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Abstract

Avalanches of various sizes occur due to instability during sand dune dynamics. A physically
viable equation to model sand dune dynamics is a first order nonlinear difference equation. To
visualize the size distribution of avalanches, sand dune dynamics has been numerically simulated
by changing the strength of nonlinearity parameter (λ) that shows different impacts on dune
dynamics. An equation to compute avalanche diameters, by considering the inter-slipface angles
of a simulated sand dune under dynamics, is proposed. Using this equation, avalanche diameters
have been computed from a dynamically changing simulated sand dune.
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1. INTRODUCTION

Windblown sand forms the dunes of various types.
In a seminal work, Bagnold1 discussed several as-
pects of dynamics of sand dunes. Since the in-
troduction of the Bak-Tang-Wiesenfeld’s concept
of self-organized criticality (SOC),2 a number of

automaton models have been developed to study

avalanche dynamics.3–9 Lattice models of granular

materials have previously been examined in many

contexts; particularly in terms of self-organization

and generalized in sandpiles.3–9 Coulomb noticed

that a granular system with a slope of angle larger
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than an angle of repose would be unstable.10 A de-
tailed scenario for the avalanches is discussed by
deGennes.11 Power law distribution of avalanche
size-number has been studied by Herrmann12 and
Vandewalle.13 It is, however, interesting to model
the distinct morphological dynamical behaviors of
dunes. One of the equations that has the physical
basis to model several possible morphological dy-
namical behaviors of dunes is the first order dif-
ference equation. Using this equation, numerical
simulations have been carried out to understand the
dune dynamical behaviors.14 This study14 has been
further extended here to compute the number of
avalanches of varied sizes by tuning the strength of
nonlinearity parameter.

In what follows include the background and
the associated information on the numerical simu-
lation of morphological evolution of a sand dune,
avalanches in this simulated sand dune, and a
sample study by incorporating the numerically es-
timated avalanches and their statistics are given
respectively in Secs. 2 to 4.

2. SIMULATION OF A SAND

DUNE DYNAMICS

In case of continuous wind capable of transporting
sand is available, the process of sand dune formation
traverses several phase changes. The formation of a
sand dune, of which the profile is like an ideal tri-
angle, may be due to availability of convection and
intereferential types of wind capable of transport-
ing sand to the supply area. In the present investi-
gation, a profile of a sand dune with the following
parameters has been considered.

2.1. Definition of Sand Dune

Profile

The description of the morphology of a sand dune
is concerned with its profile that is described as an-
gular. The slipfaces of which are of equal lengths. A
typical linear dune profile is shown in Fig. 1.

• Profile of dune should have a heap with two slip-
faces of each length (L1 = L2). The profile is sym-
metric with respect to the origin at the center of
the base of the dune.

• The width (d) of the base of the dune must be
greater than the length of the slipface. This as-
sumption is valid due to the fact that the length
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Fig. 1  Profile of a sand dune.
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Fig. 1 Profile of a sand dune.

of the slipface is not greater than the width (d)
in the case of real world dunes.

• Width of the dune is considered as rigid dur-
ing the progressive dune evolution. However, the
length of the slipface (L) varies with the con-
tinuous accretion of sand. Dune base length is
stationary since the characteristic of supply area
does not change. However, due to continuous
sand supply, the slipface length tends to change,
in turn the sand dune morphological dynamics.
In other words, the slipface length is dynamic,
whereas the base width is static. Inter-slipface an-
gle is the diverging angle of a sand dune profile
with two slipfaces. Characteristics of the simu-
lated sand dune include that the profile of the
dune has two slipfaces, hence an inter-slipface
angle (θ), the base length (d), which is same for all
the profiles of a dune under dynamics. The lesser
the inter-slipface angle, the more is the height of
the dune from the base and vice versa.

The degree of sand dune steepness can be quan-
tified by fractal dimension.15 The shape of the
generator15 incited us to use fractal dimension as
a main parameter to simulate dune dynamics nu-
merically, as the profile of which is compared with
the generator morphologically. The fractal dimen-
sion is used as a main property of the sand dune
undergoing dynamical changes. From the profile of a
sand dune undergoing dynamics, the characteristics
that substantiate the morphological constitution of
sand dune at specific time interval include angle of
repose, inter-slipface angle, dune height from the
middle point of the sand dune base, and slipface
lengths. The morphological dynamics of an ideal
sand dune, of the type considered in the present
study, can be modeled by considering any one (or)
the combination of the characteristics. It is under-
stood that by considering any two characteristics
mentioned, one can derive the other characteristics.
However, the fractal dimension of the profile of an
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ideal sand dune is unified property from which one
can define the other characteristics. For the profile
of a sand dune, the normalized fractal dimension
determines the steepness.

2.2. A Rule to Perform Numerical

Simulation of Dune

Morphological Dynamics by

Incorporating Normalized

Fractal Dimensions

If the slope of the dune is initially very small, only a
few slides may occur, and so the dune will steepen.
If the slope is very large, huge avalanches will sweep
over the edges of the dunes and the slope will then
become less steep. It is intuitively justifiable that
the morphological changes in the sand dune is a
nonlinear phenomenon, since the fractal dimensions
of the successive profiles of a sand dune undergoing
dynamics are not directly proportional to each other
at successive time intervals. The intuitive argument
may be endured by the fact that the sand dunes
steepen and flatten over a time interval due to the
distinct nature of sand dune structures. This argu-
ment may be supported by a postulate that the frac-
tal dimension of successive profiles of a sand dune
undergoing dynamics may be non-overlapping, and
hence may be nonlinear. This phenomenon is due to
the relatively divergent behavior of the sand that is
accumulated, and also due to change in morpholog-
ical constitution at discrete time intervals. It is in-
tuitively apparent that the degree of unsteady state
to fall over is more in the steep sand dune that pos-
sesses high fractal dimension. Hence, as the steep-
ness of sand dune increases, the degree of fall over
of sand becomes more when compared to the sand
dune of lesser steepness. This phenomenon can be
compared with overcrowding parameter in the con-
text of population dynamics described in the logistic
equations. This statement supports the argument
that (α), the normalized fractal dimension tends to
increase when it is small, and to decrease when it is
large.

Several assumptions of the morphological dy-
namics seem to be cogent by the fact that the exo-
dynamic processes, are always non-systematic that
alter the morphological behavior of a sand dune.
As the accretion process continues, several possible
sand dune dynamical behaviors can be observed.
To quantify these dynamical behaviors, of interest
to certain geodynamicists, a first order nonlinear
difference equation that has the physical viability

to simulate several dune dynamical behaviors has
been adopted in earlier study.14 Certain equations,
based on a first order nonlinear difference equation
have been derived to estimate the attracting inter-
slipface angles. The morphological dynamics of a
sand dune profile, with two slipfaces and a fixed
base length (d), has been modeled14 through bi-
furcation theory.16 The definition of a typical sand
dune may be seen in the earlier works.14,17 To carry
out computer (numerical) simulation to visualize
distinct possible behaviors concerning a change in
the strength of nonlinearity, a first order nonlinear
difference Eq. (1), proposed elsewhere16 that has
physical relevance in the simplest possible model
to understand the formation, and several possible
phase changes of a sand dune, undergoing dynam-
ics, is considered as the basis.

αt+1 = λαt(1 − αt) (1)

where α is the normalized fractal dimension of a
sand dune profile, 0 ≤ α ≤ 1; and λ is the strength
of regulatory parameter, 0 ≤ λ ≤ 4.

The normalized fractal dimension α of the sand
dune can be obtained by subtracting the topolog-
ical dimension (DT ) from the fractal dimension as
shown in Eq. (2).

α =









log(N)

log

(

d

L

)









− DT (2)

where

N = number of slipfaces (two for the present
case);

d = width of the stationary base of the sand
dune;

L = length of the slipface, L ≤ d;
DT = topological dimension;

α = normalized fractal dimension of a sand
dune profile; and

α + DT = fractal dimension (D)

A sand dune with a high degree of steepness
will have a value of α = 1, and with no steepness will
have a value of α = 0. Exo-dynamic processes will
determine changes of a sand dune undergoing can
be quantified by means of fractal dimension. Equa-
tion (1) has been studied extensively and is consid-
ered to be a simple model to explain the dynamics in
one-dimensional maps, where increasing λ induces
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period doubling bifurcation leading to chaos. This
equation possesses one equilibrium point and the
stability of the fixed point and the consequent dy-
namics exhibited by the systems are dependent on
λ alone. To examine the long-term behavior of the
sand dune morphology, or of fractal dimension of
the dune profile, the Eq. (1), which has physical
viability to understand the various phases is con-
sidered. In particular, we are interested in how this
behavior depends upon the strength of nonlinear-
ity parameter, λ. To keep the fractal dimensions
of the profiles of a sand dune undergoing dynam-
ics, and their corresponding inter-slipface angles be-
tween 180◦ and 90◦, we limit our examination to
values of λ between 0 and 4.

To study morphological dynamical behavior of
a sand dune, it is necessary to know how much of
the total morphological change is accommodated
across time intervals. The rates of change in the
fractal dimension of a dynamically changing sand
dune at discrete time intervals depend upon the
exo-dynamic processes. The collective impact of
exo-dynamic processes (cause) which alter sand
dune morphology can be defined as a strength of
regulatory parameter by studying the (degree of
deformation) effect due to the cause at discrete
time intervals. As the fractal dimension enables the
characteristic of the sand dune profile that is steep-
ened as well as flattened, the parameter, λ can be
defined as a numerical value. From the theoretical
standpoint, the λ may be computed by consider-
ing the αt and αt+1 to fit the curve λαt(1 − αt).
This α gives the total description of the dynamics
of sand dune. The impact of non-systematic exo-
dynamic processes on a sand dune in terms of its
dynamical behavior is investigated through the first
order difference Eq. (1) of the form, αt+1 = f(αt);
the normalized fractal dimension at t + 1, αt+1 is
given as some function f of the αt at time t. If this
equation were linear (e.g. f = λα), α would just in-
crease or decrease exponentially if λ < 1. Moreover,
the fractal dimension tends to increase when at low
α and to crash at high α value, corresponding to
some nonlinear function with a hump of which the
quadratic f = αt+1 = λα(1 − α). It does mean,
there is a tendency for the variable α to increase
from time t to the next when it is small, and for it
to decrease when it is large. This tendency is pre-
served due to the term (1−αt) in Eq. (1). In Eq. (1),
to compute αt+1, λαt(1−αt) explains that the nor-
malized status of sand dune dynamics in the case

of α starting at larger than 1, it immediately goes
negative at one time step. If λ is less than 1, the
sand dune is in a inhospitable environment that its
fractal dimension diminishes at every discrete time
interval. For values of λ below 1, the eventual frac-
tal dimensions in normalized scale is zero of which
the inter-slipface angle is zero (or it does not exist).
Moreover, if λ > 4, the hump of the parabola ex-
ceeds 1, thus enabling the initial α value near 0.5 to
exceed criticality in two time steps. Therefore, there
is a need to restrict the analysis to values of λ be-
tween 1 and 4, and values of α between 0 and 1. In
the qualitative understanding of dynamical behav-
ior, value αt+1 is obtained from the previous value
of αt by multiplying it by λ(1−αt). It is clear that
for λ(1 − αt) to be greater than 1, the successive
values, viz. αt+2, αt+3, αt+4, . . . , αt+N , will grow
bigger, i.e. a change in αt will get amplified. This is
the sand dune steepness due to sand assemblage. If
λ(1 − αt) becomes smaller than 1, then subsequent
values must diminish. This is sand dune flattening
due to fall over of sand.

2.3. Relationship Between

Normalized Fractal Dimension

and Inter-Slipface Angle

As the sand dune crest reaches to critical inter-
slipface angle, i.e. 90◦ (steepest of the sand dune)
at which the normalized fractal dimension α = 1,
there is a tendency for α to decrease due to the fact
that the unsteady state of sand to fall over is more
in steeper sand dunes. On the contrary, when the
sand dune profile possesses less fractal dimension,
there may be a possibility for it to get steepened
due to sand assemblage and due to more sand hold-
ing capacity in the supply area. When it possesses
high fractal dimension, due to unsteady state to fall
over is more and this may lead to a decline of the
fractal dimension. However, it may also lead to os-
cillations, or even chaotic fluctuations depending on
the nature of exo-dynamic processes, and the sand
dune characteristics.

Equation (2), a part of which is due to
Mandelbrot15 to compute fractal dimension of Koch
generator that is similar to the sand dune profile,
can be rewritten as Eq. (3). This equation computes
the normalized fractal dimension of the sand dune
profile by considering the inter-slipface angle. From
the θ, the corresponding normalized fractal dimen-
sion can be calculated for the profile of a sand dune
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Fig. 2 (a) Sand dune profiles with different fractal dimensions and corresponding inter-slipface angles. (b) Graphical plot
between the two parameters.

that has been considered by using Eq. (3).

α =























log(N)

log

[

2 sin

(

θ

2

)]









− DT















(3)

From Eq. (3), it can be understood that the
profiles of the sand dunes with θ = 90◦ (steepest)
and θ = 180◦ (zero-steepness) of inter-slipface an-
gles possess normalized fractal dimensions 1 and 0,
respectively. The simplest profile of a simple sand
dune one could imagine is with two slipfaces (N =
2) making an angle θ that satisfies 90◦ ≤ θ ≤ 180◦.

The limitcase θ = 180◦ generates a dune at the
initial state (t = 0); the case θ = 90◦ generates a
dune at the unstable state, the fractal dimension
of which has been estimated as 1 (when θ = 180◦)
and 2 (when θ = 90◦). For a better understanding,
the profiles of a sand dune are illustrated with nor-
malized fractal dimensions and their corresponding
inter-slipface angles (Fig. 2).

Are there any sand dunes with repose angles of

more than 45
◦
?

Sand dunes may have the range of angles of repose
from 10◦ to 45◦ depending upon the sand particle
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properties such as shape, size and interlocking prop-
erties, which are subjected to change with exogenic
nature of forces. This upper limit of the angle of
repose, i.e. 45◦ incited us to consider the lower and
upper limits of the normalized fractal dimensions
and their corresponding inter-slipface angles within
the range of 0 ≤ α ≤ 1 and 180◦ ≤ θ ≤ 90◦, re-
spectively. The upper limit of fractal dimension of
the sand dune is 2, and the corresponding inter-
slipface angle, and the angle of repose of which are,
respectively, 90◦ and 45◦. Since the upper limit of
angle of repose is 45◦, the validity of the range of
fractal dimensions between 90◦ ≤ θ ≤ 180◦ of sand
dune with two slipfaces undergoing dynamics is rea-
sonable and logical. In simple terms, if there exists
a sand dune with angle of repose or inter-slipface
angle, at any time as the sand dune undergoing
dynamical changes, exceeds the limit of 45◦ (angle
of repose) or 90◦ (inter-slipface angle), this simple
model, where the normalized fractal dimension of

an ideal sand dune which has been considered as a
unified quantity, fails.

2.4. Computation of Inter-Slipface

Angle of a Sand Dune Under

Dynamics

For the profile of a sand dune under dynamics with
two slipfaces, the θt+1 is a function of θt. Instead
of α, one can consider θ values to carry out simu-
lations for modeling. Equation (5) is proposed by
considering Eqs. (1) and (3). In Eq. (5), the ISFA
at time t is considered instead of the NFD to com-
pute the ISFAs at time t + 1, . . . , t + n of the sand
dune undergoing dynamics according to first order
difference equation as a dynamical rule. The ISFAs
at time t + 1 can be computed by considering θ at
time t as some function defined as follows

θt+1 = f(θt) . (4)

The function is defined as

θt+1 = 2 sin−1







10
log N

{λ{log N/[log[2 sin θt/2]]−DT }{1−{log N/[log[2 sin θt/2]]−DT }}+DT

2







(5)

where θt and θt+1 = inter − slipface angles at dis-
crete times t and t + 1, respectively. The limits of
various parameters are 0 < α < 1, 180◦ > θ > 90◦,
1 < D < 2.

Iterating Eq. (5) produces time series of inter-
slipface angles (θ) of a simulated sand dune under-
going morphological changes dynamically. A one-
dimensional map (Fig. 3) has been plotted by
considering the time series of inter-slipface angles
computed at λ = 4. This type of map enables the re-
gion of avalanche occurrence. This time series data
can be used to compute the sizes of avalanches oc-
curred. The inter-slipface angles computed by iter-
ating the function, defined in Eq. (5), can be used
to represent them in θ-space to visualize them in
the form of a sand dune phase map.17

3. AVALANCHES IN A

SIMULATED SAND DUNE

Up to some state of sand accretion process, no
avalanches in the sand dune will occur. From the
critical state, which can be determined by an angle
of repose, the avalanches of several sizes will occur.
As the steepness of sand dune increases, the possi-
bility of avalanche occurrences will also increase. A

recipe to understand the sand dune dynamical be-
havior, while the sand supply is continuous, is that,
a higher value for the normalized fractal dimension
(α) of the sand dune profile at discrete time t than
at time t + 1 is an indication of occurrence of an
avalanche of a specific size. The avalanche size is
computed as the distance between the two peaks,
with a condition that the θt+1 > θt, of succes-
sive profiles. This rolling starts from the state that
the angle of repose of the dune reaches to critical
state. The avalanche size is defined as the diameter
of the out-scribed circle of the avalanche (Fig. 4).
This schematic diagram shows the dune at two
discrete time intervals with a possible avalanche.
The avalanche size or diameter can be computed
by the trajectory parts between the region of below
the conditional bisectrix line and above the in-
verted parabola of the one-dimensional map shown
in Fig. 3 indicate the occurrence of avalanches.
The larger the length of the trajectory part in this
region, the larger is the avalanche size.

Avalanche size =
d

2

{[

cot

(

θt

2

)]

−

[

cot

(

θt+1

2

)]}

.

(6)
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Fig. 3 A one-dimensional map plotted between θt+1 vs. θt for sand dune case at λ = 4.
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Fig. 4 Diameter of an avalanche

 (The inter-slipface angles at discrete time intervals are shown with a possible avalanche since 
tt

θθ >
+1 )

Dune at time t, θt, the

inter-slipface angle

Dune at time t, θt+1, the

inter-slipface angle
tt

θθ >
+1

Avalanche

diameter

θθθθt+1

θθθθt

Fig. 4 Diameter of an avalanche. (The inter-slipface angles at discrete time intervals are shown with a possible avalanche
since θt+1 > θt.)

It will be considered that there is an avalanche of

particular size only if θt+1 > θt. The size of the

avalanche depends on the difference between the θ

values at successive discrete time intervals. In con-

trast, if the θ value is lesser than its preceding value

in the time series data, then it will not be consid-

ered as an avalanche. However, it can be said that

the sand dune steepens further.

4. SAMPLE STUDY AND

RESULTS

The dune profiles and corresponding inter-slipface
angles are generated in discrete time intervals. From
these time series of inter-slipface angles, the dis-
tance between the two peaks of the successive
dune profiles at discrete time intervals can be com-
puted. From the simulated time series of embedded
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θ values with a condition that θt+1 > θt, the chang-
ing out-scribed diameter of an avalanche is com-
puted by using Eq. (6). It is interesting to observe
the number of avalanches of varied sizes by chang-
ing various parameters, in Eq. (5), such as λ, α and
d. In Table 3, the size distribution of avalanches has
been shown by changing d with λ = 4. These results
are discussed.

4.1. Strength of Nonlinearity versus

the Avalanche Size Distribution

It is worthwhile to study the relation between the
strength of nonlinearity and the avalanche size dis-
tributions. To deal with this exercise, an unified di-
agram may be shown to understand the avalanche
dynamics in this simulated sand dune dynamics.
This simulated sand dune dynamics enables all pos-
sible behaviors of a sand dune that undergoes mor-
phological changes with a given strength of nonlin-
earity. In the present model, the avalanches started
observed at the angle of repose 37.4◦. The sand dune
under dynamics with a strength of nonlinearity 2.1
will attain critical state from which the avalanches
are being observed, the angle of repose of such sand
dune under dynamics is 37.4◦.

• The avalanche count is found to increase and then
decrease with an increase in strength of nonlinear-
ity. As the strength of nonlinearity is increased,
it is observed that the number of avalanche size
categories has increased. It is also observed dur-
ing the investigations that when the strength of
nonlinearity is less than two, no avalanches were
observed in this numerically simulated sand dune
dynamics. Avalanche size distribution has been
carried out by changing the λ and the results are
given in Table 1.

• All slopes below some critical value seem to
be stable. After some time, the shape does not
change anymore and all additional grains just flow
along the surface to the rim of the base where they
fall off. While for spherical particles, it is reported
that the angle of repose is typically 10◦–20◦, dry
sand exhibits ∼ 30◦–40◦ and the humidity can
make it rise much more. However, the computed
angle of repose, from the model thus simulated,
is 37.4◦. This is in conformity with the specified
range, i.e. 30◦–40◦ of angle of repose for the dry
sand, proposed by Herrmann.7 From the study, it
is inferred that the critical angle of repose is 37.4◦.

This angle of repose will be attained when the
strength of nonlinearity (λ) that has been used in
the model is > 2.

4.2. Classification of Dunes Based

on Occurrence of Avalanches

Certain characteristics of the dune dynamics at
threshold strength of nonlinearities have been given
in Table 2.

• Stability of the sand dune is defined in terms of
occurrence of avalanches. Continuous accretion of
sand keeps the dune active. Such dunes are called
active dunes. However, a dune is said to be inac-
tive, if there are no avalanches after certain dis-
crete time intervals. Due to absence of sand sup-
ply or winds capable of transporting sand, an ac-
tive dune may turn into an inactive dune. In real
case, such a phenomenon might arise after a long
period. On the Mars, such inactive dunes that
were once active can be seen. It is observed that
for the strength of nonlinearity parameter λ > 3
dunes are active.

• From this numerically simulated sand dune dy-
namics, the dune dynamics are categorized, based
on the avalanche occurrences with discrete time,
as super-stable, semi-stable, and chaotically be-
having dunes.

• Sand dunes behaviors can be visualized as phase
changes. Conventionally, it has been defined that
a sand dune will have one angle of repose. Once
the dune reaches to this critical state, avalanches
will be observed. However, it is also true that
there may be numerous angles of repose in a sand
dune undergoing dynamics. This can be schemat-
ically represented through a bifurcation diagram,
i.e. we can argue this phenomenon of having
different angles of repose in a sand dune under-
going dynamics as changing properties of sand.
With changing sand properties, the interlocking
parameters will be changed, hence the angle(s) of
repose when the interlocking properties of sand
particles (of a dune) change due to the reason
that the sand characteristics are primarily sub-
jected to exogenic nature of processes. In turn,
the angle of repose is not just the one, there will
be numerous angle(s) of repose as the sand dune
undergoing dynamical changes. It is reported
by several researchers that the angle of repose
varies with the change in characteristics of sand
particles, and also with the fluctuations in the
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Table 1 Total avalanche count and avalanche distribution.

Total
Distribution of avalanches according to diameters

Avalanche <0.5 0.5 1.0 1.0 1.5 1.5 2.0 2.0 2.5 2.5 3.0 3.0 3.5 3.5 4.0 >4.0
λ count mts mts mts mts mts mts mts mts mts

2.1 2 2 0 0 0 0 0 0 0 0
2.2 4 4 0 0 0 0 0 0 0 0
2.3 5 5 0 0 0 0 0 0 0 0
2.4 6 6 0 0 0 0 0 0 0 0
2.5 9 9 0 0 0 0 0 0 0 0
2.6 13 13 0 0 0 0 0 0 0 0
2.7 19 19 0 0 0 0 0 0 0 0
2.8 30 30 0 0 0 0 0 0 0 0
2.9 63 63 0 0 0 0 0 0 0 0
3.0 748 748 0 0 0 0 0 0 0 0
3.1 748 748 0 0 0 0 0 0 0 0
3.2 748 4 744 0 0 0 0 0 0 0
3.3 748 5 743 0 0 0 0 0 0 0
3.4 749 3 746 0 0 0 0 0 0 0
3.5 749 1 374 374 0 0 0 0 0 0
3.6 749 76 220 453 0 0 0 0 0 0
3.7 715 271 156 128 160 0 0 0 0 0
3.8 655 150 131 101 171 102 0 0 0 0
3.8 606 76 61 134 86 122 127 0 0 0
4.0 492 74 65 62 62 43 47 52 50 36

α = 0.1; Dune base length = 9 mts; Number of iterations = 1500.

Table 2 Dune classification based on the occurrence of avalanches.

Threshold Occurrence No. of
Strength of of Avalanches Avalanches Avalanche Active/Inactive No. of
Nonlinearity during Active during Active Diameter(s) Stability Over a Period Angle(s)

(λ) State of Dune State of Dune in mts Type of Time of Repose

2 No 0 0 Stable In-active Nil
3 Yes 748 0.027514 Initially In-active One

period 2
3.46 Yes 749 1.086073 and Periodically Active Two

0.87355 changing
3.57 Yes 749 Many avalanches Chaotically Hyper-active Many

of various changing
diameters ranging
from 0.54 to 1.4

α = 0.1; d = 9 mts; Iterations = 1500.
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Table 3 Avalanche distribution.

Total <0.5 0.5 1.0 1.0 1.5 1.5 2.0 2.0 2.5 2.5 3.0 3.0 3.5 3.5 4.0 >4.0
Count mts mts mts mts mts mts mts mts mts

d = 3 mts

3905 1611 1154 1140 0 0 0 0 0 0

d = 6 mts

3905 885 722 613 554 557 574 0 0 0

d = 9 mts

3905 592 569 446 417 385 365 416 400 288

α = 0.1; λ = 4; Iterations = 12, 000.
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Fig. 5 Graphical plots between the logarithms of avalanche size and avalanche number for (a) dune width of 9 m and
(b) dune width of 6 m.

wind strength. It can be said that these charac-
teristic changes may be due to exogenic nature
of processes in general. There will be an angle of
repose variation during the process of sand dune
dynamics. Dune changes its phases with dynam-
ically varying sand particle interlocking proper-

ties, strength of wind, etc. While traversing sev-
eral phase changes, a dynamically changing dune
possesses one or more angles of repose. It is ob-
served that the avalanche diameter gets reduced
with discrete time for the strength of nonlinearity
2 < λ ≤ 3. As the iterative process is progressing,
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the dune becomes stable for the strength of non-
linearity between 2.1 and 3. Avalanches of fixed
sizes are observed with a periodic interval for the
strength of nonlinearity 3 < λ ≤ 3.46. It is in-
teresting to note that the avalanches of two dif-
ferent diameters are observed periodically when
the strength of nonlinearity is 3.46 ≤ λ < 3.57.
Such a case can be visualized when the strength
of nonlinearity is in the range 3.46 ≤ λ < 3.57.
For the strength of nonlinearity > 3.57, the
avalanche diameter and number distributary pat-
tern is chaotic. The number of angle(s) of repose
vary with the strength of nonlinearity, of a dy-
namically changing simulated sand dune and has
(have) been given in Table 2.

4.3. Avalanche Distribution in

Different Sizes of Dunes

Results with stationary base lengths of 3, 6 and
9 mts with initial normalized fractal dimension of
0.1, and number of iterations of 12,000 have been
given in Table 3 to understand the distributary pat-
tern of avalanche diameter number of a chaotically
behaving sand dune.

• It is observed that the total avalanche count re-
mains the same in spite of a change in the base
length. Graphs have been plotted between the
avalanche size versus number for the sand dunes
with base width of 9 m and 6 m [Figs. 5(a) and
(b)]. No significant variation has been found in
these graphs. However, the distributed avalanche
count varies.

• For 3 m base length avalanches up to 1.5 m, while
for 6 m base length, the avalanche size up to 3 m,
and it is more than 4 m for 9 m base length were
observed.

• The number of avalanches of a specific size re-
duces as the base length is increased.

• With base lengths 6 m and 9 m, it is ob-
served that the number of avalanches of differ-
ent diameters initially reduces, reaches a mini-
mum, and then increases again before the process
extincts.

5. CONCLUSION

This study of theoretical interest can be consid-
ered to validate by incorporating the inter-slipface
angles, of corresponding profiles of a real world

sand dune undergoing dynamics, the retrieval of
which is possible with the advent of the availabil-
ity of multi-temporal, high resolution interferomet-
rically generated digital elevation models (DEMs)
at different time-scales. Certain geodynamic prob-
lems such as the morphological evolutionary be-
havior of a sand dune can be better modeled by
using the multi-date DEMs, derived from high
resolution remotely sensed data. From such a study,
one can understand the distribution of avalanches
of real world sand dunes of various sizes undergoing
dynamics.
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