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Outline

• Data used: TOPSAR DEMs, simulated DEM

• Mathematical Morphological Transformations Employed 
include: Morphological Skeletonization, Recursive 
Morphological Pruning (Hit-or-Miss Transformation, 
Morphological Thinning etc), Morphological 
Reconstruction. 

• For
– Networks‟ extraction and their properties

– Analyses via existing morphometric and allometric power-laws

– Analyses via scaling relationships between travel-time channel 
networks, convex hulls and convexity measures

– Analysis via Fractal and multiscale analyses of planar 
geophysical networks 

• Conclusions

4

Mathematical Morphology (MM)
• Mathematical morphologic transformations (Matheron, 1975; Serra, 1982) 

have shown its speciality and strength in the context of geomorphology 
such as significant geomorphologic features extraction, basic measures of 
water bodies estimation, geomorphic processes modelling and simulation, 
fractal landscapes generation, etc. 

• In the entire investigation, both DEM‟s are analysed as grey-scale image 
(3-D) and the extracted networks as thresholded sets (binary form). 

• In order to process the binary sets such as channel networks, binary 
morphological transformations are employed. 

• Grey-scale mathematical morphological transformations are used to 
process the three-dimensional images such as DEM‟s. 

• The geometrical and topological structures of DEM are examined by 
matching it with structuring elements of various shapes and sizes at 
different locations in the DEM. 

• Figure below provides two examples of structuring elements (B), which are 
in the shape of rhombus and square of size 3X3. (1‟s and 0‟s stand for 
foreground and background regions, respectively).
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Mathematical Morphology (cont)

Binary MM

• Binary erosion transformation of S by structuring element, B
– the set of points s such that the translated Bs is contained in the original 

set S, and is equivalent to intersection of all the translates. 

– S  B = {s: Bs  S}=

• Binary dilation transformation of S by B
– the set of all those points s such that the translated Bs intersects S, and 

is equivalent to the union of all translates. 

– S  B = {s: Bs S    } = 

• The dilation with an elementary structuring template expands the set 
with a uniform layer of elements, while the erosion operator 
eliminates a layer from the set. 

• Multiscale erosions and dilations are 

- (S  B)  B …  B = (S  nB), 

- (S  B)  B  …  B = (S  nB),

where nB = B  B  …  B and n is the number of transformation cycles. 

B
Bb

S



 B
Bb

S


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Mathematical Morphology (cont)

Binary MM (cont)

• By employing erosion and dilation of S by B, opening and closing 
transformations are further represented as:
– S  B = ((S  B)  B)) 

– S  B = ((S  B)  B))

• After eroding S by B, the resultant eroded version is dilated to 
achieve the opened version of S by B.

• Similarly, closed version of S by B is obtained by first performing 
dilation on S by B and followed by erosion on the resultant dilated 
version. 

• Multiscale opening and closing transformations are implemented by 
performing erosions and dilations recursively as shown below. 

- (S  nB) = [(S  nB)  nB)], 

- (S  nB) = [(S  nB) nB)], 

where n is the number of transformations cycles. 
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Mathematical Morphology (cont)
Grey-scale MM

• Grey-scale dilation and erosion operations - expansion and contractions 
respectively 

• Let f(x,y) be a function on Z2, and B be a fixed structuring element of size 
one. The erosion of DEM, f(x) by B replaces the value of f at a pixel (x, y) by 
the minima  values of the image in the window defined by the structuring 
template B
–  ,

• The dilation of DEM, f(x) by B replaces the value of f at a pixel (x, y) by the 
maxima values of the image in the window defined by the structuring 
template B

–  ,

• In other words, (f B) and (f  B) can be obtained by computing minima 
and maxima over a moving template B, respectively. 

• Erosion is the dual of dilation :
– Eroding foreground pixels is equivalent to dilating the background pixels. 

f(   jyixf
Bji




,min
),(

f(  yxB ,)   jyixf
Bji




,max
),(

 yxB ,)
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Mathematical Morphology (cont)
Grey-scale MM (cont)

• Opening and closing are both based on the dilation and erosion 
transformations. 

• Opening of DEM, f by B is achieved by eroding f and followed by dilating 
with respect to B, = [(f B)  B],

• Closing of f by B is defined as the dilation of f by B followed by erosion with 
respect to B, = [(f  B)  B], 

• Opening eliminates specific image details smaller than B, removes noise 
and smoothens the boundaries from the inside, whereas closing fills holes 
in objects, connects close objects or small breaks and smoothens the 
boundaries from the outside. 

• Multiscale opening and closing can be performed by increasing the size 
(scale) of the structuring template Bn, where n = 0, 1, 2,…, N. These 
multiscale opening and closing of f by B are mathematically represented as:

= {[(f  B)  B… B]  B  B … B} = [(f  nB)  nB], 

= {[(f  B)  B … B]  B B… B} = [(f  nB)  nB], 

at scale n = 0, 1, 2,…, N. 

• Performing opening and closing iteratively by increasing the size of B
transforms the DEM into lower resolutions correspondingly. 

)o( Bf

)( Bf 

)o( nBf

)( nBf 
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Mathematical Morphology (cont)

• Multiscale opening and closing of DEM by nB effect 
spatially distributed elevation regions in the form of 
smoothing of contours to various degrees. The shape 
and size of B control the shape of smoothing and the 
scale respectively. 

• Important problems like feature detection and 
characterisation often require analysing DEMs at 
multiple spatial resolutions. Recently, non-linear filters 
have been used to obtain images at multi-resolution due 
to their robustness in preserving the fine details. 

• Advantages of mathematical morphology 
transformations 
– popular in object recognition and representation studies. 

– The non-linearity property in preserving the fine details.

10

Basic Transformations 

 Mathematical Morphology

Dilation

Erosion

Opening

Closing

 Fractals
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Effect of Dilation using 3X3 structuring element

12

Steps in Dilation of C by S
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Effect of Erosion using 3X3 structuring element

14

Steps in Erosion of C by S
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Effect of Opening using 3X3 structuring element

16

Steps in Opening of C by S
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Effect of Closing using 3X3 structuring element

18

Steps in Closing of C by S
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11 x 11

9 x 9

7 x 7

5 x 5

          

          

          

          

          

          

          

          

          

          

          

Octagonal symmetric structuring elements of various primitive sizes ranging from 5 × 5 to 11 × 11. These primitive sizes 

can be considered as B.

19

19

Multiscale Opening and Closing

= {[(M  B)  B B]  B  BB} = [(M  nB)  nB]

= {[(M  B)  B B]  B  BB} = [(M  nB)  nB] 

• Multiscale grayscale transformations (erosion, dilation, opening, and 

closing), at scale n = 0,1,2,…,N, are defined as follows:

(f  nB) = (f  B) B  B  B

nBM 
nBM 

(f  nB) = (f  B)  B  B    B

)( nBf  = [(f  nB)  nB]

)( nBf  = [( f  nB) nB]

20

20
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Study area specification

 SPOT X-Band data of Machap Baru reservoir

situated in Melaka state, Malaysia with spatial

resolution of 20 m acquired on 28/2/1998 situated in

between 2o 15‟ - 2o25‟ N. Latitude and 102o 15‟ - 102o

23‟ E.Longitude.

 Surveyed topographic map of scale 1:50000 for

the region Machap Baru and Gunung Ledang.

 Data collected from Department of Irrigation and

Drainage.

22

TOPSAR DEM
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Study region 1: Cameron 

Highlands
• Cameron Highlands 

region is located in the 
eastern part of Perak 
state in Peninsular 
Malaysia. 

• Location – 101o15‟-
101o20‟ East longitudes 
and 4o31‟-4o36‟ North 
latitudes.

• The physical relief of 
this area is rough where 
it comprises a series of 
mountainous forest at 
altitudes between 400m 
and 1800m.

24

Study region 2: Petaling

• Petaling region is 
located in the 
southern part of 
Selangor state in 
Peninsular Malaysia. 

• Location - 104o09‟-
104o13‟ East 
longitudes and 2o48‟-
2o53‟ North latitudes.

• This region is a 
relatively flat terrain 
with altitude from 
27m to highest 
altitude of 215m.
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DEM of Gunung Ledang region

26

Simulated DEM


N

n
M

0
  

• The Hortonian fractal DEM, M is simulated by 

considering a binary fractal basin (X) that 

possesses 1s and 0s representing topological 

space of the basin and its complement, 

respectively. 

• This binary fractal basin is decomposed into 

topologically prominent regions (TPRs) by 

employing morphological erosions, dilations, 

and logical difference and union operations to 

simulate fractal DEM (F-DEM). The simulation 

of internal topology of the basin within a defined 

geometric boundary is mathematically defined 

by

{{(XnB)\{[(XnB)B]    B}}   nB}

where, X is binary basin, B is structuring element that 

gets translated over X, and n is the size of this B. X\Y 

is the part of X that is not in Y. X and S are sets in 

Euclidean space with elements x and s, respectively, x

= (x1,..., xN) and s = (s1,..., sN).

The symmetric octagon used 

as structuring element, B in this 

simulation. 
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Simulated DEM (cont)

Five main steps involved in the simulation are:

i. Successive erosion frontlines are generated via (XnB) by increasing the 
size of structuring element. Erosions are performed iteratively to generate 
erosion frontlines within a binary fractal basin.

ii. Smoothening of the erosion frontlines is achieved via (XnB)B]   B. 
Here, the dilation combines the eroded version of the eroded binary basin 
achieved at step (i).

iii. Various orders of network subset ranging from n=0 to N are isolated from 
each erosion frontline by subtracting the resultant information achieved in 
step (ii) from step (i).

iv. TPRs are generated by dilating the resultant information, which is 
achieved at step (iii) by nB. This is an iterative procedure till the whole 
basin is converted into TPRs. Each TPR is assigned a specific value 
assuming that the spatially distributed TPRs are akin to spatially 
distributed elevation regions, and

v. Various orders of coded TPRs are combined to produce the simualted 
DEM. By employing these sequential steps, a self-affine fractal DEM is 
generated. 



28

Simulated DEM

 Such an algorithm can be performed on a gray-level

DEM or on the Threshold Decomposed Elevation

Regions (TDER) of a DEM

 A simulated DEM with three spatially distributed

elevation regions numerically represented as 1s, 2s

and 3s

 Its Threshold Decomposed Elevation Regions are

also represented.

 This Algorithm can be performed on individual

TDERs to achieve channel and ridge connectivity

network.
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Synthetic DEM 

1 1 1 1 1 1 1 1 1 1 1

1 2 2 2 2 2 2 2 2 2 1

1 2 2 2 2 2 2 2 2 2 1

1 2 2 3 3 3 3 3 2 2 1

1 2 2 3 3 3 3 3 2 2 1

1 2 2 3 3 3 3 3 2 2 1

1 2 2 3 3 3 3 3 2 2 1

1 2 2 3 3 3 3 3 2 2 1

1 2 2 2 2 2 2 2 2 2 1

1 2 2 2 2 2 2 2 2 2 1

1 1 1 1 1 1 1 1 1 1 1

30

TDER with T =1

1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1
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TDER with T =2 

0 0 0 0 0 0 0 0 0 0 0

0 1 1 1 1 1 1 1 1 1 0

0 1 1 1 1 1 1 1 1 1 0

0 1 1 1 1 1 1 1 1 1 0

0 1 1 1 1 1 1 1 1 1 0

0 1 1 1 1 1 1 1 1 1 0

0 1 1 1 1 1 1 1 1 1 0

0 1 1 1 1 1 1 1 1 1 0

0 1 1 1 1 1 1 1 1 1 0

0 1 1 1 1 1 1 1 1 1 0

0 0 0 0 0 0 0 0 0 0 0

32

TDER with T =3

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 1 1 1 1 0 0 0

0 0 0 1 1 1 1 1 0 0 0

0 0 0 1 1 1 1 1 0 0 0

0 0 0 1 1 1 1 1 0 0 0

0 0 0 1 1 1 1 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0


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Channel & Ridge networks

1 2 1

1 2 1

1 2 1

1 2 1

1 2 1

2 2 2 2 2 1 2 2 2 2 2

1 2 1

1 2 1

1 2 1

1 2 1

1 2 1

34

Networks extraction and their 

properties
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Networks extraction and their 

properties 
• The two topologically significant networks, i.e. channel and ridge networks are the 

abstract structures of concave and convex zones of the DEM‟s respectively. 

• The paths of these extracted networks are the crenulations in the elevation contours. 

• These crenulations can be isolated from DEM‟s by using nonlinear morphological 
transformations. These isolated crenulations form the ridge and channel networks. 

• Basic morphological operators (i.e. erosion, dilation, opening and closing) are used 
in networks extraction. 

• The DEM, f is first eroded by structuring element, Bn with n=1, 2,…,N, and the 
eroded DEM is opened by B of the smallest size. Bn is the increasing version of B1
for n=1, 2, 3,…,N. The opened version of each eroded image is subtracted from the 
corresponding eroded image to produce the nth level subsets of the ridge network. 
Union of these subsets of level n = 0 to N gives the ridge network for the DEM.

• Ridge network 

)Bi

nff [()(RID i 

n  f{[(\)Bi

n
}]B]B ii

11
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)]([RID)(RID i

n

4

1
0

ff
N

i
n



 
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Networks extraction and their 

properties
• Duality of the morphology approach is proposed for channel networks extraction. 

DEM, f is first dilated by structuring element, Bn and the dilated DEM is closed by 
structuring element, B, of the smallest size. The closed version of each dilated 
image is subtracted from the corresponding dilated image to produce the nth level 
subsets of the channel network. Union of these subsets of level n = 0 to N gives 
the channel network for the DEM. 

• Channel network

• Structuring elements of line segment as shown in figure below are used for B1. 
Line segments in 4 different orientations are used as their shapes match the ridge 
and channel networks closely. 

• The extracted networks are converted into binary form by using thresholding 
process. Morphological thinning approach is used to thin the network by reducing 
all lines to one-pixel wide thickness. 

)]([CH)CH( i

n

4

1
0

ff
N

i
n


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Algorithm

 An Algorithm is developed to extract singular

networks such as channel and ridge connectivity

networks from contour based DEM of Gunung

Ledang region.

 Sub watershed boundary in DEM is automatically

generated by considering channel and ridge

connectivity networks and steepest descent

property.

 Mathematical morphology transformations such as

dilation, erosion, opening and closing are used in

this algorithm to make it user-friendly.

38

Steps in Algorithm

 The following 5 step algorithm is used to extract two

topological connectivity networks

Step1:

Step 2:
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Steps in Algorithm

Step3:

Step 4:

Step 5:



40

DEM of Gunung Ledang with 8 sub 

watershed partition 
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Automatic generation of sub 

watersheds from Digital Elevation 

Model

Digital Elevation Model (DEM) Generation:

 Contours produced from Topographic map of

Gunung Ledang region.

 Assign unique colors to each contour interval

42

DEM of sub watershed and its 

boundary


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Channel and ridge networks

 

 

 Using Algorithm, 

channel network (red 

colour) and ridge 

network (cyan colour) 

are extracted 

automatically.

44

Automatically generated sub watershed 

map
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Channel network of Gunung Ledang 

Region

46

Ridge network of Gunung Ledang 

Region 
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Networks extraction and their 

properties 

(a) Ridge networks, and (b) channel networks 
extracted from Cameron Highlands DEM.  

48

Networks extraction and their 

properties

(a) Ridge networks, and (b) channel networks 
extracted from Petaling DEM.
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Networks extraction and their 

properties :Sub-basins delineation
• A drainage basin is defined as an area outlined by a topographic boundary that 

diverts all runoff, throughflow and groundwater flow to stream networks flowing into 
a single outlet. The drainage boundary is named as watershed and it divides one 
basin from another, and separates runoff between them.

• Besides networks extraction, DEM is also a very useful and popular source for 
watershed extraction and characterisation. In order to delineate sub-basins, flow 
direction and flow accumulation grids are formed. 

• The hydrologic flow is modelled using eight-direction pour point model (Puecker et. 
al., 1975) as shown in Figure below. The runoff of a pixel in DEM flows towards 
one of its eight neighbours with the lowest height. 

• The slope between the pixel under consideration, and its lowest neighbour has the 
greatest value. By taking the highest slope for all pixels in terms of the direction 
towards its lowest neighbour, the flow direction grid is formed. 

• Based on the flow direction grid, the total number of contributing grid cells that flow 
into each “downstream” grid cell is computed to form the flow accumulation grid 
set. 

• Grid cells with large values of flow accumulation are areas of concentrated flow 
and are identified as stream channels according to the specified flow accumulation 
threshold. Grid cells with flow accumulation values of zero are topographic highs or 
ridges, which are the watershed boundaries. Based on these features, the 
watershed and sub-watershed boundaries are modelled. 

50

Networks extraction and their 

properties : Sub-basins delineation

The example of a few sub-basins delineated from Cameron Highlands and Petaling DEM 

is illustrated in figures above.
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Decomposed basins and networks

52

Networks extraction and their 

properties : Networks ordering
• An important quantifiable characteristic of stream networks is related to the 

hierarchical arrangement of stream channels. Therefore, the first step in 
drainage basin analyses is the classification of stream orders by using the 
most common ordering system, i.e. Horton-Strahler‟s ordering system 
(Horton, 1945; Strahler, 1957). 

• According to this ordering system, the smallest headwater fingertip 
tributaries with no other tributaries are assigned as first-order stream. When 
two first-order channels join, a channel segment of order two is formed. 
Generally, the joint of two n order channels produces a segment of order 
n+1. 

• Streams of lower order joining a higher order stream do not change the 
order of the higher stream. Thus, if a second-order stream joins with a third-
order stream, it remains a third-order stream. 

• When a branch has more than two sub-branches, only the two of highest 
orders are considered. 

• The order of the whole tree is defined to be the order of the root, its lowest-
lying branch. It is a measure of the complexity of the tree. 

• This ordering system has been found to correlate well with important basin 
properties in a wide range of environments.  
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Networks extraction and their 

properties :  Networks ordering

This figure shows a 
sample network 
classified based on 
Horton-Strahler‟s 
ordering system.

54

Networks extraction and their 

properties : Networks ordering

Horton-Strahler‟s 
ordering system is 
applied on Cameron 
Highland channel 
network.
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Networks extraction and their 

properties : Morphometry
• There are two main ratios in morphometry, i.e. the bifurcation ratio (Rb) and length 

ratio (Rl). Consider a tree with order k, the stream number of order i is given as Ni . 
Since the order of the whole tree is k, then Nk = 1. It is noticeable that the number of 
stream segments is larger for lower order segment.  Bifurcation ratio, Rb is defined as 
the ratio of the number of streams of a given order to the number in the next higher 
order. 

• The bifurcation ratio is not exactly the same for all orders, however it tend to be a 
constant throughout the series. Since the number of streams within each order 
decreases with order in a linear fashion, the logarithm of bifurcation ratio can be 
obtained as the slope of graph, where logarithm value of number of streams is plotted 
against stream order. 

• The length ratio, Rl, is based on the law of stream lengths, where the ratio of the 
length of streams in successive stream orders is computed. Let  Li be the mean 
length of streams with order i, Rl is defined by equation below,

• The law of stream lengths indicates that the length of streams in successive higher 
stream orders increases by following a geometric relationship. By plotting the 
logarithm values of stream length as a function of stream order, length ratio can be  
derived. 

1i

i

b
N

N
R





1-i

i

l
L

L
R 

56

Reservoir Isolation 

 The centroids of decomposed zones shown with

different colours are connected to form the network with

in the reservoir.

 This connectivity network is overlaid on stream

network that is traced and digitized to convert this whole

reservoir catchment into connectivity-like information.

 Strahlers ordering scheme is applied to the whole

connectivity network using the equation  =

max{i,j,int(1+(1/2)(i+j))} where  is stream order and it is

shown with different colours.

 The basic measures such as order-wise lengths,

number and mean lengths within this 4th order network

are computed.
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Sub catchments contributing to reservoir 

catchment

58Network with Strahlers ordering technique 

 

First 

order
Second 

order
Third 

order
Fourth 

order


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Morphometric Analysis of network with in 

the catchment 
Number of Orders Mean Lengths

1st order segments – 130            1st order – 0.44

2nd order segments – 28 2nd order – 0.82

3rd order segments – 6 3rd order - 3

4th order segments – 1 4th order - 6

Order-wise lengths Bifurcation ratio

1st order length – 57 N1/N2 - 4.6

2nd order length – 23 N2/N3 – 4.7

3rd order length – 18 N3/N4 - 6

4th order length – 6 RB – 5.1

60

Morphometric Analysis of network with in 

the catchment 

Mean Length ratio

L2/L1 - 1.86

L3/L2 – 3.66

L4/L3 – 2

RL – 2.51

 The computed ratio of logarithms of bifurcation and 

mean length ratios of the network yields 1.77, which is 

the fractal dimension of catchment.
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Networks extraction and their 

properties : Morphometry
• Besides these two ratios, the universal similarity of stream network 

can be shown through Hack‟s law and Hurst‟s law as follows:

• Hack‟s law:

where A is the area of basin with main channel length Lmc.

• Hurst‟s law:

where L|| and       is the longitudinal length and transverse length 
respectively. 

hAL mc

HLL
||



L
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Networks extraction and their 

properties : Morphometry 

Morphometric ratios and hypsometric integrals for fourteen basins of 

Cameron Highlands and Petaling regions.
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Existing allometric power-laws

64

Existing allometric power-laws

• Validation of existing allometric power-laws is carried out 
by using sub-basins of simulated fractal-DEM and 
TOPSAR DEM.

• Basic measures such as basin area, basin perimeter, 
channel length, longitudinal length and transverse length 
are computed. Allometric power-law relationships are 
derived among the basic measures of decomposed sub-
basins of all orders.

• It is reported that these power-laws are also of universal 
type as they exhibit similar scaling (power-law) 
relationships at all scales. 

• The results are in good accord with that of natural river 
basins.
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Existing allometric power-laws : 

Decomposed basins and networks

66

Existing allometric power-laws  : 

Decomposed basins and networks

The number of 

decomposed sub-

basins of respective 

orders from the 

simulated 6th order 

F-DEM include

• two 5th

• five 4th

• ten 3rd

• thirty six  2nd, and 

• eighty six 1st order 

basins.
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Existing allometric power-laws : 

Decomposed basins and networks

Decomposed sub-basins are 
• two 4th

• eight 3rd

• twenty-eight 2nd, and 

• one hundred twenty-four 1st

order basins.

68

Existing allometric power-laws : 

Decomposed basins and networks
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Existing allometric power-laws : 

Basic Measures

Basic measures for a basin, (a) basin area, (b) total channel length, (c) main channel 

length, (d) basin perimeter, (e) longitudinal length and (f) transverse length.

70

Existing allometric power-laws : 

Scaling laws

Allometric relationship between main channel length and basin area for all 

sub-basins of F-DEM and TOPSAR DEM.
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Existing allometric power-laws : 

Scaling laws

Allometric relationship between area and perimeter for all sub-basins of F-DEM 

and TOPSAR DEM.
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Existing allometric power-laws : 

Scaling laws

Allometric relationship between perimeter and main channel length for all 

sub-basins of F-DEM and TOPSAR DEM.
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Existing allometric power-laws : 

Scaling laws

Allometric relationship between         and          for  all sub-basins of F-DEM and 

TOPSAR DEM.
llL mcL
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Existing allometric power-laws : 

Scaling laws

Allometric relationship         between         and for all sub-basins of F-DEM 

and TOPSAR DEM.
L L
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Existing allometric power-laws : 

Scaling laws

A and 

mcL



P and 

mcL



L and 
llL

2/

H

DLmc




1
1

Relations Notatio

ns

For 

all 

orders

Basin’s order

1 2 3 4 5 6

h  0.53 0.502 0.56 0.56 0.55 0.55 0.56

A and P 1.35 1.31 1.36 1.41 1.44 1.48 1.46

1.39 1.51 1.32 1.28 1.26 1.23 1.23

Lmc and Lll - 0.97 0.92 1.01 1.04 1.03 0.94 0.95

H 0.95 0.94 0.94 0.96 0.98 0.94 0.98

2h DLmc 1.06 1.00 1.11 1.11 1.10 1.10 1.12

DP 1.48 1.53 1.47 1.42 1.39 1.35 1.37

- 1.55 1.52 1.57 1.59 1.56 1.57 1.57

Power-law values among allometric measures of F-DEM
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Existing allometric power-laws : 

Scaling laws

A and 
mcL



P and 
mcL



L and 
llL

2/

H

DLmc




1
1

Relations Notatio

ns

For 

all 

orders

Basin’s order

1 2 3 4 5

h  0.57 0.60 0.57 0.50 0.58 0.56

A and P 1.97 1.62 1.78 1.78 1.69 1.62

0.84 0.78 0.92 0.88 1.09 1.05

Lmc and Lll - 1.17 0.75 1.00 0.92 1.02 1.08

H 1.00 0.39 0.53 0.68 1.00 0.97

2h DLmc 1.14 1.20 1.14 1.00 1.16 1.12

DP 1.02 1.23 1.12 1.12 1.18 1.23

- 1.57 1.86 1.74 1.60 1.58 1.57

Power-law exponents among allometric measures of TOPSAR DEM
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Existing allometric power-laws : 

Scaling laws

• Comparisons between our estimates and 

important allometric power-laws exponnts 

derived from OCN (optimal channel networks, 

Maritan et. al., 2002), RSN (random self-similar 

network (Veitzer and Gupta, 2000) and certain 

natural river basins.

• Basins of F-DEM and TOPSAR DEM are 

geomorphologically realistic as OCN,RSN and 

realistic river basins.

78

Novel scaling relationships 

between travel-time channel 

networks, convex hulls and 

convexity measures
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Novel scaling relationships

• Network topology and watershed geometry are two 
important features in terrain characterisation, therefore 
the length of the travel-time networks and area of the 
corresponding convex hull are used to derive new 
scaling exponents.

• Travel-time networks are investigated based on the 
consideration of the time required for the particle in the 
fluid to reach the outlet.

• Travel-time networks refer to sequence of networks 
generated by removing the end-points (extremities) of 
the original network iteratively.

• Morphological Hit-or-Miss transformation is used in this 
pruning process - useful in detecting the exact pattern of 
structuring templates in images.

80

Proposed scaling relationships : 

Hit-or-Miss Transformation
a. the original set, S and Sc;

b. the templates, B1; 

c. the templates, B2; 

d. the union of B1 and B2; 

e. the union of morphological 

erosions of S by B1 (bold 

1) and its complementary 

space (Sc) by B2 (italic 1);

f. the intersect of 

morphological erosions of 

S and its complementary 

space (Sc) by B1 and B2, 

respectively. The 

intersecting portion is the 

results of hit-or-miss 

transformation.
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Proposed scaling relationships : 

Travel-time networks
• The process of deleting the end points from the networks is named 

as pruning.

• To decompose the stream network subsets from n = 1 to N, 
structuring template of       and         are decomposed into various 

subsets,      where                        and          
1B

• Both structuring templates are 

disjointed into eight directions. The 

intersecting portion of eroded S and 

eroded Sc by disjointed templates       

and        ,                 

respectively are computed to derive 

pruned version of S. 

• The X‟s in the structuring templates 

signifies the „don‟t care‟ condition – it 

doesn‟t matter whether the pixel in 

that location has a value of 0 or 1.

2B
i

nB 8,...,2,1i 2,1n

}{ 1

kB }{ 2

kB 8,...,2,1k
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Proposed scaling relationships : 

Travel-time networks
• Mathematically, 

• Ө                  Ө        , where               

• By subtracting               from S, a pruned version of S is obtained and 
expressed as

• where,                   

• is the sequence of  

• After pruning of S in first pass with B1, the process continue with 
pruning with B2 and so on until S is pruned in the last pass with B8. 

• The whole process will remove the first-encountered open pixels of S 
and produce S1.

• Repeating the same process on S1 will produce S2 . The process is 
repeated until no further changes occur, where the closed outlet is 

reached.

SBS (*  ck SB ()1  )2

kB kk BBB 21 

)( BS 

}{1 BSS   )}{ BSSBS 

}{B  ),,,(),,,,( 8
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1
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Proposed scaling relationships : 

Travel-time networks

Properties of the pruned network:

1. 

2. 

3. obtained by iterative 

pruning

)( 1

1

0





 nn

N

n
SSS

SSSSSS NN   0121

NSSSS ,,,, 21 

84

Proposed scaling relationships : 

Convex hull

• Convex hull is the 

smallest convex set 

that contains all the 

points of the network.

• Since convex hull 

represents the basin 

of network, convex 

hulls of the sequence 

travel-time networks 

are generated.
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Proposed scaling relationships : 

Convex hull
Half-plane closing-based algorithm (Soille, 2005) is employed to 

generate convex hulls for these travel-time networks. 

The final convex polygon containing all the points of S yields C(S). 

86

Proposed scaling relationships : 

Convexity Measures
• The basic measures are length of networks and areas of convex hulls were 

computed to estimate the convexity measures of travel-time networks. 

• The convexity measure, CM(S) of a non-convex shape is defined as the 
ratio between the areas of Sn and C(Sn). The values of convexity measure 
range from 0 to 1. 

• The rate of change in the areas of Sn is relatively slower than that of C(Sn) 
for increasing n. In channel network, area of Sn is equivalent to the length of 
the total network, L(Sn).  Hence, the convexity measures of decreasing 
L(Sn) and A[C(Sn)]converge. 

• These measures provide a convergent series, and they are invariant under 
similarity transformations. 

• The upper limit of the convexity measure is attained when the length of the 
channel network is equal to the area of the convex hull (both being 
measured by number of pixels).

• This convexity measure of channel networks is similar to drainage density. 
Drainage density approaching 1 indicates that the channel network 
possesses space-filling property. 
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Proposed scaling relationships : 

Pruned network and convex hull

• Images

88

Proposed scaling relationships 

• Network – pruning – network length = Sn

• Convex hull computed – convex hull area = 

C(Sn)

• Convexity measures, CM = ratio between the 

areas of Sn and C(Sn). 
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Proposed scaling relationships

• Graph of lengths of the sequential pruned 

networks versus the corresponding areas of 

convex hulls.
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Proposed scaling relationships

• Relationship between channel lengths and 

convexity measures.
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Proposed scaling relationships

• Relationship between areas of convex 

hulls and convex measures.
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Proposed scaling relationships 

• Sample basin

• Simulated F-DEM basins

• Cameron basins

• Petaling basins
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Proposed scaling relationships

Allometric power-laws between travel-time channel networks, convex hulls, and 

convexity measures for model network, networks of Hortonian fractal DEM, and 

networks of fourteen basins of Cameron Highlands and Petaling region.

Network α, (R2) σ, R2 λ, R2 Rb Rl h H

Sample 0.5693, (0.9671) 0.6988, (0.8325) 0.4307, (0.9439) 3.84 1.66 - -

Basin 1 (Cameron) 0.5777, (0.9883) 0.7109, (0.9358) 0.4223, (0.9783) 3.60 2.21 0.5414 0.9714

Basin 2 (Cameron) 0.5774, (0.9925) 0.7189, (0.9586) 0.4226, (0.9861) 4.35 2.25 0.5561 1

Basin 3 (Cameron) 0.5799, (0.9934) 0.7131, (0.963) 0.4201, (0.9875) 3.31 2.39 0.5612 0.9256

Basin 4 (Cameron) 0.5521, (0.9835) 0.7814, (0.92) 0.4479, (0.9752) 4.47 3.18 0.5671 0.9506

Basin 5 (Cameron) 0.5798, (0.9905) 0.7083, (0.9469) 0.4202, (0.982) 3.31 2.16 0.5766 0.9162

Basin 6 (Cameron) 0.5819, (0.9865) 0.6955, (0.925) 0.4181, (0.9743) 4.00 2.64 0.5746 0.8597

Basin 7 (Cameron) 0.5885, (0.9887) 0.68, (0.9348) 0.4115, (0.9772) 2.82 2.39 0.5548 0.895

Basin 1 (Petaling) 0.5462, (0.969) 0.7741, (0.8561) 0.4538, (0.9557) 5.00 2.57 0.5568 0.9319

Basin 2 (Petaling) 0.5393, (0.9899) 0.8357, (0.9532) 0.4607, (0.9863) 4.00 3.51 0.5828 0.8623

Basin 3 (Petaling) 0.5198, (0.9852) 0.8953, (0.9367) 0.4802, (0.9827) 4.24 3.30 0.597 0.9019

Basin 4 (Petaling) 0.5592, (0.9938) 0.7771, (0.9684) 0.4408, (0.99) 4.24 2.96 0.5807 0.8902

Basin 5 (Petaling) 0.5729, (0.9906) 0.729, (0.9492) 0.4271, (0.9832) 4.79 3.96 0.5844 0.8704

Basin 6 (Petaling) 0.5547, (0.9872) 0.7798, (0.937) 0.4453, (0.9804) 4.89 3.42 0.5713 0.9116

Basin 7 (Petaling) 0.6059, (0.9929) 0.6387, (0.9551) 0.3941, (0.9834) 3.60 3.39 0.5865 0.8312
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Proposed scaling relationships

• These proposed scaling exponents are 
shown for basins derived from simulated 
F-DEM and TOPSAR DEMs.

• These exponents are scale-independent.

• At macroscopic level, these exponents 
complement with other existing scaling 
coefficients can be used to identify 
commonly sharing generic mechanisms in 
different river basins. 
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Fractal and multiscale analyses 

of planar geophysical networks

96

Fractal and multiscale analyses of 

networks
• A new approach of fractal dimension estimation is suggested in this 

analysis.

• Firstly, multiscale DEMs are generated via multiscale opening and 
closing transformations. The resolution of DEM becomes coarser 
with increasing cycle of opening/closing transformation. 

• Both ridge and channel networks are extracted from these 
multiscale DEMs. 

• A scaling exponent is derived by plotting the length of the network 
as function of the radius of structuring element employed to 
generate multiscale DEMs. 

• This relationship possesses a linear property on a log-log graph. 
The exponent value derived from the best fit line is fractal-like 
scaling exponent.

• The derived fractal dimension is resolution-independent as the 
networks are extracted from basins of multiple resolutions. As 
compared to box-counting dimension, which describes the space-
filling property of networks, the new proposed fractal dimension 
complements the existing methods in terrain characterisation.



J. Serra, J. Cousty, B. S. Daya Sagar                 

ISI, Univ Paris-Est 49

97

Fractal and multiscale analyses of 

networks

98

Fractal and multiscale analyses of 

networks
• Morphology Opening and Closing

• Multiscale DEM images (Opening and Closing by square 
structure element 3X3 to 21X21)
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Fractal and multiscale analyses of 

networks : Post processing

• Thresholding

• Thinning

• Ridge

• Channel

100

Fractal and multiscale analyses of 

networks : Fractal Dimension

• Graph: Network length vs scale
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Fractal and multiscale analyses of 

networks : Fractal Dimension
Network extraction using line segments Network extraction using square template

Basin Fractal dimension derived 

from ridge network.

Fractal dimension derived 

from channel 

network.

Fractal dimension derived 

from ridge network.

Fractal dimension derived 

from channel 

network.

Basin 1 1.4005 1.394 1.5015 1.5453

Basin 2 1.4097 1.4596 1.5184 1.5941

Basin 3 1.4204 1.3883 1.585 1.5926

Basin 4 1.5057 1.4068 1.7092 1.5301

Basin 5 1.4262 1.3402 1.5729 1.6233

Basin 6 1.3656 1.3314 1.5403 1.5412

Basin 7 1.3927 1.3468 1.5271 1.4273

Basin 8 1.3505 1.3688 1.512 1.4442

Basin 9 1.3349 1.3358 1.4251 1.3989

Basin 10 1.3781 1.357 1.5183 1.437

Basin 11 1.3137 1.3072 1.4263 1.3982

Basin 12 1.341 1.3342 1.5228 1.4644

Basin 13 1.299 1.3075 1.452 1.3735

Basin 14 1.3842 1.3367 1.5083 1.4658
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Fractal and multiscale analyses of 

networks : Fractal Dimension
• This relationship depicts that similar trends have been followed for both ridge and 

channel connectivity networks, which shows the duality of both networks. It also 
describes the scaling properties of the terrain, where the density of the networks 
decreases as the resolution decreases. This change is due to the fact that the diffuse 
character of the basin increases as the size of the structuring template increases. 
This relation can be reversed and estimation of lengths of these networks can be 
made from coarse scale information.

• The lengths of channel and ridge networks extracted by employing line segment 
structuring elements are significantly more than that of the networks extracted by 
convex type of square template. 

• The gradients of best fit lines of these plots indicate that the rate of change in the 
lengths of the networks across multiple resolutions. The rate derived by combination 
of segment-like structuring elements is slower than that of the networks derived by 
square element. 

• Intricacy of the networks observed for Cameron sub-basins is denser as compared to 
the intricacy of Petaling networks. In general, hilly terrain possesses higher value of 
exponent as compared to non-hilly terrain. The reason is the rate of change in the 
elevation of hilly terrain across resolutions is higher than non-hilly terrain. Relatively, 
the network intricacies will also change more rapidly for hilly terrain. 

• Since the power-law exponent is sensitive to the shape of structuring elements 
(shape-dependent), its value would be related to the shape and roughness of the 
terrain. Thus, these power laws can be related to terrain roughness characteristics. 

• The analyses of networks extracted by structuring elements of each direction provide 
new insight to understand the direction-specific terrain complexity. 
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Conclusions

• Two ways of characterising terrain through analysing DEM‟s are: 

– (i) analysing three-dimensional DEM by considering it as grey-scale 
image, and

– (ii) analysing topologically significant unique geophysical networks that 
could be decomposed from DEMs.

• In the latter case, the decomposed information is in the form of planar sets. 
Characterisation of terrain using these two mentioned forms is done via
metric based methods. These methods include morphometry, granulometry, 
fractal technique and allometry.

• Simulated Hortonian F-DEM, TOPSAR DEM‟s of Cameron and Petaling 
regions and the associated geophysical networks are considered as main 
inputs for these metric based methods. These two regions are chosen 
because they posses rather contrasting topographic constitutions. The 
Cameron region possesses high altitude basins, whereas, the Petaling 
region possesses relatively gentle-slope and rather flat topography. 

104

Conclusions (cont)

• Two main relevant features extracted from DEMs are channel and 
ridge connectivity networks. New algorithms for both ridge and 
channel networks extraction are developed based on simple 
morphologic transformations and certain logical operations. The 
advantage of the algorithms developed over the other existing 
algorithms is that it can be generalised to any kind of topography 
irrespective of topographic roughness. 

• General allometric relationships between the basic measures 
derived from channel networks and their corresponding basins. The 
relationships exhibit remarkable universality scaling attributed that 
these basins and their associated features follow commonly sharing 
generic mechanisms in their formation and subsequent spatio-
temporal evolution. All these results are in conformity with well-
documented literature on the topic.
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Conclusion (cont)

• From the planar channel network, a causal allometric relationship is 
proposed. This relationship is between the travel-time network, its 
corresponding convex hull and convexity measure. A remarkable 
universal relationship is proposed, and it can further be linked with 
the involved geophysical processes. The universality constant is 
highly dependent on basin‟s general topological and geometric 
organisation. This new relationship provides potentially valuable 
insights to further explore links with terrain characteristics, other 
established allometric relationships and geophysical processes.

• A new approach of fractal dimension estimation is suggested based 
on length of networks extracted from multiscale DEMs. The derived 
fractal dimension is resolution-independent as the networks are 
extracted from basins of multiple resolutions. 

• Regions with similar topological quantities and scaling exponents 
would have different roughness property. An alternative approach is 
proposed to quantify the terrains in terms of shape dependent 
measures, i.e. granulometric approach. These measures are scale-
invariant but shape-dependent.
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Conclusions (cont)
In summary, the key findings of this project include:

a. Verification of morphometry property and basic allometry power law on 
TOPSAR DEMs and simulated F-DEM.

b. Algorithm development for travel-time networks generation based on 
morphological pruning process.

c. Algorithm development for convex-hull construction for the travel-time 
networks.

d. Proposed convexity measures based on the length of travel-time networks 
and the area of corresponding convex hulls.

e. Proposed new power (scaling) laws on travel-time network length, convex 
hull area and the derived convexity measures.

f. Channel and ridge networks extraction from grey-scale DEM using 
morphological opening/erosion and closing/dilation respectively.

g. Proposed line segments in 4-direction as structuring element for networks 
extraction as they follow the networks pattern.

h. Proposed fractal dimension estimated based on the network length across 
multiple resolutions (i.e. multiscale DEMs).

i. Proposed average size and average roughness calculated for DEM of 
different regions and different sub-basins.
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