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Abstract-The morphological skeleton of a structure which possesses a crenellate outline resembles a 
stream network. The fractal relation of a morphological skeleton network is shown. The fractal 
dimension of the structure and its morphological skeleton network are computed using the box 
counting method. These are then compared with the estimated length-area measures and certain 
morphometric order ratios. Copyright 0 I!396 Elsevier Science Ltd. 

INTRODIJCTIOh‘ 

Every geometric structure can be represented as a morphological skeleton which is a 
simpler form from which inferences can be drawn. In this context, the general term 
structure is used to denote ‘the expression of the external morphology of the objects’ such 
as geomorphic features, pore space, alveolar lung space. basin outline, rock outline, etc. 
Components of such structures include traditional characteristics of shape, in two dimen- 
sions, in addition to outline textural details. Hitherto, fractal relations were shown in 
various arboreal networks like bronchial trees, river networks. This is the first attempt to 
show the fractal relation of a morphological skeleton. The term skeleton has been used to 
describe a thin line caricature of the geometric structure which summarizes its shape. size, 
orientation and connectivity. Within the last few years several papers have been presented 
which address the fractal description of arboreal networks, like bronchial trees [l]: lung 
morphogenesis studies [2]. stream network {3-51. The basis for the analysis of a 
morphological skeleton presented here is drawn from the works of the above mentioned 
researchers. 

The fractal properties of the morphological skeleton, with tree-like structures, extracted 
from the second order structure generated by a specific generator with a non-random rule. 
are shown. The plan of this paper is to first present the fractal generation, extraction of a 
morphological skeleton of generated fractal, morphometric analysis of the morphological 
skeleton. and then the fractal relation of the morphological skeleton. 

Fractal gerwaation 

To generate fractal structures, where the fractal dimension ranges from 1 to 2 in 
2-dimensional space, one begins with two shapes, an initiator and a generator. The latter is 
an oriented broken line made up of N equal sides of length r which can be designed at wfill 
[6]. Each stage of the construction begins with a broken line and consists of replacing each 
straight interval with a copy of the generator, reduced and displaced so as to have the same 
end points as those of the interval being replaced. In all cases, D = Log N/Log l/r [6]. 
Step 0 is to draw the segment (0, 1). Step 1 is to draw either of the kinked curves {Fig. l), 
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(b) 

Fig. 1. Different generators 

each made up of N intervals superposable upon the segment (0, l/3, l/4 for the generators 
shown in Fig. 1). Step 2 is to replace each of the N segments used in step 1 by a kinked 
curve obtained by reducing the curve of Step 1 in the ratio r(N) = l/r. Altogether one 
obtains N2 segments of length l/(r)‘. Iterating this process adds further detail. 

Morphological skeleton 

A connectivity preserving way of erosion caHed skeletonization is described by Hilditch 
[7]. The resulting skeleton is one picture element (pixel) thick objects, which have the 
same connectivity as the original object. Skeletons are of special interest because they 
reflect the structure of the original objects in their end pixels and vertices. The concept of 
skeletonization is developed by mathematical morphologists [S-U]. The skeleton or medial 
axis of a set is the line made up of those points for which the distance to the boundary of 
the set is reached by at least two points. The skeleton of a geometric structure (Fig. 2(a)) 
viewed as a subset of R2 (EucIidean space) is defined as the set of the centres of the 
maximal disks inscribable inside the structure. A disk is maximal if it is not properly 
contained in any other disk totally included in the structure. Hence, a maximal disk must 
touch the boundary of the structure at least at two different points. The combination of 
centres of the maximal disks inscribable is a skeleton. Figure 2(b) is a morphological 
skeleton of the structure shown in Fig. 2(a). This concept is being extensively applied in 
several fields such as biological shape description [12], pattern recognition [7] and 
metallography [ 13, 141 with highly promising results. Some examples can be seen in 
Maragos and Schafer [lo]. 
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(a) (b) 

Fig. 2. Shows (a) the structure and (b) the morphological skeleton after designating Strahler’s ordering. 

MORPHOMETRY OF THE MORPHOLOGICAL SKELETON 

The morphological skeleton of a structure with a contorted outline resembles a stream 
network. Hence, to characterize the morphological skeleton, the morphometric procedures 
proposed by Horton [15] and Strahler [16] in the context of river network morphometric 
studies need to be used. Strahler’s [16] ordering technique has been followed to designate 
the orders of morphological skeleton and to further compute certain important dimension- 
less ratios like the bifurcation ratio (RB), skeleton length ratio (RL), and skeleton area 
ratio (RA). These three ratios are important parameters in showing relationships. To show 
the fractal relation of the morphological skeleton, fractal dimensions of the structure (II), 
morphological skeleton length (Drs), and main skeleton length (d) are computed by 
various existing methods. These are then compared with computed morphometric order 
ratios, and length-area measures of the morphological skeleton as shown in the sample 
study. 

To carry out such studies on the morphological skeleton, some new terms are proposed: 
skeleton network, boundary of the morphological skeleton network, skeleton orders, main 
morphological skeleton length, total skeleton length, skeleton length of order u and order 
u + 1, skeleton number of order u and u + 1, skeleton bifurcation ratio, skeleton length 
ratio, and skeleton area ratio. For a better understanding these are defined as follows. 

List of symbols and nomenclature 

l Order of structure or skeleton segment U 

l Number of skeleton segments of order u 
l Total number of skeletons within a skeleton network $h 
l Mean length of skeleton segments of order u(L,) LUlk 
l Total skeleton length within a network of order u CL 

The boundary of the morphological skeleton is the boundary of the geometric structure to 
which the morphological skeleton belongs. The boundary of the geometric structure should 
match exactly with that of the boundary that is reconstructed from its morphological 
skeleton. 

The skeleton network, and its order designation, is the pattern formed by the skeletal 
branches that are determined by the inequalities of the outline of the geometric structure. 
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The order of the skeleton ranges from 1 to n (any finite number). All finger tips are 
designated as first order skeletons. Two first order skeletons unite to form a second order 
skeletal segment. A third order skeletal segment is formed by joining two second order 
skeletal segments which may be joined by additional first or second order skeletal 
segments. Two third order skeletal segments join to form a fourth order segment, and so 
on (Fig. 2(b)). 

The main morphological skeleton length (I) is a measure of the skeletal branch which 
follows the longest axis of the structure. The main skeletal length includes skeletal 
segments of all orders. 

The skeleton bifurcation ratio (RB) is the ratio of the number of skeleton segments of a 
given order N,, to the number of skeletons of the next highest order, N,,, , . 

Bifurcation ratio (Rs) = 
No. of skeleton branches of order u A: = L1, 

No. of skeleton branches of order u + 1 N,,+i 
(1) 

Skeleton length ratio (RL) is the ratio of the mean length, L, of segments of order u to the 
mean length of segments of the next lower order (L,,+l). 

Skeleton length ratio (RL) = 
Mean length of skeleton branches of order u + 1 Llril CL= -, 

Mean length of skeleton branches of order cl L 
(21 

Skeleton area ratio (RA) is the ratio of the mean skeleton segment area of order U, A,,, to 
the mean skeleton segment area of the next lower order, A,,_l. 

Skeleton area ratio (RA) = 
Mean skeleton branch area of order u A 

Mean skeleton branch area of order u - 1 
= II. (3) 

A,,-1 

SAMPLE STUDY 

Considering the square block as an initiator (Fig. 3(a)), a second order structure (Fig. 
3(c)) is generated using the designed generator (Fig. 3(b)). The fractal dimension for the 
fractal generated by the generator, shown in Fig. 3(b)), is 1.5. 

D = Log(N)/Log(l/r) = Log8/Log4 = 1.5. (4) 

(a) 0) 

-I- -r 
Fig. 3(a) and (b). Caption opposite. 
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Fig. 3. Shows (a) the initiator; (b) the generator; and (c) the second order structure generated by the generator 
shown in (b) of which the fractal dimension is 1.5. 

The morphological skeleton of the second order structure (Fig. 3(c)) is extracted (Fig. 4). 
Following Strahler’s [16] ordering technique, the entire extracted morphological skeleton 

can be designated with orders. The basic measures such as area, perimeter of the structure, 
order wise skeleton lengths and number, main skeleton length, and total skeleton length, 
are computed. Bifurcation, length, and area ratios of the morphological skeleton are 
computed (Table 1) using equations (l), (2)) and (3). 

Fractal dimension measurements and their relation to morphological skeletons 

Bifurcation, length, and area ratios of a morphological skeleton are computed as 2.33, 
1.72, and 2.385, respectively, (Table 2). Through these dimensionless parameters, the 
fractal dimension of the skeleton network (Drs) is computed as 1.56 using equation (5). 

D = LogR,/LogR,. (5) 

The fractal dimension of the main skeleton length (d) is computed as 1.25 using the 
equation 

d = 2Log R&og RA. (6) 

The fractal dimension of the total skeleton length (DTs) is computed as 1.96 using the 
equation 

D, = 2 Log R,/Log RA. (7) 

The fractal dimensions computed using morphometric parameters are found to be valid and 
related to that of the fractal dimensions computed by the box counting method proposed 
elsewhere [17]. The fractal dimensions of the structure, the extracted morphological 
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Fig. 4. Morphological skeleton of the structure shown in Fig. 3(c). 

Table 1. Fractal dimensions for the morphological skeleton network: comparison 
between length-area measures and the estimated values from order ratios 

Parameter Estimated values Equation No. 

Order ratio 
Bifurcation ratio 2.33 1 
Skeleton length ratio 1.725 2 
Skeleton area ratio 2.385 3 

Total skeleton length vs area 
Exponent p 0.9R 9 
Fractal dimension (on) = 2fi I.Y6 

Main skeleton length vs area 
Exponent LY Cl.612 10 
Fractal dimension d = 2a 1.224 

Estimation of fraaal dimensions from order ratios 
D - Log R,&og R,. 1.56 5 
d = 2 Log R&og RA 1.25 6 
Dys = 2Log RR/Log RA 1.92 1 
DTS = 2LWR&og RB 1.23 8 
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Table 2. Fractal dimensions wf the structure and its morphological skeleton length: 
comparison between box-counting measures and the estimated values from morphomet- 

ric order ratios 

Measured fractal dimensions through the box counting method 

D DTS d 
(Generated fractal) (Morphological skeleton) (Main skeleton length) 

I.5 1.56 1.23 

skeleton, and main skeleton length are computed, following the box counting method, as 
1.5, 1.56 and 1.23, respectively, (Table 2). This method provides the values of D, DTs, and 
d as the slopes of the straight lines which are fitted to the log-transformed pairs of 
observed box numbers and box size values (Fig. 5(a)-(c)). These results have been 
compared with the fractal dimensions arrived by order ratios and length-area measures 
which have been obtained from morphometric analysis of the morphological skeleton. 

Fractal dimension of the skeleton network 

The scaling properties of the morphological skeleton network, Like a tree network, as a 
whole can be viewed as the product of the structural composition of the skeleton system 
and the effect of small irregularities reflected by d. Just as in the case of computing the 
fractal dimension of a river network, which depends on its RB and I?,. the fractal 
dimension of the morphological skeleton is computed using equation (8). Equation (8) was 
originaily proposed in the context of a stream network by Feder [17]. 

DTs = 2Log R&og R,. (8) 

L I I 
0 0.8 1.6 

Log no. boxes on one side 

Fig. 5. Fractal plots of (a) fractal structure; (b) total morphological skeleton length; and (c) main skeleton length 
through the box counting method. 
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For the extracted morphological skeleton, the estimate of D, = 210g 1.73bog2.33 = 1.30 
(Table 1). This result can be compared with the direct estimate of d, which can be ob- 
tained by means of the main skeleton length (Q-area (A) relationship shown in equation 
(10). 

The result obtained by equation (7) is compared with the direct estimate of D which can 
be obtained by means of the total skeleton length (L)- area (A) relationship in the form of 

L - (A)B (9) 

where L denotes the total length of the skeleton, in the structure of area A, /3 = DTs/2 is a 
fitted exponent, where D, is 210g R,jlog RA. /YI is computed through equation (9) as 0.98. 
The value of 2p, i.e. 1.96 is very close to the estimate obtained (1.92) from equation (7). 
Variation either in the generating mechanism or in the initiator shows difference in both 
the fractal generated, and in its morphological skeletons. But the fractal dimension of the 
morphological skeleton computed through the box counting method is directly proportional 
to that of the fractal dimension of the structure. It can be observed that the fractal 
dimensions of morphological skeleton networks seem to vary from one structure to 
another, and it is therefore quite arbitrary to assign an invariant fractal dimension to the 
total length of skeleton of a structure. 

In the morphological skeleton, the maximum skeleton length (I) is computed along the 
longest axis. The fractal dimension of the main skeletal length is also computed using 
length-area measures as shown in the equation (10). 

d = 2(Log Z/Log A) = 1.224 (10) 

for this sample study. This result is close to the direct estimate of d computed using 
equation (6) and also to the dimension computed through the box counting method (Table 
1). Considering the obtained results, the following fractal relationship of a morphological 
skeleton is proposed. 

DTs = d Log R,/Log R, = 1.92 + 0.04 (11) 

with log R,/log R, = 1.56, and d = 1.23, D, = 1.92, which is very close to 1.96 arrived at 
by equation (7). The fractal dimension of the morphological skeleton network reaches 2 for 
d = 1.23 in the relation of R, = R,‘jd = R,‘,63. 

CONCLUSION 

In this paper, an eight-sided (N) generator, with Y as l/4, is selected to generate the 
fractal structure of the initiator, i.e. square, with deterministic rule. The morphological 
skeleton of the generated structure is extracted. It is worth generating several features by 
changing the initiator, generator and the rules to further extract their morphological 
skeletons. This approach enables the reader to simulate natural features with more 
appropriateness and accuracy. A priority for further work on this topic is to simulate the 
structures in such a way that they fit well with the nature of data contained for instance in 
digital elevation maps. It is very clear that certain morphometric parameters, in particular 
order ratios and length-area measures, can be directly related to the fractal measures of 
tree-like structures. For instance, a morphological skeleton of the structure. 

The accuracy in the simulation of the basin evolution process depends on the selection of 
generator, which controls the mechanism, random rule to be followed while generating 
fractal structures, and the initial structure on which the generator shows impact. The 
selection of generator and the rule can be done through studying the structure temporally. 
The contorted outline of the structure, for instance a basin, determines the morphological 
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skeleton which largely resembles the stream network of the basin. Another possible 
application is modelling of the alteration process of the pore structure by the flow of fluids 
through the pore space, by considering the pore structure at different time periods. The 
generating mechanism can be better predicted if the pore structure across time periods is 
considered. 
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