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Image processing addresses three types of questions : 

- Codification , 

- Feature Extraction ,

- Segmentation .

Image Processing Image Processing 
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1- Codification :

It comprises all modes of representation. In particular:

Acquisition: 
analog => digital

Compression:
change in the representation.

Synthesis:  
new image from numbers.

Analog
image Acquisition

Compression

Synthesis

Numerical
imageNumbers

Numerical
image

Numerical
image

Numerical
image

Image Processing Image Processing 
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2 - Feature Extraction :

- quality improvment, 

- filtering; 

- parameters extraction

3 - Segmentation :

i.e. partitioning the image 

into homogeneous regions

(for some criterion)

Image2

Image1
filtered

Numbers

Pixels Regions
partitioned

Image AnalysisImage Analysis
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Definitions of Mathematical MorphologyDefinitions of Mathematical Morphology

Mathematics Physics

Computer Engineering

Lattice theory for objects or 
operators in continuous or 
discrete spaces;
Algebraïc,topological and 
stochastic geometry.

Signal analysis techniques 
based on set theory aiming at 
the study of relations between 
physical and structural 
properties.

Algorithms, software, and
hardware tools for developing
image processing applications.

Signal Processing

Nonlinear signal processing
approach based on minimum 
and maximum operations.
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Linear signal processing :

The basic structure in linear signal processing is the vector

space i.e. a set of vectors V and a set of scalars K such that

1) - K is a field ;

- V is a commutative group

2) - There exists a multiplicative law between scalars and vectors.

An example :

The numerical functions on the plane, or on the space

Two Basic StructuresTwo Basic Structures
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Mathematical morphology :

The basic structure is a complete lattice i.e. a set L such that:

1) LLLL is provided with a partial ordering, i.e. a relation  ≤≤≤≤ with

A ≤≤≤≤ A
A ≤≤≤≤ B,   B ≤ ≤ ≤ ≤ A   ⇒⇒⇒⇒                A = B
A ≤≤≤≤ B,   B ≤≤≤≤ C   ⇒⇒⇒⇒                A ≤≤≤≤ C

2) For each family of elements {Xi} ∈ L, there exists in L :

a greatest lower bound ∧∧∧∧{Xi}, called infimum (or inf.) and a smallest 
upper bound ∨∨∨∨{Xi}, called supremum ( or sup.)

Examples :

The subsets of a set; and again the numerical functions.

Two Basic StructuresTwo Basic Structures
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Linear Signal Processing

Since the structure is that of a vector space, whose fundamental

laws are addition and scalar product, then

the basic operations are those which preserve these laws, i.e.

which commute under them:

ΨΨΨΨ(∑∑∑∑ λλλλi fi ) = ∑∑∑∑ λλλλi Ψ Ψ Ψ Ψ (fi )

The resulting operator is called convolution.

Basic  OperationsBasic  Operations
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Mathematical Morphology

Since the Lattice structure rests on supremum and infimum, the basic operations

are those which preserve these fundamental laws, namely

- ordering Preserving :

{ X ≤ ≤ ≤ ≤ Y  ⇒⇒⇒⇒  Ψ  Ψ  Ψ  Ψ(X) ≤ Ψ≤ Ψ≤ Ψ≤ Ψ(Y) } ⇔⇔⇔⇔ increasingness

- commuting under supremum :

Ψ Ψ Ψ Ψ (∨∨∨∨Xi ) = ∨∨∨∨Ψ Ψ Ψ Ψ (Xi ) ⇔⇔⇔⇔ Dilation

- commuting under infimum :

Ψ Ψ Ψ Ψ (∧∧∧∧Xi ) = ∧∧∧∧Ψ Ψ Ψ Ψ (Xi ) ⇔  ⇔  ⇔  ⇔  Erosion

Basic  OperationsBasic  Operations
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Examples  of  LatticesExamples  of  Lattices

1. Lattices of real or integer numbers:

This total ordering is given by the succession of the values:

Sup:∨∨∨∨ Inf:  ∧ ∧ ∧ ∧ (in the numerical sense)

Universal bounds (extreme elements):   -∞, +∞

2 Lattice of subsets P(E)  of a set E:

The partial ordering is defined by the inclusion law:

Sup: ∪∪∪∪ Inf:   ∩ ∩ ∩ ∩ (set union and intersection)

Universal bouds : Ε,  ∅  

X Y

Y ⊂⊂⊂⊂ X

- 
O

rd
er

 +
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Examples  of  LatticesExamples  of  Lattices

X

Y

Sup

3. Lattice of convex sets:

The order is defined by the inclusion law:

Sup : Convex hull of the union  
Inf : ∩∩∩∩ (set intersection)

3. Sub-lattice of the rectangles:

In 2-D, the rectangles parallel to the axes form a lattice, but not the
squares !
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Lattices of FunctionsLattices of Functions

• If  E is an arbitrary set, and if T designates R,  Z one of their closed subsets, 
then the functions  f : E → T generate in turn a new lattice, denoted by TE, 
for  the product ordering

f ≤ g       iff f(x) ≤ g(x)            for all   x ∈  E ,

where sup and inf derive directly from those of T, i.e.

((((∨∨∨∨ fi )(x) = ∨∨∨∨ fi (x)        (∧∧∧∧ fi )(x) = ∧∧∧∧ fi (x) .

By convention, the same symbol 0 stands for the minimum in T and in TE .

• In TE,  the pulse functions :
kx,t (y)  =  t       when   x = y          ;         kx,t (y)  =  0     when     x ≠ ≠ ≠ ≠ y                                       

are sup-generators, i.e. any  f : E → T  is  a  supremum of pulses.

• The approach  extends  directly to the products of  T type lattices, i.e. to 
multivariate functions ( e.g. color images, motion).

____ ____
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Lattices of PartitionsLattices of Partitions

Definition : A partition of space E is a 
mapping  D:  E →P(E)  such that
(i)    ∀∀∀∀ x ∈ ∈ ∈ ∈ E ,      x ∈ ∈ ∈ ∈ D(x) 

(ii) ∀∀∀∀ (x, y) ∈ ∈ ∈ ∈ E,  

either D(x) = D(y)    

or D(x) ∩∩∩∩ D(y) = ∅∅∅∅

The partitions of E form a lattice DDDD for 
the ordering according to which D ≤ D' 
when each class of  D is included in a 
class of D'. The largest element of D is 
E itself, and the smallest one is the 
pulverizing of E into all its points. 

The sup of the two types of 

cells is the pentagon where

their boundaries coincide. 

The inf, simpler, is obtained 

by intersecting  the cells.
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• A subset L’ of lattice L is called a sub-lattice if it closed under 

∨ and ∧ and contains the two extremes 0 and m of L. 

• A lattice L is complemented when for every a ∈ L , there exists 

one b ∈ L at least such that 

a ∨∨∨∨ b = m       ;        a ∧∧∧∧ b  =  0 .

• A non zero element  a  of a lattice L is an atom if

x ≤ ≤ ≤ ≤ a           ⇒⇒⇒⇒ x = 0  or  x = a .

• An element x ∈ L  is said to be a co-prime when 

x ≤ ≤ ≤ ≤ a ∨∨∨∨ b     ⇒⇒⇒⇒ x ≤ ≤ ≤ ≤ a     or    x ≤ ≤ ≤ ≤ b .

Atoms , Co-primes and ComplementAtoms , Co-primes and Complement
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Sup-generators ; DistributivitySup-generators ; Distributivity

• A lattice L is sup-generated when it has a subset X, called a sup-generator, 
such that every  a ∈ L  is the supremum of the elements of  X that it majorates

a =  ∨∨∨∨ { x ∈∈∈∈ X , x ≤ ≤ ≤ ≤ a }

When the sup-generators are co-prime (resp. atomic),  then lattice L is said to 
be co-prime (resp. atomic) .

• Lattice L is distributive if, for all   a , y , z ∈ L  

a ∧∧∧∧ ( y ∨∨∨∨ z )  =  ( a ∧∧∧∧ y ) ∨∨∨∨ ( a ∧∧∧∧ z ) or, equivalently

a ∨∨∨∨ ( y ∧∧∧∧ z )  =  ( a ∨∨∨∨ y ) ∧∧∧∧ ( a ∨∨∨∨ z ) .

• When theses conditions extend to infinity, lattice L is infinite distributive

a ∧∧∧∧ ( ∨∨∨∨ yi , i ∈∈∈∈ I )  =  ∨∨∨∨ { ( a ∧∧∧∧ yi ) , i ∈∈∈∈ I }

a ∨∨∨∨ ( ∧∧∧∧ yi , i ∈∈∈∈ I )  =  ∧∧∧∧ { ( a ∨∨∨∨ yi ) , i ∈∈∈∈ I }

( NB : the two conditions are no longer equivalent !)
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Characterisation of PPPP(E) LatticesCharacterisation of PPPP(E) Lattices

Theorem ( G.Matheron): The three following statements are equivalent

• L is complemented and generated by the class Q of its co-primes ;

• L is isomorphic to a  PPPP(E) type lattice ;

• L is isomorphic to lattice PPPP(Q) . 

When they are satisfied, L is infinite distributive

Other lattices

• The function lattice TE is infinite distributive but not complemented. 

The  pulses are sup-generating co-primes, but they are not atoms .

• The lattice D of the partitions is sup-generated, but neither distributive

nor complemented.

_
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Notion of dualityNotion of duality

The two laws of Sup. 
and Inf. play a 
symmetrical role. 
Each involution (c) 
that permutes them 
generates a duality. 
More precisely,

Definition: Two 
operators ψ and ψ∗
are dual with respect 
to the involution (c) 
when:

ψ ( ψ ( ψ ( ψ ( Xc ) = [ ψ∗ ψ∗ ψ∗ ψ∗ (X)] c

Examples of involution :

Lattice of subsets of a set: The involution is the 
complement. It translates to the classical 
notion of foreground and background:

Lattice of real functions bounded by [0,M]: The 
involution is the reflection with respect to 
M/2.

Sets
Compl.

Involution

0

M

0

M

E E
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Self dualitySelf duality

Linear  processing :

• The convolution 
operation is self 
dual, that is dual of 
itself:
f * (-g) = - (f * g)

• This means that 
positive or negative 
(bright and dark) 
components are 
processed in a 
symmetrical way.

Mathematical morphology :

• The fundamental duality between Sup. 
and Inf. translates to all morphological 
tools.

• In general, morphological operations go 
by pair and correspond to each other by 
duality: as examples erosion and dilation, 
opening and closing.

• However, operators may also be 
- self-dual, i.e. 

ψψψψ ( Xc ) = [ ψψψψ (X)] c ( e.g. morph.  centre)

- or invariant under duality, i.e. 

ψψψψ ( Xc ) =  ψψψψ (X) (e.g. boundary set in Rn )
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Input Output ComparisonInput Output Comparison

X

ϕϕϕϕ(X)

f
ϕϕϕϕ(f)

Extensivity anti-extensivity : A transformation is extensive if its 
output is always greater than its input. By duality, it is anti-
extensivity when the output is always smaller than the input.

Extensivity :   X ⊆ Ψ ⊆ Ψ ⊆ Ψ ⊆ Ψ (X)   anti-extensivity :    X ⊇ Ψ ⊇ Ψ ⊇ Ψ ⊇ Ψ (X)

Set (extensivity)                    Function (extensivity)

Idempotence : A transformation is idempotent if its output is 
invariant with respect to the transformation itself

Idempotence:       Ψ Ψ Ψ Ψ [ Ψ Ψ Ψ Ψ (X) ] = Ψ Ψ Ψ Ψ (X)
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Lattices  of  OperatorsLattices  of  Operators

With every lattice L is associated the class L' of the  operations  α: 
L→L . Now, L' turns out to be a lattice where :

αααα ≤≤≤≤ β    β    β    β    (in L' )          ⇔⇔⇔⇔ αααα(A) ≤≤≤≤ ββββ(A)    for all A ∈ L

(∨∨∨∨ααααi) (A)  =  ∨∨∨∨ααααi (A)       (∧∧∧∧ααααi) (A)  =  ∧∧∧∧ααααi (A)

( in L' ) ( in L ) ( in L' ) ( in L ) 

• for example, The mappings which are :

- increasing ,  - or extensive ,   - or anti-extensive ,

over L are each a sub-lattice of L' ;

• More generally, we shall meet lattices for :

- openings - filters - activity etc...

J. Serra, J. Cousty, B.S. Daya Sagar                                               ISI, Univ. Paris-Est Course on  Math. Morphology I. 22

Part I : Bases
- ordering and lattices

- erosion and dilation

- opening and closing
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Adjunction erosion/dilationAdjunction erosion/dilation

• Set Erosion : Operation  ε
Β

commutes  under ∩∩∩∩ ::::

εεεε
ΒΒΒΒ
(∩∩∩∩ X

i 
) = {z: B(z) ⊆ ∩ X

i
} =  ∩ {z: B(z) ⊆ X

i
} = ∩∩∩∩ εεεε

ΒΒΒΒ
(X

i
) ,

Therefore, it is effectively an  erosion.

• Adjunction : The equivalences

X ⊆ εΒ (Y)    ⇔   {x∈X ⇒ B(x) ⊆ Y }   ⇔   ∪{ B(x), x∈X } ⊆ Y

yield  the operation

δδδδB
(X) = ∪ { ∪ { ∪ { ∪ { B (x), x∈∈∈∈X }

which commutes  under ∪∪∪∪.  The later is thus a dilation, said to be adjoint
of ε

.
. Adjunction is an involution, since by taking the inverse way, we see 

that ε is adjoint of δ. 

• Structuring Element :    Since δΒ(X) = ∪∪∪∪ {δΒ(x),  x∈X}, the mapping
" structuring element "  x →→→→δδδδB

(x) = B(x) suffices to characterise  both

- dilation  δ  :  X→ δ(X)    - and  erosion  ε  :  X→ ε(X) .
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Adjunction (II)Adjunction (II)

The Adjunction Theorem (E. Gallois….H .Heijmans, Ch. Ronse, J. Serra): 
When two operators δ and ε are linked by the equivalence

X ⊆ ε ⊆ ε ⊆ ε ⊆ ε (Y)    ⇔   δ ⇔   δ ⇔   δ ⇔   δ (X) ⊆ ⊆ ⊆ ⊆ Y

then they necessarily form an "erosion-dilation" doublet.

• Proof :  Let be a family Yi , i∈ I,  and X such that

δ(X) ⊆  ∩Yi ⇔            δ(X) ⊆  Yi for every i∈ I ,

By adjunction :   first inclusion      ⇔     X ⊆ ε (∩Yi) 

second inclusion  ⇔ X ⊆ εΒ (Yi) , i∈ I,   ⇔ X ⊆ ∩ε (Yi)

This implies ε (∩Yi) = ∩ε (Yi) , i.e. that ε is an erosion ( id. for the dilation).

First Representation (J. Serra) :  For any pair (δ,ε) we have : 

ε (Y)  = ∪{ X : δ (X) ⊆ Y} δ (X)  = ∩{ Y : ε (Y) ⊆ X}

Curiously, erosion appears here as a union and dilation as an intersection 

N.B. the approach extends  to mappings from one lattice into another.
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Representations  and  Semi-groupsRepresentations  and  Semi-groups

• Second Representation Theorem (J.Serra) : Every increasing mapping ψ 
on P(E) can be written as a union of erosions as follows

ψ ψ ψ ψ = ∪∪∪∪ { εεεεΒΒΒΒ , B∈∈∈∈ PPPP(E) } ,   

with εΒ(X) = ψ(B)  if  X ⊇ B,  and εΒ(X) = ∅ otherwise (dual result for the 

dilation).

This representation generalises G. Matheron’s one, for the translation 

invariant case (II, 14), and extends itself to the complete lattice case.

• Semi-groups: The composition product of two dilations (resp. erosions) is 
still a dilation (resp. erosion). Indeed we have

δ
B2

δ
B1

(X)   =  ∪∪∪∪ { B2(y) , y∈ ∪∪∪∪{ B1(x) , x∈X }  =  ∪∪∪∪{δ
B2

[B1(x)] , x∈X }

hence  δδδδ
B2

δδδδ
B1  

=  δδδδ
A

;      εεεε
B2

εεεε
B1 

=  εεεε
A

with         A  =  δδδδ
B2

((((B1)

[ Semi-group ⇒⇒⇒⇒ no  inverse ⇔ ⇔ ⇔ ⇔ loss of  information.]
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Translation InvarianceTranslation Invariance

• Suppose set E equipped with a translation ττττ. The translation 
invariant operations ψ: P(E)→P(E) are called ττττ-mappings .

• Then, the two basic dilations on P(E) are

– the Minkowski Addition , which is the unique τ-dilation,

– the Geodesic Dilation, which is limited to a given mask

• For all X ⊆ ⊆ ⊆ ⊆ E,  introduce the translate X
b

of X according to vector 
b :

X
b

= {x+b, x ∈∈∈∈ X}

• Moreover we always suppose B to be symmetrical, i.e.

x ∈ ∈ ∈ ∈ X    ⇔   ⇔   ⇔   ⇔   −−−−x ∈ ∈ ∈ ∈ X
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Set Dilation and Minkowski AdditionSet Dilation and Minkowski Addition

Structuring element

• The τ-dilations are called Minkowski

Additions. 

• Each of them is characterized by the 

transform B of the origin, or Structuring 

Element. 

•By putting δ
B
(X) = X⊕B , we have

• As  B is symmetrical, X⊕⊕⊕⊕ B is the locus 

of the centres of B’s that hit X:

X⊕⊕⊕⊕ B = { z:  B
z
∩∩∩∩ X ≠ ∅}≠ ∅}≠ ∅}≠ ∅}

X⊕⊕⊕⊕ B =  ∪∪∪∪ { Bx ,  x∈∈∈∈X}
= ∪∪∪∪ { x + b,  x∈∈∈∈X,  b∈∈∈∈B }        
= ∪∪∪∪ { X

b
,  b∈∈∈∈B }  = B ⊕⊕⊕⊕ X

X⊕⊕⊕⊕ B =  ∪∪∪∪ { Bx ,  x∈∈∈∈X}
= ∪∪∪∪ { x + b,  x∈∈∈∈X,  b∈∈∈∈B }        
= ∪∪∪∪ { X

b
,  b∈∈∈∈B }  = B ⊕⊕⊕⊕ X

Dilation
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Set Erosion and Minkowski SubtractionSet Erosion and Minkowski Subtraction

• The Minkowski subtraction of X  

by B is, by definition, the erosion 

X�B adjoint to X⊕B .

• Geometrical interpretation

X�B turns out to be the locus of the 

centres z of Bz when the latter is 

included in X : 

εεεεB
(X) = X����B = { z :  Bz ⊂⊂⊂⊂ X  }

• ∩∩∩∩ - Representation

Bz ⊆⊆⊆⊆ X  ⇔  ∀ b∈B:  b+z∈X

⇔ ∀ b∈B:  z∈X-b , hence

X����B = ∩∩∩∩ { Xb, b ∈∈∈∈ B }

structuring element

Erosion
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The two DualitiesThe two Dualities

• Adjunction, already seen, is  the  duality

X ⊆ ⊆ ⊆ ⊆ Y���� B        ⇔       ⇔       ⇔       ⇔       X⊕⊕⊕⊕ B  ⊆ ⊆ ⊆ ⊆ Y     X, Y ∈∈∈∈ E .

It characterises the pairs "erosion-dilation". The adjoint term looks like an 

inverse. In particular, when X, Y and B are convex and similar, then

X = Y� B  ⇔  X⊕ B = Y.

• Another duality is obtained by taking the complement i.e. in case of an 

erosion, by putting :

ψ (X) = ( Xc
� B)

c

Now, ( Xc
� B)c = [ ∩∩∩∩ {(Xb)

c , b∈B}]
c

=  ∪∪∪∪ {Xb , b∈B} 

i.e. ψ ψ ψ ψ (X) = ( Xc
���� B)c =  X⊕⊕⊕⊕ B .

The operation dual, under complement, of Minkowski subtraction  by  B 

is  Minkowski addition by B.
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Algebraic Properties of Minkowski OperationsAlgebraic Properties of Minkowski Operations

:

0 ∈ ∈ ∈ ∈ B 0  ∉ ∉ ∉ ∉ B

x

original

dilatation

original

dilatation

Extensivity

Dilation is extensive and erosion anti-extensive iff B contains the origin

Distributivity

We have the following equalities

X ⊕ (B∪ B') = (X ⊕ B) ∪ (X ⊕ B') 

X � (B∪ B') = (X � B) ∩ (X � B')

(X ∩ Z) � B = (X � B) ∩ (Z � B)

but only the inclusions

X ⊕ (B∩ B')  ⊆ (X ⊕ B) ∩ (X ⊕ B')

X � (B∩ B')  ⊇ (X � B) ∪ (X � B')

(X ∪ Z) � B  ⊇ (X � B) ∩ (Z � B)

X ⊆  ⊆  ⊆  ⊆  (X ⊕⊕⊕⊕ B)

(X ���� B) ⊆  ⊆  ⊆  ⊆  X

Ο ∈ B  ⇒ 
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Minkowski Addition by Convex setsMinkowski Addition by Convex sets

• In the Euclidean space Rn denote by λB the set similar of B by factor λ. 
Then the semi-goup law:

[( X ⊕ ⊕ ⊕ ⊕ λΒλΒλΒλΒ) ⊕ ) ⊕ ) ⊕ ) ⊕ µΒµΒµΒµΒ)]  =  )]  =  )]  =  )]  =  X ⊕ (λ + µ) Β⊕ (λ + µ) Β⊕ (λ + µ) Β⊕ (λ + µ) Β

is satisfied if and only if B is compact convex  (x,y ∈B => [x,y]∈B). 
Moreover, if B is plane and symmetrical, it is equal to a product of 
dilations by segments.

• Practically, the dilation (resp. the erosion) of a set X by the convex 
structuring element λB reduces to λ dilations (resp. erosions) by the 
structuring element B. Iteration acts as a magnification factor.

⊕ =⊕⊕ =
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Edge EffectsEdge Effects

Most of the scenes under study are restrictions, to  a 
rectangle Z, of a larger set X.

• Experimentally, one can access only X∩Z, or 
X∪Zc, according to the value 0 ou 1 that one 
decide to give to the outside. For B symmetrical 
we have

(X∩∩∩∩ Z)���� B = (X����B) ∩∩∩∩ (Z����B)    and 

(X⊕⊕⊕⊕B) ∩∩∩∩ (Z����B) = [(X∪∪∪∪ Zc)⊕⊕⊕⊕ B] ∩∩∩∩ (Z����B).

• In other words, the transforms (X⊕B) and (X�B) 
are correctly known inside  mask Z eroded  itself 
by B. Worse, when we concatenate a sequence of 
transformations we soon reduce the mask to ∅ !

Dilate  (X⊕⊕⊕⊕B) ∩∩∩∩ (Z����B)

Initial  set (X∩∩∩∩Z)



17

J. Serra, J. Cousty, B.S. Daya Sagar                                               ISI, Univ. Paris-Est Course on  Math. Morphology I. 33

• To solve the problem, we will reduce 
progressively the structuring element when  it 
comes near the edge. We (progressively...) loose 
translation invariance, but the result is provided in 
the whole mask Z .

• In such a "standard" approach, the working space
de définition becomes Z and the  structuring 
element x→B(x)∩Z. Dilation and adjoint erosion 
are written as follows:

δδδδ
B
(X) = ∪∪∪∪{ B(x) ∩∩∩∩ Z ;  x ∈ ∈ ∈ ∈ X ∩∩∩∩ Z }

εεεε
B
(X) = { x: Bx∩∩∩∩ Z ⊆ ⊆ ⊆ ⊆ X ∩∩∩∩ Z ; x ∈ ∈ ∈ ∈ X ∩∩∩∩ Z }

Similarly, the duality under complement in Z is

ψ*(X) =  Z \ ψ (Z \X).

Standard  Dilation et ErosionStandard  Dilation et Erosion

Initial  set (X∩∩∩∩Z)

Standard Dilation of (X∩∩∩∩Z)
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Equivalence between Sets and FunctionsEquivalence between Sets and Functions

A function can be viewed as a stack of decreasing sets. Each set is the 
intersection between the umbra of the function and a horizontal plane.

Xλλλλ (f) = { x ∈ ∈ ∈ ∈ E , f(x) ≥ λ ≥ λ ≥ λ ≥ λ }  ⇔     ⇔     ⇔     ⇔     f(x) = sup {λ : λ : λ : λ : x ∈ ∈ ∈ ∈ Xλλλλ (f) } (∗∗∗∗)

It is equivalent to say that f is upper semi-continuous or that the Xλ’s are 
closed. Conversely, given a family {Xλ} of closed sets such that 

λ ≥ µ  λ ≥ µ  λ ≥ µ  λ ≥ µ  ⇒⇒⇒⇒    Xλλλλ ⊆ ⊆ ⊆ ⊆ Xµµµµ and   Xλλλλ = ∩ {∩ {∩ {∩ {Xµµµµ , µ < λ }µ < λ }µ < λ }µ < λ }

there exists a unique u.s.c. function f whose sections are the Xλ’s.

Function

λλλλ

Function

Sets

Function  =>  Sets Sets => Function

                        

                        

                        

                        

                        

                        

                        

                        

                        

                        

                        

                        

                        

                        

                        

                        

                        

                        

                        

                        

                        

                        

                        

                        

Stack of  
sets
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Dilation and erosion by a flat structuring elementDilation and erosion by a flat structuring element

Definition : The dilation (erosion) 
of a function by a flat structuring 
element B is introduced as the 
dilation (erosion) of each set Xf (λ) 
by B.They are said to be  planar . 

This definition leads to the 
following formulae :

( f⊕⊕⊕⊕B) (x) =  =  =  =  sup{ f(x-y),  y∈∈∈∈B }

( f����B) (x) =  =  =  =  inf { f(x-y),  - y∈∈∈∈B }

• Erosion shrinks positive peaks. Peaks thinner that the structuring element 
disappear. As well, it expands the valleys and the sinks.

• Dilation produces the dual effects.
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Properties of the planar operatorsProperties of the planar operators

• Erosion and dilation, with flat or non flat structuring elements, have  
basically the same properties as those stated for sets.

• In addition, the use of flat structuring elements provides the three 
following specific advantages :

Commute under anamorphosis

An anamorphosis is an increasing
continuous mapping of the grey
level values.

e.g.  Log (f⊕⊕⊕⊕B) = (Log f)⊕⊕⊕⊕B

Stability

The class of the functions which take n
given values is preserved (any n-bit image 
is tranformed into an n-bit image ).

Implementation

A transformation based on flat structuring
elements can be implemented either level
by level, or numerically. anamorphosis ≠≠≠≠ anamorphosis
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Non Planar Structuring ElementsNon Planar Structuring Elements

• Planar structuring elements can be viewed as a function of 
constant level, equals to 0, and whose support is the structuring 
set. These structuring elements can be generalised by 
introducing weights. The resulting elements, no longer planar, 
are  also called « non flat ».

Support of 
element

Flat 
element

Support of 
element

Non flat 
element
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Definition

Dilation and erosion of function f by 
the  (non flat) function h are 
given by the relations

Remark:
Since the images under study 
traduce physical  phenomena, one 
shall take care to provide f and f 
with consistent units. 

Dilation of Functions by non flat ElementsDilation of Functions by non flat Elements

Comparison with Convolution

We can establish a parallelism 
between the formulae of dilation 
and of erosion and that of  
convolution .

Sum           <=>      Sup or Inf
Product      <=>        Sum

convolution :

dilation:

[f(x+y) - h(y)]inf
y  ∈ E

[f(x-y) + h(y)](f ⊕ h)(x) = sup
y∈E

( h*f )(x) = f(x-y) . h(y)∑∑∑∑
∈y E

[f(x-y) + h(y)]sup
y∈ E

(f � h)(x) =

(f ⊕ h)(x) =
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Morphological GradientsMorphological Gradients

Gradient by erosion :

• It is the residue between the
identity and an erosion , i.e.:

for sets   g- (X) = X / (X�B)

for functions g- (f) = f - (f�B)

The goal of gradients transformations is to highlight contours. In digital 
morphology, three Beucher’s gradients based on the unit disc are 
defined:

Gradient by dilation :

• It is the residue between a 
dilation and the  identity, i.e. :

for sets   g+ (X) = (X⊕B) / X

for functions  g+ (f ) = (f⊕B) - f

Original

Erosion

Gradient

Original

Dilation

Gradient
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Part I : Bases
- ordering and lattices

- erosion and dilation

- opening and closing
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The mapping is called adjunction  
opening, and is denoted by

γγγγ ΒΒΒΒ = δ= δ= δ= δΒ Β Β Β εεεεΒΒΒΒ ( general case)

XoB = [(X���� B) ⊕ Β]       ⊕ Β]       ⊕ Β]       ⊕ Β]       (τ-operators) 
By commuting the factors δΒ and εΒ we 
obtain the adjunction closing

ϕϕϕϕΒΒΒΒ = = = = εεεεΒΒΒΒ δδδδΒΒΒΒ (general case),

X•Β = [•Β = [•Β = [•Β = [X ⊕ Β) ⊕ Β) ⊕ Β) ⊕ Β) ����B]     (τ-operators).

Adjunction Opening and ClosingAdjunction Opening and Closing

The problem of  an inverse operator

Several different sets may admit a same erosion, or a same dilate. But among 
all possible inverses, there exists always a smaller one (a larger one). It is 
obtained by composing erosion with the adjoint dilation (or vice versa) . 

E
ro

si
o

n

structuring

element

?
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Properties of Adjunction Opening and ClosingProperties of Adjunction Opening and Closing

Increasingness
Adjunction opening and closing are increasing as products of 

increasing operations.

(Anti-)extensivity
By doing Y= δΒ(X), and then X = εΒ(Y) in adjunction δΒ(X) ⊆

Y ⇔ X ⊆ εΒ(Y) , we see that:

hence εΒ (δΒ εΒ) ⊆ εΒ ⊆ (εΒ δΒ)εΒ⇒

Idempotence
The erosion of the opening equals the erosion of the set itself. 

This results in the idempotence of γ Β and of ϕΒ :
εΒ (δΒ εΒ)  = εΒ ⇒ δΒ εΒ (δΒ εΒ)  = δΒ εΒ i.e. γγγγ ΒΒΒΒ γγγγ ΒΒΒΒ = γ= γ= γ= γ ΒΒΒΒ

Finally,  if  εΒ(Y) = εΒ(X),  then γ Β(X) = δΒ εΒ(X) = δΒ εΒ(Y) ⊆ Y 
. Hence, γ Β is the smallest inverse of erosion εΒ .

δδδδΒ Β Β Β εεεεΒΒΒΒ (X) ⊆⊆⊆⊆ X ⊆⊆⊆⊆ εεεεΒΒΒΒ δδδδΒ Β Β Β (X)δδδδΒ Β Β Β εεεεΒΒΒΒ (X) ⊆⊆⊆⊆ X ⊆⊆⊆⊆ εεεεΒΒΒΒ δδδδΒ Β Β Β (X) εεεεΒΒΒΒ δδδδΒ Β Β Β εεεεΒΒΒΒ = = = = εεεεΒΒΒΒ
εεεεΒΒΒΒ δδδδΒ Β Β Β εεεεΒΒΒΒ = = = = εεεεΒΒΒΒ
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Amending Effects of Adjunction OpeningAmending Effects of Adjunction Opening

Geometrical  interpretation

z ∈ γΒ(X) ⇔ z∈ B
y

and y∈ X�B

hence

• the opened set γΒ(X) is the union 
of the structuring elements B(x) 
which are included in set X.

• In case of a τ−opening, γΒ(X) is 
the zone swept by the structuring 
element when it is constrained to 
be included in the set.

Structuring element

Opening

When B is a disc, the opening amends
the caps, removes the small islands 

and opens isthmuses.

z ∈ γ∈ γ∈ γ∈ γ(X)  ⇔⇔⇔⇔ z ∈ ∈ ∈ ∈ By ⊆⊆⊆⊆ Xz ∈ γ∈ γ∈ γ∈ γ(X)  ⇔⇔⇔⇔ z ∈ ∈ ∈ ∈ By ⊆⊆⊆⊆ X
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Amending Effects of Adjunction ClosingAmending Effects of Adjunction Closing

Geometrical interpretation

• By taking the complement in the 
definition of XoB we see that

X•Β = [(•Β = [(•Β = [(•Β = [(X ⊕ Β) ⊕ Β) ⊕ Β) ⊕ Β) ���� B]

• The τ-closing is the complement 
of the domain swept by B as it 
misses set X. Note that in most of 
the practical cases, set B is 
symmetrical, i.e. identical to B.

• Note that a shift of the origin 
affects both erosions and 
dilations, but does not act on 
openings and closings.

Structuring element

Closing

When B is a disc, the closing closes the 
channels, fills completely the small lakes, 
and partly the gulfs.

v

v v
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Effects on FunctionsEffects on Functions

• The adjunction opening and 
closing create a simpler 
function than the original. 
They smooth in a nonlinear 
way.

• The opening (closing) 
removes positive (negative) 
peaks that are thinner than 
the structuring element.

• The opening (closing)  
remains below (above) the 
original function.
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Algebraic Opening and ClosingAlgebraic Opening and Closing

The three basic properties of adjunction openings δε and closings εδ are also the 

axioms for the algebraic notion of an opening and a closing.

Definition : In algebra, any transformation which is:

• increasing, anti-extensive and idempotent is an (algebraic) opening,

• increasing, extensive and idempotent is called a (algebraic) closing.

Particular cases :

Here are two very easy ways for creating  algebraic openings and closing: 

1) Compute various opening (closing) and take their supremum (or the 

infimum in case of closings). 

2) Use a reconstruction process
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Let B be the image of lattice L under the algebraic opening γ, i.e. B = γ (L). 
Since  γ is idempotent, set B generates the family of invariant sets of γ :

b ∈ ∈ ∈ ∈ BBBB ⇔  ⇔  ⇔  ⇔  γ γ γ γ (b) = BBBB . 

1/ Classe B is closed under sup. For any family {bj, j ∈ J } ⊆ B, we have

γ (∨bj, j ∈ J) ≥ ∨{γ (bj) , j ∈ J } = ∨( bj, j ∈ J ) 

by increasingness, and the inverse inequality by anti-extensivity de γ. 
Moreover , 0 ∈ B. Note that γ does not commute under supremum.

2/ Therefore, γ is the smallest extension to L of the identity on B, i.e. 

γ γ γ γ (x) = ∨∨∨∨ { b : b ∈ ∈ ∈ ∈ BBBB , b ≤≤≤≤ x } , x ∈ ∈ ∈ ∈ L      (1) .

[ The right member is an invariant set of γ smaller than x, but also that 
contains γ (x). ]

Invariant ElementsInvariant Elements
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Suprema of OpeningsSuprema of Openings

Theorem :

• Any supremum of openings is
still an opening.

• Any infimum of closings is
still a closing.

Application :

For creating openings with specific
selection properties, one can use 
structuring elements with various shapes
and take their supremum.

OriginalOpening by

Opening by

Opening by

sup.



25

J. Serra, J. Cousty, B.S. Daya Sagar                                               ISI, Univ. Paris-Est Course on  Math. Morphology I. 49

Top-hat (opening residue)Top-hat (opening residue)

Sets
• The top-hat extracts the objects that 

have not been eliminated by the 
opening. That is, it removes objects 
larger than the structuring element.

Functions

• The top-hat is used to extract 
contrasted components with respect 
to the background.  The basic top-
hat extracts positive components and 
the dual top hat the negative ones.

• Typically, top-hats remove the slow 
trends, and thus performs a contrast 
enhancement.
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� White top-hat :  f - g f (g is an opening)

� Black top-hat :   f f - f   (f is a closing)

Original image

(256 µ 256 pixels)

White top-hat

(SE 3 µ 3)

Black top-hat

(SE 3 µ 3)

Numerical top-hatNumerical top-hat
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Granulometry: an intuitive approachGranulometry: an intuitive approach

• Granulometry is the study of the size characteristics of sets and of  
functions. In physics, granulometries are generally based on sieves ψλ of 
increasing meshes λ > 0. Now,

– by applying sieve λ to set X, we obtain the over-sieve ψψψψλλλλ((((X) ⊆ ) ⊆ ) ⊆ ) ⊆ X;

– if Y is another set containing X, the Y-over-sieve, for every λ, is larger 
than the X-over-sieve, i.e. X ⊆ ⊆ ⊆ ⊆ Y ⇒⇒⇒⇒    ψψψψλλλλ((((X) ⊆ ) ⊆ ) ⊆ ) ⊆ ψψψψλλλλ((((Y) ) ) ) ;

– if we compare two different meshes λ and µ such that λ ≥ µ, the  µ-
over-sieve is larger than the λ−over-sieve, i.e. λ ≥ µ λ ≥ µ λ ≥ µ λ ≥ µ ⇒⇒⇒⇒    ψψψψλλλλ((((X) ⊆ ) ⊆ ) ⊆ ) ⊆ ψψψψµµµµ((((X) ) ) ) 

– finally, by applying the largest mesh λ to the µ−over-sieve, we obtain 
again the λ−over-sieve itself, i.e. ψψψψλλλλ ψψψψµµµµ (X) = ψψψψµµµµ ψψψψλλλλ (X) = ψψψψλλλλ (X)

• Such a description of the physical sieving suggests to resort to openings
for an adequate formalism. The sizes of the structuring elements will 
play the role of the the sieves meshes.
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Granulometry: a formal approach Granulometry: a formal approach 

• Matheron Axiomatics defines a granulometry as a family {γλ}

i)     of openings depending on a positive parameter λ,

ii)     and which decrease as λ increases:   λ ≥ µ > 0   λ ≥ µ > 0   λ ≥ µ > 0   λ ≥ µ > 0   ⇒⇒⇒⇒            γγγγλλλλ ≤ γ≤ γ≤ γ≤ γµµµµ .

• This second axiom is equivalent to a semi-group where the composition of 
two operations is equal to the stronger one, namely

 γγγγλλλλ γγγγµµµµ = γγγγµ µ µ µ γγγγλλλλ = γγγγsup(λ,µλ,µλ,µλ,µ) (1) 

• If Bλ et Bµ stand for the invariant elements of γλ and of γµ respectively, 
then we easily see that

(1)    ⇔   (1)    ⇔   (1)    ⇔   (1)    ⇔   BBBBλλλλ ⊆ ⊆ ⊆ ⊆ BBBBµµµµ

• When γλ's are  adjunction openings, i.e. γλ(X)=XoλΒ (with similar
structuring elements), then the granulometry axioms are fulfilled if and only 
if B is compact and convex
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[{ λ ≥ µ > 0   ⇒   γλ ≤ γµ }        ⇒      γλ =  γλ γλ ≤ (γλ γµ ∨ γµ γλ)  ≤ γλ ;

conversely, γλ =  γµ γλ et γλ ≤ Ι  ⇒   γλ ≤ γµ hence semi-group (1).]

• If Bλ et Bµ stand for the invariant elements of γλ and of γµ
respectively, then we easily see that

(1)    ⇔   Bλ ⊆ Bµ

• When γλ's are  adjunction openings, i.e. γλ(X)=XoλΒ (with similar
structuring elements), then the granulometry axioms are fulfilled if 
and only if B is compact and convex.

Granulometry: a Formal Approach Granulometry: a Formal Approach 
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An Example of GranulometryAn Example of Granulometry

By duality, the families of closings 
{ϕλ , λ>0} increasing in λ generate 
anti-granulometries of  law  

ϕϕϕϕλλλλ ϕϕϕϕµµµµ = ϕϕϕϕµµµµ ϕϕϕϕλλλλ = ϕϕϕϕsup(λ,µλ,µλ,µλ,µ) .

Here, from  left to right, closings 
by  increasing  discs.
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Granulometry and Measurements Granulometry and Measurements 

• A granulometry is computed 
from a pyramid of openings, 
or closings, whose each 
element is given a size, λ
say;

• Value λ is the similarity ratio 
holding on the involved 
structuring element(s) . 

• At the output of each filter, 
the area is measured (set 
case), or the integral in case 
of functions, Mλ say. Then, 
the monotonic curve

Fλ =  1 − Mλ / M0

is a  Distribution Function .

open1

open 2

open n-1

open n
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Measure

Measure

Measure

Measure

Measure
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Granulometric Spectrum Granulometric Spectrum 

One also uses the granulometric spectrum, that is the derivative of the 

granulometric distribution function.

Spectrum

Set:

Set:

Spectrum

Spectrum

Set:

Spectrum

Set:

Spectrum

Set:

Spectrum

Set:

Spectrum

Set:


