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What does all those algorithms have in common ?

Graph cuts Shortest paths

Random walker Watersheds
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Power Watersheds : An energy minimization framework

min
x

∑
eij∈E

wij
p|xi − xj |q︸ ︷︷ ︸

Smoothness term

+
∑
vi∈V

wi
p|xi − yi |q︸ ︷︷ ︸

Data term

y

x

Algorithms optimizing this energy :
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Algorithms optimizing this energy :
p finite, q = 1 : Graph cuts [Boykov-Joly 2001 (only for 2 labels y)]
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Algorithms optimizing this energy :
p = q →∞ : Shortest paths [Sinop et al 2007]
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Algorithms optimizing this energy :
p →∞, q finite : Power watershed [Couprie et al 2009]
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Power watershed for image segmentation

Input seeds Segmentation
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A unifying framework
Image segmentation

Deblurring with anisotropic diffusion
Conclusion

Review of algorithms
Energy and watershed cut
Comparison of results in segmentation
Extension of the framework

Power watershed for image segmentation

Simplification for algorithms comparison : only seeds used in
the data fidelity term

min
x

∑
eij∈E

wij
p|xi − xj |q

s.t. x(F ) = 1, x(B) = 0

Result : segmentation s defined ∀i by si =
{

1 if xi ≥ 1
2 ,

0 if xi <
1
2 .
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Algorithms deriving from values of p et q

Recall the energy function : minx
∑

eij∈E wp
ij |xi − xj |q

H
HHHq

p
0 finite ∞

1 Reduction to seeds Graph cuts
Max Spanning Forest
(watershed) [Allène et al. 07]

2 `2-norm Voronoi Random walker
Power watershed
[Couprie et al. 09]

∞ `1-norm Voronoi `1-norm Voronoi
Shortest Path
[Sinop et al. 07]
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Problem : compute x
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Graph Cuts : example

favors small boundaries

robust to seed placement

Input seeds

Corresponding segmentations
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A unifying framework
Image segmentation

Deblurring with anisotropic diffusion
Conclusion

Review of algorithms
Energy and watershed cut
Comparison of results in segmentation
Extension of the framework

Random Walker : example

Input seeds

Corresponding probability/potential x

Corresponding segmentations (threshold of x)
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A unifying framework
Image segmentation

Deblurring with anisotropic diffusion
Conclusion

Review of algorithms
Energy and watershed cut
Comparison of results in segmentation
Extension of the framework

Shortest path forest

take the inverse of the weights

the shortest path starting from
each node to reach a seed node is
computed

Dijsktra algorithm

[Sinop et al. 07] : optimizes

min
x

∑
eij∈E

wij
p=q→∞(xi − xj)

q→∞
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1
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Comparison of results in segmentation
Extension of the framework

Shortest paths

take the inverse of the weights

the shortest path starting from
each node to reach a seed node is
computed

Dijsktra algorithm

[Sinop et al. 07] : optimizes
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A unifying framework
Image segmentation

Deblurring with anisotropic diffusion
Conclusion

Review of algorithms
Energy and watershed cut
Comparison of results in segmentation
Extension of the framework

Shortest path : example

Very
sensitive to
seeds
placement

Input seeds

Corresponding segmentations
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A unifying framework
Image segmentation

Deblurring with anisotropic diffusion
Conclusion

Review of algorithms
Energy and watershed cut
Comparison of results in segmentation
Extension of the framework

Watershed by Maximum Spanning Forest (MSF)

maximize the sum of
weights over the edges of a
forest spanning the graph

different labeled nodes have
to belong to different trees

Kruskal, Prim algorithms

F

B

3
4

4

3

4
3

2

4 3

1 3 4

1 3

4 2 2

3 2

Kruskal algorithm
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A unifying framework
Image segmentation

Deblurring with anisotropic diffusion
Conclusion

Review of algorithms
Energy and watershed cut
Comparison of results in segmentation
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Maximum Spanning Forest (MSF) : example

robust to small seeds : no
bias toward small objects

leaking effect

Input seeds

Corresponding segmentations
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Watershed and Maximum Spanning Forest equivalence

Watershed cut : edges where a drop of
water could flow toward different
catchment bassins [Cousty et al. 07].

Theorem
If seeds are the minima of the weight function,

Equivalence between cuts by flooding and watershed cuts
[Cousty et al 07]
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Conclusion
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Algorithms deriving from values of p et q

Recall the energy function : minx
∑

eij∈E wp
ij |xi − xj |q

H
HHHq

p
0 finite ∞

1 Reduction to seeds Graph cuts
Max Spanning Forest
(watershed) [Allène et al. 07]

2 `2-norm Voronoi Random walker
Power watershed
[Couprie et al. 09]

∞ `1-norm Voronoi `1-norm Voronoi
Shortest Path
[Sinop et al. 07]
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Convergence of RW when p →∞ toward PW

Input seeds

PowerWatershed q = 2

Random Walker p = 1...30

Random Walker p = 30
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Deblurring with anisotropic diffusion
Conclusion

Review of algorithms
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Comparison of results in segmentation
Extension of the framework

Algorithm for the case p →∞, variable q

Compute x minimizing

limp→∞
∑
eij∈E

wij
p|xi − xj |q

subject to boundary conditions.

We construct an MSF outside of plateaus, and optimize∑
eij∈plateau

|xi − xj |q

on the plateaus.

We call this algorithm “Power watershed”
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Conclusion
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Properties

Theorem
The cut obtained by the power watershed algorithm is a MSF cut.

Theorem
When q > 1, the solution x∗ to the minimization of

min
x

limp→∞
∑
eij∈E

wij
p|xi − xj |q

is unique. Thus, when q > 1, the solution x obtained by the
power watershed algorithm is unique.
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Power watershed algorithm

1 Choose an edge with maximal
weight emax. Let S the set of
edges connected to emax with
the same weight as emax.

2 If S does not contain vertices
that have different labels,
merge the nodes of S into one
node, otherwise minimize E1,q

on S .

3 Repeat steps 1 and 2 until all
vertices are labeled.

1

0

2 1

5 3 5

9

4 5 5

8 5
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5 5

7 5 5
9 7 4 4
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Conclusion

Review of algorithms
Energy and watershed cut
Comparison of results in segmentation
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Power watershed (q=2) : example

robust in case of
small seeds

less leaking than
with standard
Maximum
Spanning Forest

Input seeds

Corresponding probability x

Corresponding segmentations (threshold of x)
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Power watershed (q=2) : example

Input seeds

Prim (MSF, watershed by flooding) Power watershed (q = 2)
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Algorithms behavior on plateaus

Seeded
image

Graph
Cuts

Shortest Paths,
Watershed

Random Walker,
PW q = 2
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A unifying framework
Image segmentation

Deblurring with anisotropic diffusion
Conclusion

Review of algorithms
Energy and watershed cut
Comparison of results in segmentation
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Algorithms comparison

Evaluation on GrabCut database

Ground truths
2 sets of seeds to study robustness to seeds centering :

1 seeds well centered around boundaries
2 seeds less centered around boundaries
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A unifying framework
Image segmentation
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Conclusion

Review of algorithms
Energy and watershed cut
Comparison of results in segmentation
Extension of the framework

Quantitative Results

Mean errors between ground truths and the algorithms results on
GrabCut database with the seeds centered around boundaries.

BE RI GCE VoI Average
rank

Shortest paths 2.821 0.972 0.233 0.204 1
Random walker 2.957 0.971 0.0234 0.0204 2.5
MSF (Prim) 2.859 0.971 0.0244 0.209 3
Power wshed
(q = 2)

2.873 0.971 0.0245 0.210 3.25

Graph cuts 3.122 0.970 0.0249 0.212 5
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Examples

Input seeds Graph Cuts Random Walker

Shortest Paths Max Spanning Forests Power Watersheds q = 2
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A unifying framework
Image segmentation

Deblurring with anisotropic diffusion
Conclusion

Review of algorithms
Energy and watershed cut
Comparison of results in segmentation
Extension of the framework

Quantitative Results

Mean errors between ground truths and the algorithms results on
GrabCut database with the seeds less centered around boundaries.

BE RI GCE VoI Average
rank

Graph cuts 4.691 0.953 0.0380 0.284 1
Power wshed
(q = 2)

4.928 0.951 0.0407 0.297 2.5

Random walker 5.124 0.950 0.0398 0.294 2.75
MSF (Prim) 5.111 0.950 0.0408 0.298 3.5
Shortest paths 5.330 0.947 0.0426 0.308 5
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Input seeds Graph Cuts Random Walker

Shortest Paths Max Spanning Forests Power Watersheds q = 2
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Computation time 2D
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3D example

Foreground seeds
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Image Graph Cuts Watershed

This is the first time that we show how to incorporate data unary
terms into watershed computation.
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A unifying framework
Image segmentation

Deblurring with anisotropic diffusion
Conclusion

Review of algorithms
Energy and watershed cut
Comparison of results in segmentation
Extension of the framework

Optimal multilabels segmentation

More than 2-labels segmentation : NP-hard for Graph cuts

Exact n ≥ 2 labels segmentation for the other algorithms :

n solutions x1, x2, ...xn computed

xk computed by enforcing
{

xk(nk) = 1
xk(nq) = 0 for all q 6= k.

Each node i is affected to the label for which xk
i is maximum :

si = argmax
k

xk
i

Input seeds Segmentation by PowerWatershed (q = 2)
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A unifying framework
Image segmentation

Deblurring with anisotropic diffusion
Conclusion

Review of algorithms
Energy and watershed cut
Comparison of results in segmentation
Extension of the framework

Segmentation : which algorithm to use ?

Graph Cuts :
robust to seeds placement for 2D image segmentation with 2
labels only
too slow for 3D segmentation

Shortest Paths : fast but requires well centered seeds around
boundaries
Random Walker :

efficient with uncentered seeds around boundaries
defined behavior on plateaus

Watershed :
better segmentations than Shortest paths with uncentered
seeds around boundaries
fast → 3D segmentation
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A unifying framework
Image segmentation

Deblurring with anisotropic diffusion
Conclusion

Review of algorithms
Energy and watershed cut
Comparison of results in segmentation
Extension of the framework

Segmentation : which algorithm to use ?

Power watershed q = 2 :
Watershed properties (fast, multiseeds)
Random walker properties on plateaus and interacting
plateaus
Unique solution
Less sensitive to leaking than standard watershed
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A unifying framework
Image segmentation

Deblurring with anisotropic diffusion
Conclusion

Review of algorithms
Energy and watershed cut
Comparison of results in segmentation
Extension of the framework

What else can be done ?

This efficient watershed algorithm can be used with data
unary terms

Question

Can we apply watershed to other vision (optimization) problems ?
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A unifying framework
Image segmentation

Deblurring with anisotropic diffusion
Conclusion

Anisotropic diffusion [Perona-Malik 1990]

Optimization procedure blurring objects while preserving
contours

Image 100 iterations 200 iterations

Goal of this work : perform anisotropic diffusion using an `0
norm to avoid the blurring effect
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A unifying framework
Image segmentation

Deblurring with anisotropic diffusion
Conclusion

Anisotropic diffusion

f : original image

x : denoised image

Perona-Malik algorithm

dxi

dt
=
∑
eij∈E

e−α(xi−xj )
2
(xi − xj)

Black et al. energy

E (x) =
∑
eij∈E

σ(xi − xj)

Robust error function σ

x

σ(x) = 1− e−αx
2

α = 1

Perona-Malik algorithm is a
gradient descent
minimization of the Black
et al. energy.
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A unifying framework
Image segmentation

Deblurring with anisotropic diffusion
Conclusion

Anisotropic diffusion and `0 norm

min
x

∑
eij∈E

σ(xi − xj)︸ ︷︷ ︸
smoothness term

+ λ
∑
vi∈V

(xi − fi)2︸ ︷︷ ︸
data fidelity term

α→∞ : approximation of `0
norm high gradient xi − xj ⇒ σ = 1

no gradient ⇒ σ = 0

Finite α, low gradient ⇒
0 < σ < 1 Piecewise smooth
result

α→∞, low gradient ⇒ σ = 1
Piecewise constant result
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A unifying framework
Image segmentation

Deblurring with anisotropic diffusion
Conclusion

Anisotropic diffusion using power watershed

min
x

∑
eij∈E

σ(xi − xj)︸ ︷︷ ︸
smoothness term

+ λ
∑
vi∈V

σ(xi − fi)︸ ︷︷ ︸
data fidelity term

Nonconvex energy

Set the gradient of this
energy to zero

Fixed point iteration scheme
with energy at step k :

f

xk+1
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A unifying framework
Image segmentation

Deblurring with anisotropic diffusion
Conclusion

Graph construction and algorithm

algoruled
Data: An image f , an initial solution x0,

λ ∈ R∗+
Result: A filtered image xk

Set k = 0. Build the graph on the right
repeat

Generate the pairwise weights
exp−(xk

j − xk
i )

2, and unary weights
exp−(xk − f )2.
Use PW with y = f to obtain xk+1.
k = k + 1;

until ||xk+1 − xk ||2 < ε;

f

xk+1
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Image segmentation
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Conclusion

Results

Leads to piecewise constant results

Original image PW result
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Conclusion

Results

Original image
(size 250× 300)

PW result
6 iterations, 1.78 sec.

Segmentation
by thresholds
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A unifying framework
Image segmentation

Deblurring with anisotropic diffusion
Conclusion

Comparison with Perona-Malik results

Original image Noisy image, PSNR = 24.24dB

Perona-Malik
PSNR = 34.03dB

Perona-Malik
PSNR = 30.46dB

Power watershed
x0 = GF (f )

PSNR = 31.40dB

Power watershed
x0 = MF (f )

PSNR = 31.54dB
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A unifying framework
Image segmentation

Deblurring with anisotropic diffusion
Conclusion

Conclusion and future work

New framework unifying Graph Cuts, Random Walker,
Shortest paths and Watershed.

The p →∞, q = 2 algorithm shows segmentation
improvement while retaining watershed speed.
Unary terms formulation makes power watershed useful
beyond segmentation, for example anisotropic diffusion.
Efficient robust error minimization with `0 norm

Future work
Caracterize the different energies that can be minimized in
this framework

Apply the power watershed algorithm to other computer
vision problems
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A unifying framework
Image segmentation

Deblurring with anisotropic diffusion
Conclusion

Questions

Reference books

Leo Grady and Jonathan R. Polimeni, “Discrete Calculus : Applied
Analysis on Graphs for Computational Science”, Springer, 2010.

Laurent Najman and Hugues Talbot, “Mathematical morphology :
from theory to applications”, ISTE-Wiley, 2010.

Source code for segmentation available from:

http ://sourceforge.net/projects/powerwatershed/
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Properties

Definition
Let s be the segmentation defined by a thresholding of the labels

x = argmin
∑
eij∈E

wp
ij |xi − xj |q.

The set of edges eij that verify si 6= sj constitute a q-cut for wp.

Theorem
If seeds correspond to maxima of the weight function, then any
q-cut (q ≥ 1) when p →∞ is an MSF cut.
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Example where RW with p →∞ is not a MSF

0 1
1 2 3 2 1

0 0.45 0.49 0.51 0.55 1
1 2 3 2 1

0 0.5 0.5 0.5 0.5 1
1 2 3 2 1

Figure: Example of graph where the q-cut computed by the
minimization of Ep,q is not a MaxSF cut. (a) weighted seeded graph,
(b) Random walker result (q=2) when the weights are at the power
p=5. The q-cut is in the center of the graph. (c) power watershed result
(q=2) corresponding to the limit of the Random walker result (q=2)
when the power of the weights converges toward infinity.

Laurent Najman Power Watersheds 66 / 59


	A unifying framework
	Image segmentation
	Review of algorithms
	Energy and watershed cut
	Comparison of results in segmentation
	Extension of the framework

	Deblurring with anisotropic diffusion

