DEMs is a helpful tool for defining roughness 
parameters and other morphological/topological quantities. 
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Morphological Complexity Measures

• For surfaces of geophysical nature, complexity measures explain the 

possible links with the processes involved in the formation of the 

surface. Such complexity measures include fractal dimension, 

granulometric indices, fourier descriptors etc. 

• Within a surface, there may exist several different regions with different 

spatial complexities. 

• Following the segmented fractal and cloud function, the morphological 

complexity (also known as roughness indices, or spatial complexity) for 

each segmented zone is investigated. 

• This study offers new insights to quantitative characterization of spatial 

objects such as trees, and also geophysical fields including clouds, 

rainfall, temperature, vegetation, elevations, and landscapes.

55

Data Used

Land Surfaces – Synthetic, Fractal, and Realistic Digital Elevation Models 

(DEM)

• The synthetic DEM function is a non-negative 2D sequences f(x,y), which 

assumes I + 1 possible intensity values: 

i = 0, 1, 2,…,I. Each discrete element with specific numerical value represents 

elevation at (x,y) coordinates.  

• As the synthetic Fractal-DEMs deal with 8 bit/pixel digital topographic data, 

hence I = 255.
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Synthetic DEMs depicted as discrete 

functions, in which the higher the value the 

higher is the elevation. In turn these 

functions are treated as two different DEMs 

with two different altitudes set-up.
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(a, b) Fractal basin functions with elevation ranges of 1-11 and 5-15, (c,d) grayscale versions of fractal functions shown 

in (a,b).
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Function-based Estimation of Drainage Density

• These new approaches are implemented on three types of data: synthetic basin 

functions, fractal basin functions, and realistic digital elevation models 

(DEMs) of two regions in Malaysia as basins. 

• The results obtained evidently show that the proposed function-based drainage 

density measures are clearly altitude-dependent which could capture the spatial 

variability exist within the homotopic basins of different altitudes. 

58
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Function-based Estimation of Drainage Density

• The three significant parameters which required morphological quantities in 
the form of functions include (i) basin function itself, (ii) channel network 
function, and (iii) convex hull of basin function. 

• These three functions are respectively denoted as f(x,y), g(x,y), and CH(f).

• The two new ways for estimating the drainage density which mainly based on 
estimations of length of network and areal aspects of basin and its convex hull 
are proposed. 

• These estimations show distinction on spatial variability between the 
seemingly alike basins of different altitudes. 

• The two possible ways for estimating the drainage density that capture the 
distinction in terms of spatial variability include (i) ratio between the length of 
channel network function A(g) and the area of basin function A(f), and (ii) ratio 
between the area of basin function A(f) and the area of its corresponding 
convex hull A[CH(f)]. 

59

Function-based Estimation of Drainage Density

• In the basin function, each discrete element with specific numerical value 
represents elevation at (x,y) coordinates. 

• DEM is denoted as a function represented by a non-negative 2-D sequence 
which assumed  possible intensity values: i = 0, 1, 2, …, I.

• The proposed methods are implemented with two groups of data, namely 
synthetic DEMs and realistic DEMs. Two types of synthetic DEMs are 
studied, including simple synthetic functions and fractal basin functions. 

• For realistic DEMs, the interferometrically derived topographic synthetic 
aperture radar (TOPSAR) DEMs of Cameron Highlands and Petaling regions 
of Malaysia from Tay et al. (2007) are used here. 

60
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Function-based Estimation of Drainage Density [5/17]

• Various methods exist to derive the channel networks from DEMs in 
planar forms (O’Callaghan and Mark, 1984; Jenson and Domingue, 1988;
Tarboton et al., 1991; Band, 1993; Sagar et al. 2000). 

• For instance, the channel network, shown in next slide, is isolated from 
DEM via 

(i) threshold decomposition of basin function into threshold elevation 
sets, 

(ii) isolation of channel subsets through skeletonization operations from 
threshold elevation sets, 

(iii) subtraction of channel subsets from immediate higher level threshold 
elevation sets, and 

(iv) composition of channel subsets obtained at step (iii) is superposed on 
the basin function to perform maximum () operation between the 
network (subsets derived in the form of a planar set) and their 
corresponding points from the basin function. Such maxima form the 
network function. 
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(a) typical planar form of drainage network that summarizes the connectivity and shape of these two functions. It is extracted by 

following morphology based transformations (Sagar et al., 2000). 1s are channel subsets and 0s represent non-channel regions, 

(b) planar form of the basin areas of the two synthetic basin functions, threshold value employed is <20 and <15 (respectively for 

two functions shown earlier) and converted into 1s, and 0s for other value(s), (c, d) the elevation values from basin functions 

shown earlier corresponding to the channel subsets shown in (a), and (e, f) convex hulls of the two synthetic basin functions

constructed according to a procedure due to Soille (1998). 

(a) (b)

(c) (d) (e) (f)
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Function-based Estimation of Drainage Density

• For discrete basin functions f1 and f2 shown earlier and their computed convex 
hulls. 

• The areas under these functions are estimated as  

•

, 

• The areas of these three morphologically significant functions are evidently 
elevation dependent and hence they are more appropriate to be used in 
estimating modified drainage density that can capture the basic spatial 
variability between the basins of different altitudes. 

• This is unlike the Hortonian drainage density computation which does not 
consider the altitudes of the DEMs and thus show similar result for homotopic
DEMs with different heights, 

 ),()( ),( yxffA yx

 ),()( ),( yxggA yx

  ),()( ),( yxfCHCHA yx

)()()( gAfACHA 
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Function-based Estimation of Drainage Density

• Two approaches are considered - the ratio between (i) areas of channel 

network and its basin function, and (ii) areas of basin function and its convex 

hull function: 

(i) (ii)

• These modified drainage densities provide new insights to further explore 

links with various established and to be derived parameterized morphometric 

measures in the future.

 fA

gA
DD f

)(
 (method-1)

)(

)(

CHA

fA
DD f  (method-2)
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Basin Areas of planar 

forms (pixel)

Areas of functions (pixel) Drainage density

Basin Network Basin Network Convex 

hull

Horton-

DD

Method-

1

Method-

2

Function f1 121 21 2255 375 2420 0.1736 0.1663 0.932

Function f2 121 21 1650 270 1815 0.1736 0.1636 0.909

Function f3 20334 1838 152844 12132 396814 0.0904 0.0794 0.3852

Function f4 20334 1838 234180 19484 541110 0.0904 0.0832 0.4328

Drainage density comparisons for synthetic DEMs.
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Function-based Estimation of Drainage Density

• Although both basins have similar geometrical arrangement, basin f1 has 

higher elevation than basin f2: 15 to 20 vs 10 to 15.

• In flat surface form, the area for both basins is the same, which is 121.

• Thus, the Hortonian-DD is also the same: 0.1736.

• If method-1 is applied, the DD is computed as 0.1663 and 0.1636, while 

method-2 yields 0.9318 and 0.9091, respectively.

• Hence, the drainage densities estimated according to the two proposed 

methods clearly exhibit spatial variability of the basins, especially those 

homotopically similar basins with different altitude-ranges.
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(a)

(b)

(c) (d)

(e) (f)

(a) Planar view of the network that represents channel network from both fractal basin functions, (b) planar view of the 

threshold basin region of both fractal functions, (c, d) channel network functions of the two fractal basin functions, and (e, f) 

convex hull functions of the two fractal functions. 

67

Function-based Estimation of Drainage Density

• The lengths of planar networks and also areas of plane-view of these 
two functions are found to be the same.

• As a result, the Hortonian-DD computed for f3 and f4 are the same, 
which is 0.0904, although they exhibit different altitude-ranges. 

• As shown in Table, the drainage densities are 0.0794 and 0.0832, 
0.3852 and 0.4328 from proposed method-1 and method-2 for fractal 
basin functions f3 and f4, respectively. These drainage densities vary 
linearly with elevations of the basins. As fractal basin function f3 has 
lower altitude range than f4, its drainage densities computed through 
method-1 and method-2 are lower than the drainage densities of f4. 
Hence, the drainage densities estimated according to the two proposed 
methods clearly exhibit spatial variability of the basins, especially those 
homotopically similar basins with different altitude-ranges.
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(a) (b)

(c) (d)

(a) Stream networks extracted from Cameron Highlands DEM, (b) stream networks extracted from Petaling DEM, (c) 

grayscale DEM of basin 1, and (d) convex hull of basin 1.
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Basin Areas of planar 

forms (pixel)

Areas of functions (pixel) Drainage density Norm

complex 

measure

Fractal 

dimens

Basin Network Basin Network Convex 

hull

Horton

-DD

Method

-1

Method

-2

1 71045 3826 6029100 3072600 8555800 0.0539 0.0510 0.7047 0.9130 1.5141

2 77780 4612 7390300 4204400 12549000 0.0593 0.0569 0.5889 0.9362 1.5506

3 84699 4775 8349900 4452000 12274000 0.0564 0.0533 0.6803 0.8963 1.5814

4 55912 3227 5086300 2774300 80163000 0.0577 0.0545 0.6345 0.9165 1.4692

5 41253 2583 4391300 2662800 76397000 0.0626 0.0606 0.5748 0.9255 1.4519

6 31226 2101 3047100 1981400 45184000 0.0673 0.0650 0.6744 0.9291 1.4776

7 19780 1156 1426500 772550 20828000 0.0584 0.0542 0.6849 0.9255 1.3192

8 66824 1629 8124200 167870 14854000 0.0244 0.0207 0.5469 0.7413 1.3140

9 25164 588 2605000 46830 5458100 0.0234 0.0180 0.4773 0.7788 1.2398

10 31779 767 3769600 75553 6088900 0.0241 0.0200 0.6191 0.8038 1.2445

11 35805 808 3703100 65298 7216900 0.0226 0.0176 0.5131 0.8134 1.1817

12 36953 884 3798300 62811 7609700 0.0239 0.0165 0.4991 0.8516 1.2946

13 40845 933 3189600 50907 6578400 0.0228 0.0160 0.4849 0.7921 1.1706

14 23497 576 1786700 31969 3268300 0.0245 0.0179 0.5467 0.7951 1.1721

Drainage density comparisons for realistic DEMs. Basins 1-7 represent Cameron Highlands DEMs, while Basins 8-14 are 

Petaling DEMs.
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Function-based Estimation of Drainage Density

• From Table, the Hortonian-DD computed for Cameron basins range 
from 0.0539 to 0.0673, while for Petaling basins, the range falls within 
0.0226 to 0.0245. 

• All the 14 sub-basins have different areas in planar view, and generally 
the Cameron basins have larger basin areas and network areas than 
Petaling basins. 

• Thus, the Hortonian-DD ranges of Cameron basins should be larger 
than Petaling basins. In fact, the same trend is also observed from the 
drainage densities obtained from method-1 and method-2. 

• Drainage densities computed from method-1 yield the range of 0.051-
0.065 and 0.016-0.0207, and from method-2 they exhibit the range of 
0.5748-0.7047 and 0.4773-0.6191, for Cameron basins and Petaling 
basins, respectively. 

• The higher the altitude of the basin, the greater the drainage density, and 
vice versa. 
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Function-based Estimation of Drainage Density

• To have a better view on the relationships among these various parameters, the 
graphs in Figs. are generated.

• From these graphs, it is observed that Cameron basins which have higher 
altitude basins than low-lying Petaling basins, exhibit higher drainage densities 
(regardless of Horton, method-1, or method-2), higher normalized complexity 
measures, and also higher fractal dimension values than that of Petaling basins.

• Besides, unlike the case of synthetic basin and fractal basin functions, the 
drainage densities obtained from method-1 and method-2 for Cameron and 
Petaling basins correspond well with Horton-DD. 

• Furthermore, it is interesting to note from Fig that the drainage density from 
method-1 follows closely with Horton-DD. Hence, it is conjectured that the 
proposed method-1 and method-2 offer an alternative way to compute 
drainage density, which supplements the long-existing Horton-DD. 
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Method-1, method-2, normalized complexity measures, and fractal 

dimension vs basin number
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(a) Drainage densities computed from method-1, method-2, and normalized complexity measures and fractal dimension (via 

box-counting method) for all 14 basins, (b) drainage densities from Horton and method-1.

(a)

(b)
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Conclusions 

1. Various Computational geophysics related topics are dealt

with.

(a) In modeling geophysical phenomena, application of

mathematical morphology is relatively less employed. I have

addressed several interesting problems by studying the basin

via mathematical morphology.

 In particular, digital image processing techniques , geo

statistical tools and geo computational techniques that are

relatively less employed to deal with catchment

characterization studies are applied in this investigation.

2. These techniques are proved to be robust in deriving

complex topological and surficial features of geophysical

significance.



J. Serra, J. Cousty, B. S. Daya Sagar                

Indian Stat. Inst., Univ Paris-Est 38

75

Conclusions 

 In particular, fragmentation of non-network spaces of

several catchment basins of Machap Baru and Gunung

Ledang regions is done through a systematic framework.

 This framework is primarily based on mathematical

morphological transformation.

(b) This framework considers both network topology and

geometry of whole basin and non-network space.

 Using fragmentation and decomposition rules, significant

shape dependent and scale independent topological quantities

are derived.

3. These methods and result have outperformed the Strahler-

Horton morphometry based network analysis.
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