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L Watershed Segmentation on Graphs

A synthetic gray-scale image
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L Watershed Segmentation on Graphs

Gradient Image
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Flooding Simulation
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L Watershed Segmentation on Graphs

Watershed as a Graph-cut

Watershed Cut:

m Minimum Spanning Forest Cut w.r.t. Minima !

Watershed cuts: Minimum spanning forests and the drop of water
principle, J Cousty, G Bertrand, L Najman, M Couprie, IEEE Transactions on
Pattern Analysis and Machine Intelligence 31 (8), 1362-1374
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L Watershed Segmentation on Graphs

Watershed as a Limit of Total Variation Minimizers

Power Watershed 2

mlimp_o x(P) where

x(P) = arg min(QP)(x))

Q) = 3wl — 5P+ 3 whl —

CijeE i€Seed

2Power watershed: A unifying graph-based optimization framework, C
Couprie, L Grady, L Najman, H Talbot, IEEE transactions on pattern analysis
and machine intelligence 33 (7), 1384-1399
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L Watershed Segmentation on Graphs

Power Watershed: Fast Watershed Cut

Power Watershed: Seeded Image Segmentation 3

®Power watershed: A unifying graph-based optimization framework, C
Couprie, L Grady, L Najman, H Talbot, IEEE transactions on pattern analysis
and machine intelligence 33 (7), 1384-1399
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Power Watershed Framework

Let 0 < Ay < Ap < -0 < Ay

Q(x) = Z Ai Qi(x)
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Let 0 < Ay < Ap < -0 < Ay

QP (x) Z AP Qi(x
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Power Watershed Framework

Let 0 < A1 < Ao < - < A

Qx) = YN Q)

x(P) = arg min Q(p)(x)
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Power Watershed Framework

Let 0 < A1 < Ao < -+ < A

QPI(x) = > AP Qi(x)
x(P) = arg min Q(P)(x)

x(P) = x* (?)
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Power Watershed - Generic Algorithm

Algorithm 1 Generic Algorithm to compute limit of minimizers #

Input: Function QP)(x) = YK A\ Qi(x), where A\ > M1 >
<> A1 > 0.
Output: x*:
1: My = arg min Qx(x) where x € C
2. for i from k—1to 1 do
3:  Compute M; = arg min Q;(x) where x € Mj;1
4: end for

*Extending the Power Watershed Framework Thanks to I-Convergence,L
Najman, SIAM Journal on Imaging Sciences 10 (4), 2275-2292
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Power Watershed Framework - Why?

m Relates Watershed-Cuts with Random Walker and Shortest
Path Segmentation
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Power Watershed Framework - Why?

m Relates Watershed-Cuts with Random Walker and Shortest
Path Segmentation

m Results in a faster Watershed-Cut algorithm
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Laplacian Matrix

a b c d e f
a/7 -3 0 -1 0 =3
b|-3 6 -3 0 0 0
cl 0 -3 7 -3 0 -1
df-1 0 -3 9 -3 =2
el O 0 0 -3 6 -3
f\-3 0 -1 -2 -3 9
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Fast Spectral Clustering using PW Framework

minimize  Tr(H'LH)
HeRnxm (1)

subject to H'H =1
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Laplacian Matrix: Decomposition

a b c d e f
a/6 -3 0 0 0 -3
b|-3 6 -3 0 0 0
cl 0 -3 6 -3 0 0
d| 0 0O -3 6 -3 0
el O 0 0 -3 6 -3
f\-3 0 0 0 -3 6
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Laplacian Matrix: Decomposition

a b c d e f
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Laplacian Matrix: Decomposition

@ a b c d e f

a/1l 0 0 -1 0 0

b[oOo 0 0 0 0 O

- clo o 1 0 o0 -1

@ b ® dl-1 0 o0 1 0 o0
el o 0 0o 0 0 o0
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Fast Spectral Clustering using PW Framework

inimi PTr(HL;H
Tk 2T

subject to H'H =1
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Scalability of Spectral Clustering Algorithms

m Traditional Spectral Clustering: (’)(n%)

where n are non-zero entries in L
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Scalability of Spectral Clustering Algorithms

m Traditional Spectral Clustering: (’)(n%)
m Power Spectral Clustering: O(nlogn)

where n are non-zero entries in L




PhD Viva-Voce
L Power Watershed (PW) Framework

PW Framework for other Image Segmentation Algorithms?

m Can we obtain faster algorithms for other image segmentation
methods?
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PW Framework for other Image Segmentation Algorithms?

m Can we obtain faster algorithms for other image segmentation
methods?

m Yes!
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L PW for Fast Isoperimetric Image Segmentation

Image: Similarity Graph
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Isoperimetric Partitioning
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L PW for Fast Isoperimetric Image Segmentation

Isoperimetric Partitioning

W(A, A)
min{|A|, n — |A|}

Isoperimetric Cost(A) =
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Isoperimetric Partitioning
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L PW for Fast Isoperimetric Image Segmentation

Isoperimetric Partitioning

fo ifyeA
t 1 ifV,'GZ

x'Lx = W(A, A)
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L PW for Fast Isoperimetric Image Segmentation

Isoperimetric Partitioning

o 0 if v e A
T 1 ifv,-EZ
|A| = x'1
n—|Al = (1-x)1
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L PW for Fast Isoperimetric Image Segmentation

Isoperimetric Partitioning

Discrete Formulation:

xtLx
min{xf1, (1 — x)*1} (3)
subject to x; € {0,1} Vi

minimize
X
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L PW for Fast Isoperimetric Image Segmentation

Isoperimetric Partitioning

Continuous Relaxation:

xtLx
min{x?1, (1 — x)t1} (3)
subject to x; € [0,1] Vi

minimize
X

Select best threshold!
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L PW for Fast Isoperimetric Image Segmentation

Isoperimetric Partitioning

Seed Constraint x; = 0

Xt_jL_jX_j
min{x® 1, (1 —x_;)*1} (3)
subject to x; € [0,1] for i # j

minimize
X

Select best threshold!
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L PW for Fast Isoperimetric Image Segmentation

Isoperimetric Partitioning

Lagrange Multipliers °

L,jX,j = ]. (3)

®lsoperimetric graph partitioning for image segmentation, L Grady, EL
Schwartz, IEEE Transactions on Pattern Analysis and Machine Intelligence,
469-475
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L PW for Fast Isoperimetric Image Segmentation

Fast Isoperimetric Partitioning

Solve ©
LMJ‘-;XSTX_J' = 1 (4)

bFast, quality, segmentation of large volumes - isoperimetric distance trees,
L Grady, European Conference on Computer Vision, 449-462
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Fast Isoperimetric Partitioning
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L PW for Fast Isoperimetric Image Segmentation

Fast Isoperimetric Partitioning: Computational Cost

O(n) : where n are non-zero entries in L
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Why does the MST heuristic work?

Power Watershed Framework = Enough to solve on UMaxST! 7

"Revisiting the Isoperimetric Graph Partitioning Problem, S Danda, A
Challa, BD Sagar, L Najman, available at
https://hal.archives-ouvertes.fr/hal-01810249
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Fast Isoperimetric Partitioning Using PW
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L PW for Fast Isoperimetric Image Segmentation

Are Solutions on MST and UMST the same?

g 0.9 @

Original Graph
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L PW for Fast Isoperimetric Image Segmentation

Are Solutions on MST and UMST the same?

UMST Graph
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L PW for Fast Isoperimetric Image Segmentation

Are Solutions on MST and UMST the same?

All Possible MSTs
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Solving Linear System on Graph, UMST and an arbitrary
MST are different!

Node | Original | UMST | MST; | MST, | MST3

g 0.00 0.00 0.00 0.00 0.00
1.69 2.68 5.00 4.00 | 11.16
1.54 2.32 9.66 1.00 5.00
2.04 3.52 7.00 550 | 10.66
2.09 3.64 8.66 6.50 9.00
1.94 3.74 8.00 6.16 | 10.00

D Q 0 T W
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L PW for Fast Isoperimetric Image Segmentation

How different are Solutions on MST and UMST?

Let Tymst and Tps denote the operators on UMST and MST

respectively, as defined above. Then there exists two positive
constants K1 and K> such that

k k

Ki D (ui — mi)*w? < || Tumst — Tmstll < K2 > (v — mi)*w?. (5)
i=1 i=1
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L PW for Fast Isoperimetric Image Segmentation

Results in Practice
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Comparison of MaxST and UMaxST as a sufficient statistic!
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L PW for Fast Isoperimetric Image Segmentation

Results in Practice

Adjusted Rand Index

0.8 5 0.8 -
0.6 % 0.6
. . .,
4 L]
& o ® oo 5 o ®
204 ° 304
L4 ° ° °
£
. L)
: & 4 .
0.2 ° L 0.2 e
; o . ° ® See
L]
H o we o " °
0.0 ) ° ° 0.0 (R4 L
°® .
0.0 02 0.4 0.6 0.8 0.0 02 0.4 06 08
Original original
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L PW for Fast Isoperimetric Image Segmentation

Results in Practice

Scatter plot of Normalized values of solutions

1.0 1.0
0.8 0.8
0.6 0.6
7 g
= o
0.4 0.4
0.2 0.2
0.0 0.0
0.0 0.2 0.4 0.6 0.8 10 0.0 0.2 0.4 0.6 0.8 10
original original

Strictly increasing plot implies perfectly consistent solutions!
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L PW for Fast Isoperimetric Image Segmentation

Results in Practice

Inversions
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Results in Practice

Data Reduction

Count (Total of 500)

T T T
40 60 80 100
Reduction (%)
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L PW for Fast Isoperimetric Image Segmentation

Contributions

Detailed Analysis of the relaxed Cheeger Cut problem
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Establish using PW framework that considering UMST graph
acts as a sufficient statistic
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Establish using PW framework that considering UMST graph
acts as a sufficient statistic

Establish bounds between UMST and MST based
implementations
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L PW for Fast Isoperimetric Image Segmentation

Contributions

Detailed Analysis of the relaxed Cheeger Cut problem
Establish using PW framework that considering UMST graph
acts as a sufficient statistic

Establish bounds between UMST and MST based
implementations

Empirically establish that UMST based reduction is robust
compared to MST based implementation
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Mutex Watershed: 8 The Setup

8Steffen Wolf, Constantin Pape, Alberto Bailoni, Nasim Rahaman, Anna
Kreshuk, Ullrich Kothe, and Fred A. Hamprecht. The mutex watershed:
Efficient, parameter-free image partitioning. In Vittorio Ferrari, Martial Hebert,
Cristian Sminchisescu, and Yair Weiss, editors, Computer Vision - ECCV 2018 -
15th European Conference, Munich, Germany, September 8-14, 2018,
Proceedings, Part 4, volume 11208 of Lecture Notes in Computer Science,
pages 571-587. Springer, 2018
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Mutex Watershed: 8 The Setup

u g:(V7E7W)
mf:E—{-1+1}

8Steffen Wolf, Constantin Pape, Alberto Bailoni, Nasim Rahaman, Anna
Kreshuk, Ullrich Kothe, and Fred A. Hamprecht. The mutex watershed:
Efficient, parameter-free image partitioning. In Vittorio Ferrari, Martial Hebert,
Cristian Sminchisescu, and Yair Weiss, editors, Computer Vision - ECCV 2018 -
15th European Conference, Munich, Germany, September 8-14, 2018,
Proceedings, Part 4, volume 11208 of Lecture Notes in Computer Science,
pages 571-587. Springer, 2018
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Mutex Watershed: 8 The Setup

mG=(V,E,W)
mf:E—{-1+1}
m W:E—>R"T

8Steffen Wolf, Constantin Pape, Alberto Bailoni, Nasim Rahaman, Anna
Kreshuk, Ullrich Kothe, and Fred A. Hamprecht. The mutex watershed:
Efficient, parameter-free image partitioning. In Vittorio Ferrari, Martial Hebert,
Cristian Sminchisescu, and Yair Weiss, editors, Computer Vision - ECCV 2018 -
15th European Conference, Munich, Germany, September 8-14, 2018,
Proceedings, Part 4, volume 11208 of Lecture Notes in Computer Science,
pages 571-587. Springer, 2018
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Mutex Watershed: State-of-the-art on ISBI 2012
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Mutex Watershed: Algorithm

Algorithm 2 Mutex Watershed

Initialize A = ().
for each edge e in descending order of W(e) do
if AU e does not violate the mutex condition then
A+~ AUe
end if
end for
return Subgraph induced by {e € A|f(e) = +1}
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Mutex Watershed: An Example

5 2 -4 2
2 Ll B3 )y 8
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Mutex Watershed: Walk-Through
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Mutex Watershed: Walk-Through




PhD Viva-Voce
L Mutex Watershed : PW Limit of Multi-Cut Graph Partitioning

Mutex Watershed: Walk-Through
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Mutex Watershed: Walk-Through
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Mutex Watershed: Segments
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Multi-Cut Graph Partitioning

Q(a) = min - Z AeWe

a0 ek (6)
s.t C1(A) = 0 with A= {e € E|a. = 1}

NP-Hard!
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Mutex Watershed: PW Limit of Multi-Cut

(P)(5) = ; _ p
() aeg,lln}\El ze;:_aeWe

(7)
s.t C1(A) = 0 with A= {e € Ela. = 1}
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Mutex Watershed: PW Limit of Multi-Cut

s.t C1(A) = 0 with A= {e € Ex|a. = 1}
(8)

denote the solution space by Ag.
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Mutex Watershed: PW Limit of Multi-Cut

Gk-1=(V, Ex—1, W|g,_))

min — E ae

aG{O,l}lE"_l‘ ecEx_4 (9)
s.t C1(A) = 0 with A= A, U {e € Ex_1]ae = 1}

denote the solution space by Ax_1.
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Mutex Watershed: PW Limit of Multi-Cut

Repeat until all edges are processed.
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Mutex Watershed: PW Limit of Multi-Cut

m Sub-problems can be handled with a ‘Union-Find" data
structure.
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Mutex Watershed: PW Limit of Multi-Cut

m Sub-problems can be handled with a ‘Union-Find" data
structure.

m Sub-problems are tractable!
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Contributions

m Mutex Watershed is PW limit of Multi-cut partitioning
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PW Framework for Image Filtering?

m Can we relate image filtering tools?
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PW Framework for Image Filtering?

m Can we relate image filtering tools?

m Yes!
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Shortest Path Filter

SPF;=>_gi(i)l; ,

jev
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Shortest Path Filter

where
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Shortest Path Filter

10
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Tree Filter °©

°Linchao Bao, Yibing Song, Qingxiong Yang, Hao Yuan, and Gang Wang.
Tree filtering: Efficient structure-preserving smoothing with a minimum
spanning tree. |EEE TIP, 23(2): 555-569, 2014.
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Tree Filter °©

TF;

Z ti(j)
where .
exp( 240
ti(J) = D(i,q)
Zq eXp(_i)

(e

°Linchao Bao, Yibing Song, Qingxiong Yang, Hao Yuan, and Gang Wang.
Tree filtering: Efficient structure-preserving smoothing with a minimum
spanning tree. |EEE TIP, 23(2): 555-569, 2014.
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Tree Filter on a Synthetic Graph

2] 3] 2] 2] 2]
2 1 3 1
2] 3] 2] 2] 2]
2 3 2 1
J J J
11 11 10 100 11
~__ 2 2 2 2 A
O/ N N N N\
1 3] ll ZI ZI
N\ 1 N\ 1 N\ 2 N\ 2 N\
O/ N N N N\
1 ZI 1()(] ZI ZI
N\ 3 100 101 N\ 3 N\
U/ N N N N\

Gradient image
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Tree Filter on a Synthetic Graph

1 2 1 2
Z Z‘ Z‘
1 1
Z Z‘ Z‘
2 . 1
i
10
e M2 : 2 I
J o € Y J
ll | z]
s 1 I 1 M2 M2 e
J J N N "
ll Zl 10(] Zl Zl
e e ) e e
S S -/ S S

t,’(j) =9
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Tree Filter on a Synthetic Image

L to R: Noisy Image, TF, TF + BF
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Can the Tree Filter be explained?

Power Watershed Framework = Tree Filter is an approximate limit
of Shortest Path Filters 1°

°Some Theoretical Links between Shortest Path Filters and Minimum
Spanning Tree Filters, S Danda, A Challa, BD Sagar, L Najman, Journal of
Mathematical Imaging and Vision, January 2019
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Limit of Shortest Path Filters

13 10 169 100
1 2 1 1 4 1
2 ) 3 4 9
1 1
1 4 4 1 1
2 1 4 . 1
J J

L to R: Image Graph, Image Graph with edge weights raised to
power 2
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Limit of Shortest Path Filters: Characterization

Lemma

Let G = (V,E, W). For every pair of pixels i and j in V, there
exists po > 1 such that, a path P(i,j) is a shortest path between i
and j in G\P) for all p > pqy if and only if P(i,}) is a smallest path
w.r.t. reverse dictionary order between i and j in G. Further, pg is
independent of i and j.
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Reverse Dictionary Order: lllustration
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Limit of Shortest Path Filters: Characterization

Lemma

Every smallest path w.r.t. reverse dictionary order between any two
arbitrary nodes in G = (V, E, W) lies on an MST of G and hence
on the UMST of G.
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Limit of Shortest Path Filters: UMST Filter
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UMST Filter: Characterization

Lemma

For every pixel i in the image I, there exists a spanning tree T;
(termed as adaptive spanning tree), such that T; contains a
smallest path with respect to reverse dictionary ordering between
pixels i and any other pixel j in I.
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UMST Filter: Adaptive Spanning Trees
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UMST Filter: Depth-Based Approximation
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PhD Viva-Voce
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Results in Practice

Salt and Pepper Noise

L to R: House Image, Bilateral Filter, Tree Filter, Our
Approximation to Limit of SPFs
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Results in Practice

Structural Similarity Indices

Mean SSIM on Salt Pepper Noise

BF TF UMSTF
House 0.69 0.80 0.83
Barbara | 0.72 0.66 0.72
Lena 0.69 0.75 0.79
Pepper | 0.62 0.74 0.74
Mean 0.68 0.74 0.77
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Results in Practice

SSIM: Tree Filter vs UMST Filter 11
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11Some theoretical links between shortest path filters and minimum spanning
tree filters, S Danda, A Challa, BSD Sagar, L Najman, available at
https://hal.archives-ouvertes.fr/hal-01617799v5
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Contributions

Establish UMST filter as a limit of shortest path filters
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Contributions

Establish UMST filter as a limit of shortest path filters
Tree filter as an approximation to UMST filter
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Contributions

Establish UMST filter as a limit of shortest path filters
Tree filter as an approximation to UMST filter

Implement Depth-based and Order-based approximations of
UMST filter
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Perspectives

Adaptive Spanning Trees can be processed in parallel!

Can we learn edge-aware features using the adaptive spanning
trees?
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Perspectives

Can we speed-up other tree-based algorithms such as scale-set
analysis?

Total Variation <+ Cheeger Cut. Application to TV
minimization!

Understanding working principle behind PW framework?

PW implies UMST s a sufficient statistic for image

segmentation and filtering. Can we obtain sufficient statistics
for graph-modelled data in general?
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