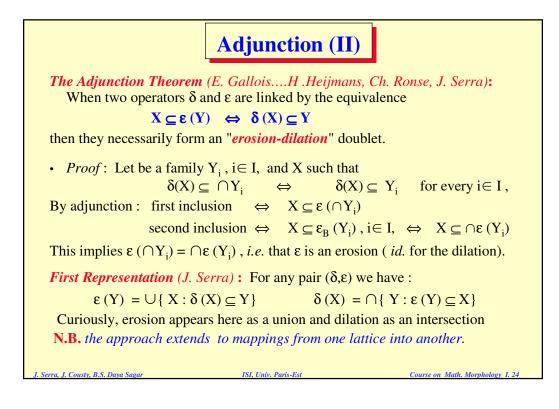
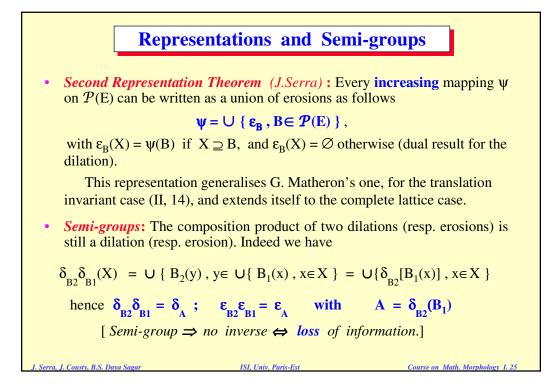
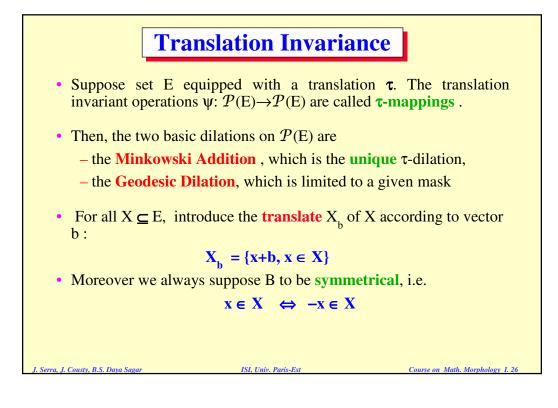
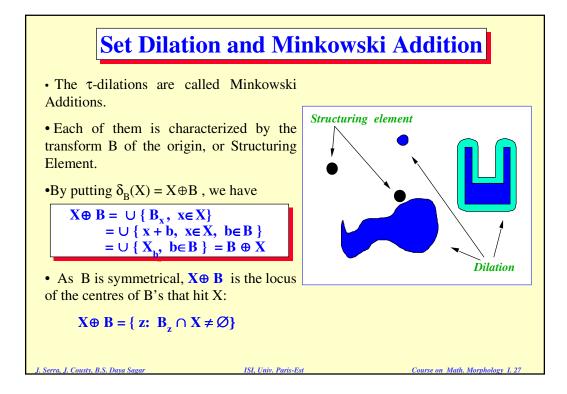


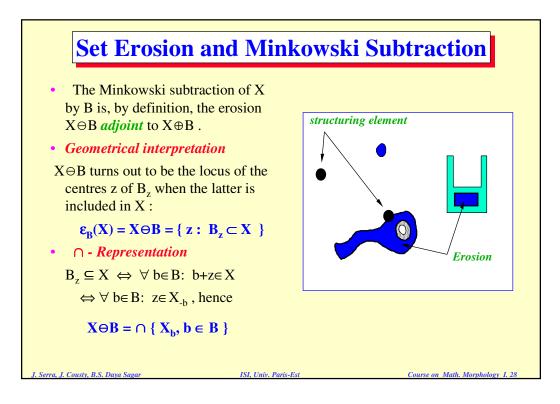
Adjunction erosion/dilation • Set Erosion : Operation $\varepsilon_{_{\mathrm{R}}}$ commutes under \cap : $\boldsymbol{\epsilon}_{\mathbf{B}}(\cap \mathbf{X}_{\mathbf{i}}) = \{ z : B(z) \subseteq \cap X_{\mathbf{i}} \} = \cap \{ z : B(z) \subseteq X_{\mathbf{i}} \} = \cap \boldsymbol{\epsilon}_{\mathbf{B}}(\mathbf{X}_{\mathbf{i}}),$ Therefore, it is effectively an erosion. • **Adjunction** : The equivalences $X \subseteq \epsilon_B^-(Y) \quad \Leftrightarrow \quad \{x \in X \Rightarrow B(x) \subseteq Y^-\} \quad \Leftrightarrow \quad \cup \{ \ B(x), \, x \in X^-\} \subseteq Y$ yield the operation $\boldsymbol{\delta}_{\mathbf{R}}(\mathbf{X}) = \bigcup \{ \mathbf{B}(\mathbf{x}), \mathbf{x} \in \mathbf{X} \}$ which commutes under \cup . The later is thus a **dilation**, said to be **adjoint** of ε . Adjunction is an involution, since by taking the inverse way, we see that ε is adjoint of δ . *Structuring Element* : Since $\delta_B(X) = \bigcup {\delta_B(x), x \in X}$, the mapping "structuring element " $x \rightarrow \delta_{R}(x) = B(x)$ suffices to characterise both - dilation $\delta : X \rightarrow \delta(X)$ - and erosion $\varepsilon : X \rightarrow \varepsilon(X)$. ISI, Univ. Paris-Est I Cousty R S Dava S Course on Math. Morpholog

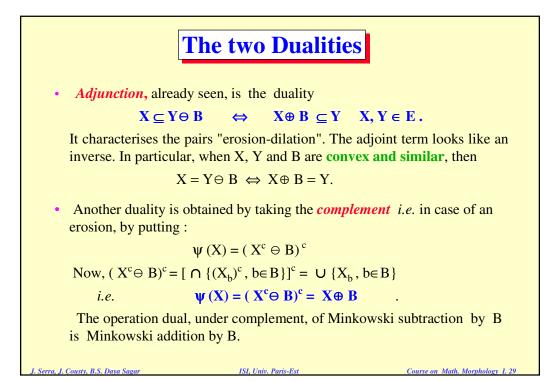


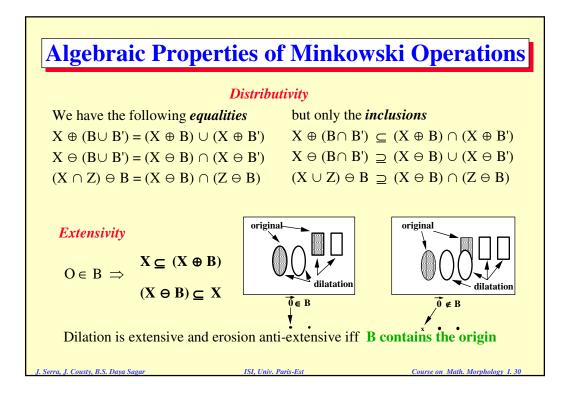


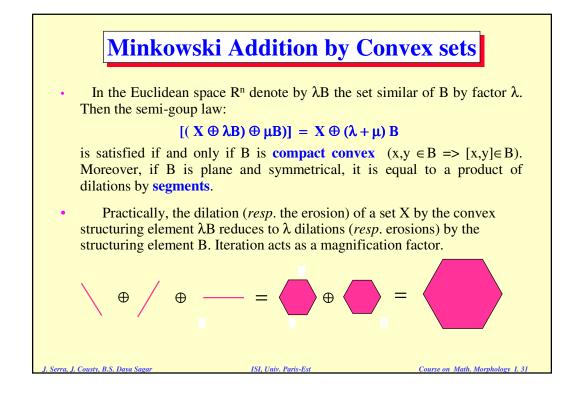


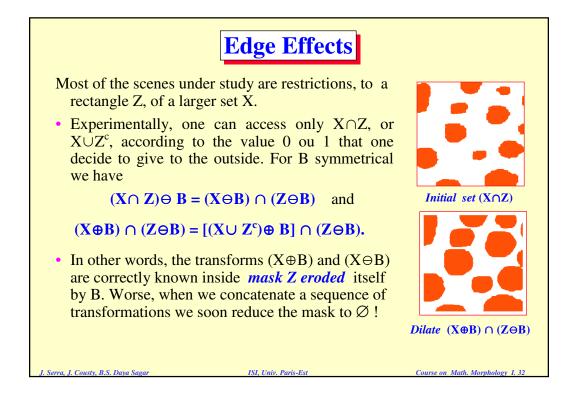


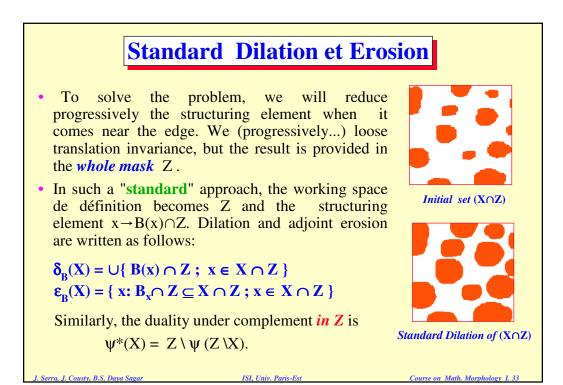


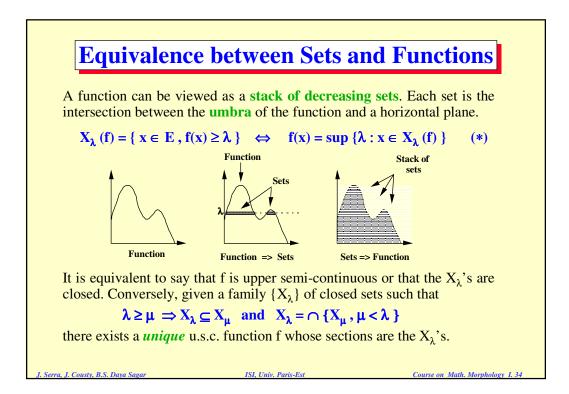


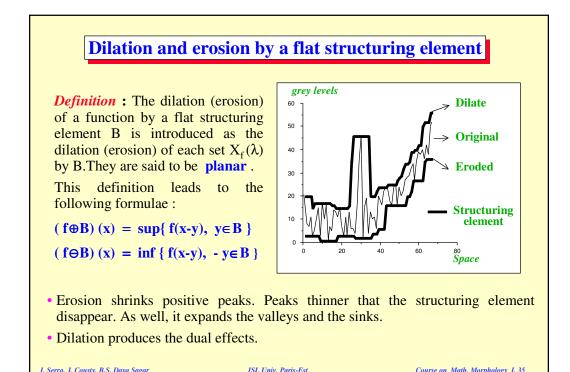


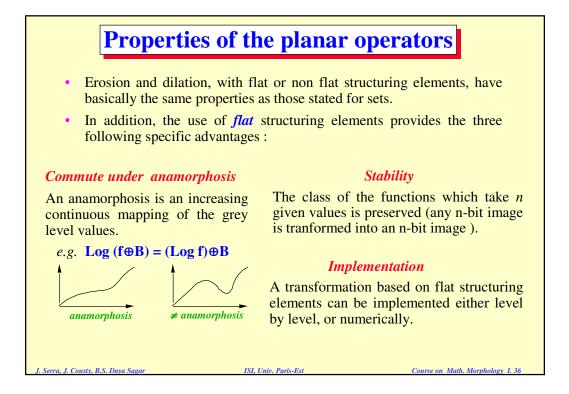


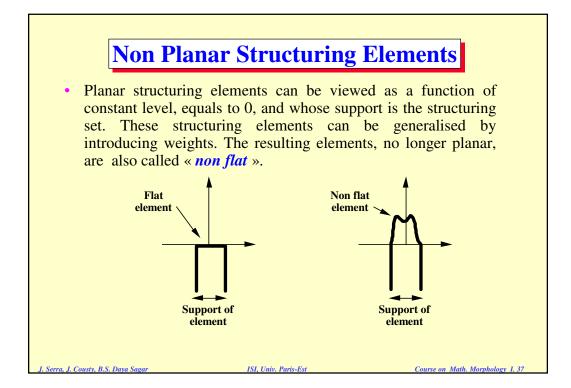


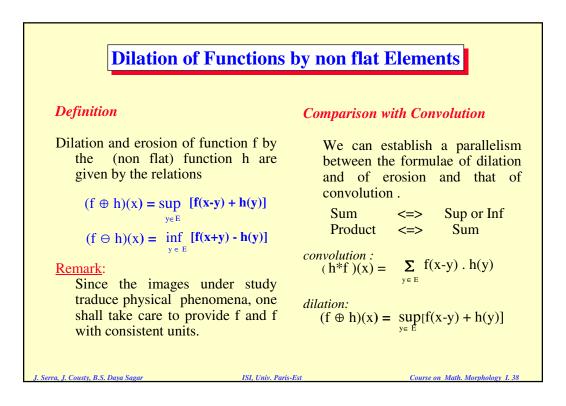


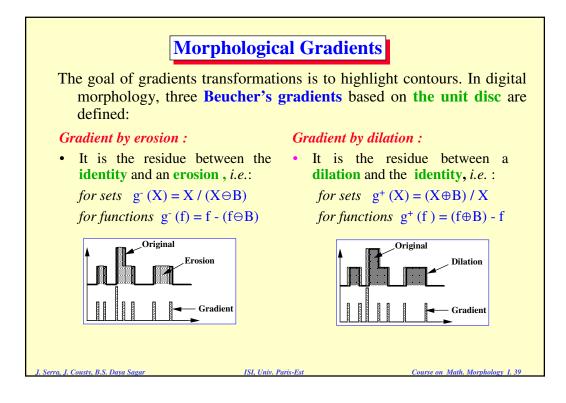


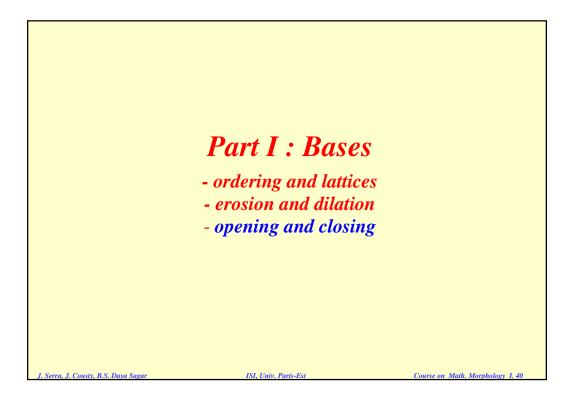


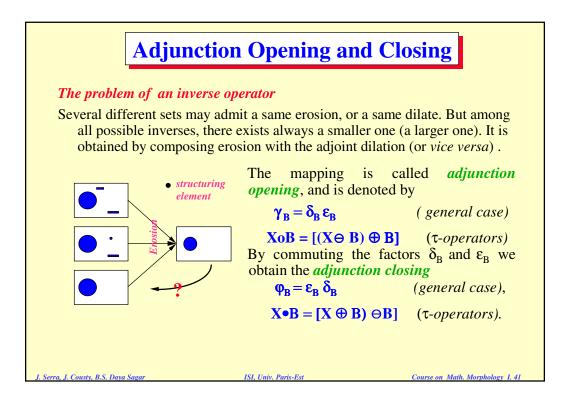


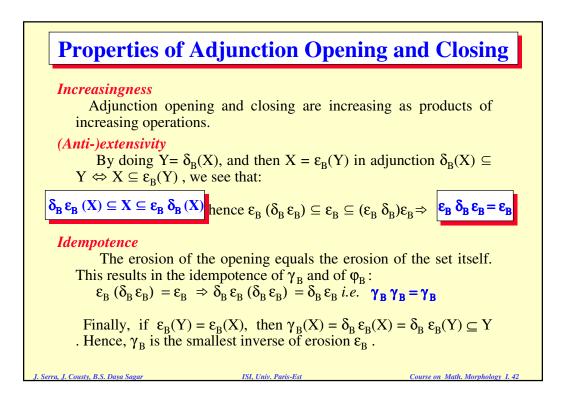


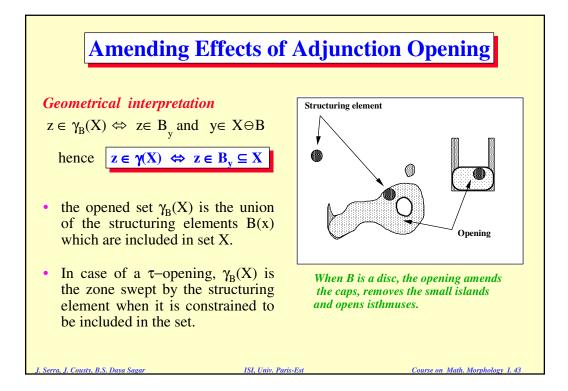


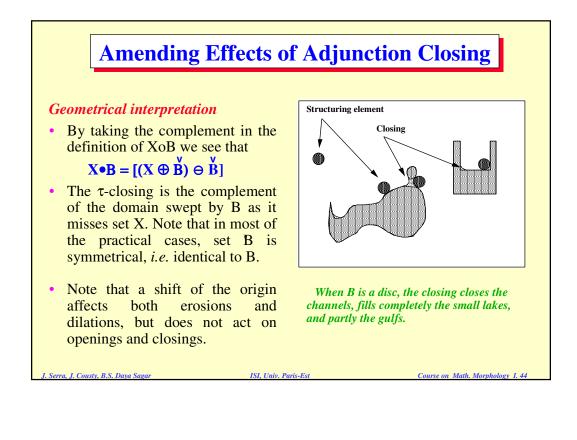


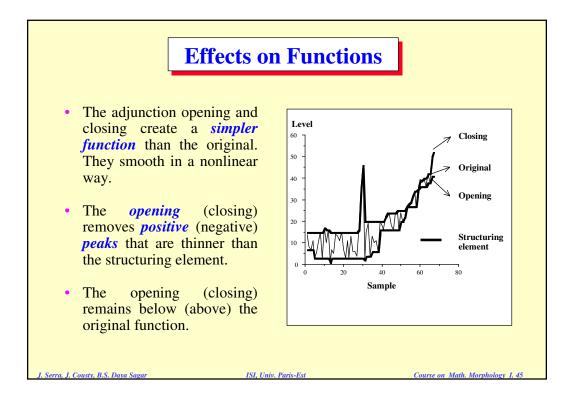


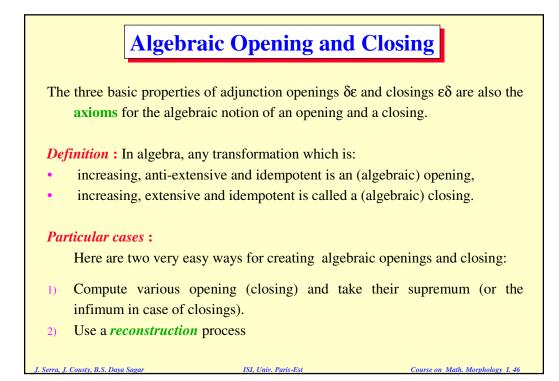












Invariant Elements

Let \mathcal{B} be the image of lattice L under the algebraic opening γ , *i.e.* $\mathcal{B} = \gamma$ (L). Since γ is idempotent, set \mathcal{B} generates the family of *invariant sets* of γ :

 $\mathbf{b} \in \mathcal{B} \iff \boldsymbol{\gamma}(\mathbf{b}) = \mathcal{B}$.

1/ Classe \mathcal{B} is *closed under sup*. For any family $\{b_i, j \in J\} \subseteq \mathcal{B}$, we have

$$\gamma(\lor b_i, j \in J) \ge \lor \{\gamma(b_i), j \in J\} = \lor (b_i, j \in J)$$

by increasingness, and the inverse inequality by anti-extensivity de γ . Moreover, $0 \in \mathcal{B}$. Note that γ does not commute under supremum.

2/ Therefore, γ is the *smallest extension* to L of the identity on \mathcal{B} , *i.e.*

 $\gamma(\mathbf{x}) = \vee \{ \mathbf{b} : \mathbf{b} \in \mathcal{B}, \mathbf{b} \le \mathbf{x} \}, \quad \mathbf{x} \in \mathbf{L} \quad (1).$

Course on Math Mornhology

[The right member is an invariant set of γ smaller than x, but also that contains $\gamma(x)$.]

ISI, Univ. Paris-Est

rra, I. Cousty, B.S. Dava S

