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Changes in morphology of a geological fold are due to stress and internally exerting forces
(IEFs). Such morphological changes can be quantified in terms of fractal dimensions. Stress
and the fractal dimension are depicted in normalized scale as dimensionless parameters.
Incorporating these parameters in a first order nonlinear difference equation that has physical
relevance as the simplest viable model of a symmetric fold sustaining morphological changes,
numerical simulations are carried out which are analogous to creep experiments. In the first
experiment, the constant stress (1) is employed to model the morphological dynamical
behaviour of highly ductile symmetric folds (HDSFs) that are postulated as they are
precarious to stress and IEF, and will not supervene the state of brittleness during the
evolution. In the second experiment, the time dependent stress that is changed according to a
dynamical rule is used to model distinct dynamical behaviors of these HDSFs. The results
arrived through computer simulations are the attractor interlimb angles (AIAs). Bifurcation
diagrams are also depicted to show the dynamical behaviors concerning the change in the
stress dynamics.

Keywords: Stress dynamics, Symmetric fold, Normalized fractal dimension,
Interlimb angles, Nonlinear

1 INTRODUCTION

The study of deformation in geological materials is
one of the important tasks in structural geology.
Fold one of such geological formations may be
transformed due to mechanical properties. These
transformations may be according to a rule through
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which one can predict the dynamical changes in
folds. Several papers have emerged during the last
decade, which cast the application of fractal con-
cepts to study the fold mechanism. Several models
are developed to study the folding processes and
mechanisms [1-8]. Behavior of various systems of
geoscientific interest such as electrical conductivity
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and fractures of rocks to the microcrack popula-
tion [9], coalescence of fractures [10,11] and stick—
slip behavior [12] through renormalization group
approach, and the fault models using fractals and
homogenization concepts [13] were studied. The
rate of deformation depends not only on the rock
mechanical properties of the geological forma-
tions and the energy acting on it but also on the
antecedent morphological state of the fold. The
shortening and amplification in the symmetric folds
can be seen due to variations in the stress and
ductility of the fold. Ductile folds are precarious to
stresses. Moreover, fluctuations in the stress dy-
namics result in variations in the dynamical beha-
vior of a symmetric fold ranging from steady state
to periodicity and chaotic. The random behavior of
fold, from its inception of the formation, is due to
stress dynamics and the internally exerting forces
that randomly influence the fold. The ductile folds
of vertical axial type are subjected in the present
qualitative investigation. The significant point is
that this study is based on the posits that the
deformation in the ductile fold is not permanent,
and also that it will not ensue the state of brittleness
during the influence of stress dynamics. In partic-
ular, the present paper deals with a continuous
phase transition in a symmetric fold under dynami-
cal conditions by considering the simple first order
nonlinear difference equation. The logic behind
using this equation in regard to understanding the
fold morphological dynamics is follows

e The intensity of the cause can be derived from
the effect. Such a derived cause might be in
terms of various physical forces (stress & IEF).
The collectively acting coexisting physical forces
is the cause to see its effect. This effect is in
terms of deformation. Such a deformation can
be quantified by means of an analytical value
(e.g. fractal dimension [14]). By considering this
quantified parameter at discrete time intervals,
the term called stress regulatory force can be
derived. These fractal dimensions at discrete
time intervals enable that whether the dynamics
of fold is of nonlinear type. However, based on

the instinctive argument, it is apprehended that
the fold dynamics follows nonlinear rules. This
intutive argument may be endured by the fact
that due to heterogeneous nature of external
and internal stress influence, folds may undergo
compression, amplification, cascade of compres-
sion—amplification and shear over a time inter-
val. This argument is also supported by a
postulate that the successive phases of a fold
undergoing dynamics may be nonoverlapping;
moreover, the output in terms of fractal dimen-
sion of the fold undergoing dynamics may not
be directly proportional to its input. This phe-
nomenon is due to the fact that the stresses
and internally exerting forces are divergently
balanced at discrete time intervals. These un-
equally balanced forces act against each other.
Therefore, it is also visualized that the morpho-
logical dynamics of a fold is nonlinear. To carry
out computer simulations to visualize distinct
possible behaviors concerning a change in con-
trol parameter, a first order nonlinear difference
equation (see (1)—(3)) proposed elsewhere [15],
that has physical relevance as the simplest
possible model of a HDSF undergoing morpho-
logical changes, is considered as the basis to
further derive the Eqs. (4)—(7) and (11)—(14).
Hence, qualitative studies have been carried
out on understanding the fold morphological
dynamics, and the acting stress dynamics of
fold, by considering the first order nonlinear
difference equation.

The organization of this paper is as follows. The
definition of symmetric folds and the basic equa-
tions that are considered to study these symmetric
folds are described in the Sections 2 and 3 respec-
tively. In Sections 4 and 5, the procedure to compute
the interlimb angles (IAs) of symmetric folds under-
going dynamics, and the relation between the
normalized fractal dimensions and the IAs of these
symmetric folds are respectively given. These sec-
tions are followed by the functional iteration to
study the fold dynamical behavior and the compu-
tation of metric universality by considering the 1As
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in the Sections 6 and 7. In the end, the results of the
computer simulations carried out on these sym-
metric folds, and the conclusions are briefly speci-
fied in the Sections 8 and 9 respectively.

List of Symbols

N Number of limbs in a symmetric fold (3 for the
fold type I and 2 for the fold type II)
L Rigid length of the limb
d Distance of the vertical projection of the upright
symmetric fold
D Fractal dimension [log N/log(d/L)]
Dy Topological dimension, 0,1in 1-D space, 1in 2-D
space, and 2 in 3-D space.
«, Normalized fractal dimensions (NFDs) at dis-
crete time interval (0 < a < 1), a=D — Dy
0 Interlimb angle (IA) (6>60°<180° for the
symmetric fold type I; 8 > 90° < 180° for the fold
type II)
6" Attractor interlimb angle (AIA)
A Constant stress (0 <A< 1)
A, Time dependent stress parameter
1 Strength of stress modulation (SSM) parameter
to compute time dependent stress parameter
O<p<]

2 DEFINITION OF SYMMETRIC FOLDS
WITH 3 (FOLD TYPE I) AND 2 (FOLD
TYPE II) LIMBS

The description of the morphology of a fold pattern
is mainly concerned with the outcrop of its profile.
Generally, the nose of the fold is described as round
orangular. If the limbs of a fold are of equal lengths,
the fold is said to be symmetric (e.g. chevron or
concordian fold) [16]. A typical asymmetric fold
pattern is shown in Fig. 1(b) where one limb length
differs with that of two other limbs. In this paper
two types of upright symmetric folds of vertical axial
type (e.g. zig-zig, chevron, or accordion folds) with
rigid limbs (Fig. 1(a) and (c)) are considered. An
upright symmetric fold (i.e. dip of the axial surface)
with three limbs (Fig. I(a)) with the following

a)

Crest

End point

Trough

Symmetric fold

b)

Initial point .
0 £ 8, End point
Ly # in L3
N =3
Asymmetric fold
c)
FIGURE 1 (a) Symmetric fold with three limbs, (b) a asym-

metrical fold pattern and (C) symmetric fold with two limbs.

specifications is studied:

e Fold pattern should have three limbs (N=3)
with equal lengths (L); (L; = L, = L), forming
an anticline and a syncline.

e The angles (A, 6,) between the two successive
limbs should be equal (6; = 6,).

e The distance of vertical projection, d, should be
greater than the length of a rigid limb (d>
Ly=L,=Ly).

An upright symmetric fold with two limbs
(Fig. 1(c)) with the following specifications is also
studied:

e Fold pattern should have two limbs (N = 2) with
equal lengths (L); (L = L,) forming an anticline
or a syncline.

e The distance of vertical projection, d, should be
greaterthanthelengthofarigidlimb(d > L, = L,).
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TABLE 1 Four possible dynamics of symmetric fold

Probable circumstances

Probable dynamical process

Trajectory behavior

A fold with high sinuosity index may
become straight

A fold with medium sinuosity index may
increase as time progresses and then
converge to a point from which any

two patterns will overlap

A fold oscillating between two

sinuosity indices

exerting force

acting force

Due to dominating internally acting

Due to unequal stress and the internally

Fold shape oscillating between two
points periodically. Shortening and

Attracting to an initial conditions

Attracting to a fixed point

Oscillating between two points

amplification, and vice versa

A fold with either low or high tortuosity
may behave chaotically such that no two
patterns overlap

exerting forces

Cascade of aperiodic stress and internally

Chaotically behaving

The length of the fold limb (L) is considered as
rigid when stress is acting on it. The stress concerned
here is referred to horizontal stress only. Barring
this, d varies with the difference in the stress. The
four possibilities of fold transformation that may
arise in nature are presented Table I. If stress at
discrete time intervals A\, > X, | or A, ;> A, play
successively, the morphology of the HDSF changes
which is obvious in geological context.

3 BASIC EQUATIONS TO STUDY FOLD
DYNAMICS

The dynamical rule is visualized in the present
investigation in two ways. They are according to
the first order difference equation (2), and a
modulated logistic equation (3). In the former case
the stress regulatory parameter A is a constant stress
control parameter, which acts against the internally
exerting forces, whereas in the latter rule ), is
controlled by the strength of stress modulated
parameter p to understand the time dependent
stress control parameter, ), that describes the time
dependent evolution of the fold morphological
dynamics. Two types of fold dynamical systems
are studied here:

(a) One that undergoes constant stress dynamics
(CSD).

(b) One that undergoes time dependent stress
dynamics (TDSD).

First Order Difference Equation as a
Dynamical Rule

The fold morphological dynamics is controlled
by a time dependent stress regulatory parameters.
The general from of the difference equation is
taken as

a1 = floy). (1)

The dynamical behavior of symmetric fold under
different total effective stresses is studied by follow-
ing a function shown as a nonlinear first order
difference equation (2). From the knowledge of
the strain states of the fold at specific time inter-
vals, the condition of the stress can be calculated.
Force per unit area is stress. This is used to study
the agents responsible for the deformation in the
rock as it progressively changes shape. Such a study
needs to investigate the nonlinear equations in
which the stress that controls the fold dynamical
system is constant during the evolution. To carry
out such a study, Eq. (2) may be considered as a
dynamical rule:

Oé[+[ = 4)\@[(1 - a;). (2)

The limits of A are 0 and 1, and the strains at
respective states are quantified by awas 0 and 1. The
numerical representation | for A\, and « stand for
any number, say 1000 kbar and the upper limit of
fractal dimension in normalized scale respectively.
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Computation of SSM

The SSM can be considered either as a constant or
as time dependent parameter that controls the fold
morphological dynamics. Rather than computing
the physical forces that alter the fold dynamics, from
the strain the dynamics of the stress regulatory
parameter can be computed. The collective impact
of such stresses (cause) which alter fold morphology
can be defined by studying the (degree of deforma-
tion) effect due to the cause at discrete time intervals.
Asthefractal dimension enables the characteristic of
the fold that is shortened as well as amplified, the
parameter representing the strength of regulatory
force can be defined as a numerical value. From the
degree of deformation states at discrete time inter-
vals, one can tell whether the stress influence is
constant or not by fitting o, , | vs «, to fit the curve
o, 1=4X1 — ). This derived stress is the slope
value of the fitted curve. Such a value, A< 1 >0, is
considered as a constant stress. This constant stress
also can be computed from the fractal dimensions
ofafold atdiscrete timeintervals. The fluctuationsin
the fold morphology depend on both the changes in
the stress intensity and in the original constitution of
the fold. If one knows the stress states at different
time intervals, say A\, A, 1,..., A4 the SSM (p)
can be derived to compute the time dependent stress
states by plotting A, vs A; to fit the curve
Arp1=4u(1 = X): It is hypothesized as the time
dependent stress regulatory parameter attains high-
er value, at the subsequent times it is controlled by
the factor (1 — ). It is visualized that if the stress
regulatory forceis high, makeit small, and vice versa.
This is a wonderful recipe to carry out simulation
numerically. The time dependent stress that, in turn,
controls the fold morphology can be computed from
the stress states in a time series form. This aspect is
to study the coupled systems. In this coupled system,
which is detailed in the sequel, the stress and fold
morphological dynamics are interdependent.

Symmetric Fold Dynamics Under the
Influence of Constant Stress

A fold with high sinuosity will have an interlimb
angle (IA) of 6 =60° (for 3-limb fold) and 90° (for

2-limb fold), and for a linear fold, 6 =180°. A fold
with high sinuosity will have a value of o approach-
ing 1, and for a straight line, & =0. The upper and
lower limits of «, viz. 0 and 1, arise at lowest and
greatest stress states viz. A=0 and 1 respectively.
The parameter A gives total description of the
dynamics of fold. The impact of the unequal
compressive forces on a symmetric fold in terms of
its dynamical behavior is investigated through the
first order difference equation of the form
a; 41 =[fla,); the fractal dimension in normalized
scale at 1+ 1, «; 1, 1S given as some function, f, of
the fractal dimension at time ¢, «,. If this equation
were linear ( f= A\a), the fractal dimension would
simply increase or decrease exponentially if
A <0.25. Moreover, the fractal dimension tends to
increase when at low « and to crash at high «
value, corresponding to some nonlinear function,
with a hump, of which the quadratic is
f=a;4+1=Xa(l — ). It does mean that there is a
tendency for the variable « to increase from time “¢”
to the next when it is small, and for it to decrease
when it is large. When the symmetric fold possesses
less fractal dimension, there may be a possibility for
it to get compressed due to stresses that dominate
internal force. When it possesses high fractal
dimension, due to internal forces that dominate
the stress acting against, this may lead to a decline of
the fractal dimension. This tendency is due to the
fact that the internally exerting forces dominate the
impact of stresses. The impacts of internal forces
fluctuate. These fluctuating impacts depend on the
« values. The reason behind this possibility may be
the fact that during the fold dynamics, unequal
internal forces influence fold at discrete time
intervals, and also the variations in the strength of
the fold itself. This tendency is preserved due to
(1 —ay) in Eq. (2). Equation (2), to compute «; , |,
Aa(1 — a;), explains that the normalized status of a
symmetric fold dynamics if o starting at larger than
1, it immediately goes negative at one time step.
Moreover, if A>1, the hump of the parabola
exceeds 1, thus enabling the initial o value near 0.5
to shear in two time steps. Therefore, the analysis is
restricted to value of \,  between 0 and 1. It is also
interesting to study the critical states from which the
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internal forces dominate the external stresses
(CSD). The impacts of such internal forces acting
alternatively are predominant at larger threshold
regulatory stresses. This idea can be seen from the
depicted bifurcation diagrams in Section 8.

In qualitative understanding of the dynamical
behavior, the value «,,, is obtained from the
previous value o, by multiplying it by 4A(1 — «), it
is clear that for 4X\(1 —«;) greater than 1, the
successive values, Viz, o 42, 0 43, Q4 4y -« -5 Q4 N>
will grow bigger — that is, a change in «, will get
amplified. This is the fold shortening due to
relatively high stress. However, «, cannot increase
indefinitely because of the mechanical properties of
the geological material make up of the stratum.
4X(1 — ;) becomes smaller than 1, and the subse-
quent values must diminish. In the context of
fold dynamics, this is fold stretching (amplification)
due to high impact of exerting forces that dominate
the stress. To determine the stability concerning
incessantly acting stress with different magnitudes,
a linearized analysis may be conducted through
the studies of the dynamical behaviors of a
model that is described by the first order difference
equation, which consist in finding constant equili-
brium solutions.

Fold Morphological Dynamics Under the
Influence of Time Dependent Stress

In contrast to the fold dynamics, under the influence
of constant stress, the behavior variations may be
observed when stress is made time dependent. This
idea is induced from the following statement of
Ruelle[17]. It states that the behavior of a dynamical
system can be studied with adiabatically fluctuating
parameters where the control parameter has a very
slow variation in time and this time dependence itself
might be determined by a dynamics. Thisis the origin
to consider the stress as a time dependent parameter
that controls the fold morphological dynamics.
Besides this, the logic behind using the time de-
pendent stress dynamics (TDSD) is that the com-
plexity of fold morphological dynamics depends on
the complexity of stress dynamics. Hence, in under-

standing the fold dynamics, the dynamics of the
stress should also be understood.

The Dynamics of the Time Dependent Stress

A possibility for stress being a time dependent
parameter, which may be confirmed from the fact
that the stress influence is not homogeneous in the
time domain. In such a case understanding the
dynamics of stress is an important event. However,
we assumed that the stressat time ¢ + 1is not directly
proportional to the stress at time ¢. This engendered
to consider the first order nonlinear difference
equation as a rule to understand the stress dynamics
also (Eq. (3)). In (Eq. (3)), A, is a time dependent
stress and p is the strength of stress modulated
parameter (SSMP) that controls the time dependent
stress dynamics. By considering this time dependent
stress ()\,), the degree of deformation at discrete time
intervals may be studied by the modulated logistic
equation (3). To show the effect of time dependent
stress regulatory parameter on the fold dynamical
system, Eq. (3) is considered to carry out numerical
simulation. For better understanding, see return
maps for the TDSD in Fig. 5.

In Eq. (3), the behavior of « is controlled by the
behavior of A. This is explored as the fold and the
stress, that is represented in numerical form
A < 1> 0, dynamical systems, in which the behavior
of the fold morphology depends on the behavior
of A. It means this coupled system contains two
dynamical systems, in which the dynamical param-
eters are « and \,. The equation to describe this
coupled system is written from Eq. (2) as

a1 =4Na (1 — af), A1 = 4p (1 — /\1)-

(3)

Various phases of fold dynamics, under the
influence of constant and time dependent stresses,
that can undergo can be studied by following Eqgs.
(2) and (3) respectively. In Egs. (2) and (3), a
detailed form of forces and fluxes will be indirectly
represented by A (constant stress dynamics) or p
(strength of stress modulation to model the time
dependent stress).
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4 COMPUTATION OF IA (6) OF
CORRESPONDING NFD («) OF A
SYMMETRIC FOLD UNDER DYNAMICS

By considering the parameters such as fractal
dimension (Mandelbrot, 1982), in normalized scale
« to describe the change in morphology of the fold,
and the constant (A) and the time dependent stress
regulatory parameter ()\,) to describe the detailed
form of forces and fluxes in the proposed equations
(4)—(7) and (11)—(14), the dynamical behavior of
symmetric fold types I and II that may behave from
stable to chaotic can be quantified.

Fold type I Equations (4) and (5) are proposed
which include certain specifications of a symmetric
fold type I under evolution according to Eq. (2) to
record the changing IAs (6) for both constant (Eq.
(4)) and time dependent (Eq. (5)) stress regulatory
parameters:

1 5 — 10{210gN/[4/\0‘r(l—C!/)+DT]}

9H~1 - COS—— 4 2 (4)
51 {2log N/[4\ o, (1—a,)+ D1}
0,41 = cos™! 0 4 - (5

Fold type II Equations (6) and (7) are pro-
posed to compute the IA for the symmetric fold
type II which is under evolution according to a
rule of Eq. (2). These equations, (6) and (7), are
proposed respectively for both constant (\) and
time dependent ()\,) stress regulatory parameters:

(6)

_, 1ollog N/[4Ae (1=} + Dal}
2 b

0,1 = 2sin

| 10{log N/[4\a,(1-a,)+Dr]}
2

0,01 = 2sin”

5 THE RELATION BETWEEN « AND ¢

The « and 6 are respectively denoted for the fractal
dimension in normalized scale and the TA of the
symmetric fold. As the fold is contracted, horizon-
tally in such a way that the limbs (L) will not change
and by having the change in d, the 1As (0) will be

changed. A symmetric fold with high degree of
linearity (straight) approximately possesses 180° IA.
A fold with high sinuosity such that it is self-
avoiding at any higher magnifications possesses
60°. A symmetric fold with 60° and 180° of IAs
possesses fractal dimensions 2 and 1, respectively.
However, these two limits of IAs for the type II fold
are respectively 90° and 180°. A symmetric fold
under dynamics will reach to criticality where the
ratio between log (N) and log(d/L) becomes 2. At
this critical state, the inter-limb angle becomes 60°
that is called critical angle, 6. This critical angle
for the symmetric fold type II is 90°. A symmetric
fold under study is self-avoiding if and only if,
0 > 0. With 0 < 6. fold pattern gets sheared. At
the critical angle, 6., the parameter « attains its
peak value, o = 1. The corresponding fractal dimen-
sion is at its criticality, i.e., a + Dy =2, for inter-
secting. With o, and A as 0.5 and 1 respectively, the o
value of fold under evolution at time # 4 1 becomes 1
at one single time step, and the 6 will be found at its
criticality. Once the inter-limb angle reaches its
criticality, the symmetric fold may become either
stable, or stretched, or breaks as the influence of the
stress continues. Equations (4)—(7) and (11)—(14)
are to observe how the IAs are restricted between
180° and 60°, and 180° and 90° for the fold types I
and II respectively under the influence of CSD and
TDSD. The latter values, 60° and 90°, are critical
angles beyond which the folds self-intersect. The
magnitude of variation in the §’s from time ¢ to ¢ + 1
depends on the intensity of the stress and the
internally exerting forces that the fold is subjected
to. As shown in Eq. (2), a€ [0, 1] representing the
fold with linearity and with the greatest possible
contortion respectively. The corresponding 6’s at
the =0 and 1 are computed as 180° (lower limit)
and 60° (upper limit), and 180° (lower limit) and 90°
(upper limit) for symmetric folds with three and two
limbs respectively. It is worth mentioning that the
fold, possessing parasitic folds, will self-intersect at
less than the upper limits viz 60° and 90° for the two
type of folds. The lower and upper limits represent
the most probable contorted fold at which the
parasitic folds will self-intersect, and linear structure
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before getting to be folded respectively. It is essential
to mention that the first order fold at various
magnifications contains parasitic folds that contain
still minor folds, and so on. Up to 60° of IA
of a symmetric fold at any higher magnification,
minor folds that possess exact self-similarity will not
self-intersect. With the IA of a first order symmetric
fold with lesser than the critical angle, minor folds
will self-intersect. For better comprehension, this
phenomenon is represented diagrammatically in
Fig. 2. From 6, the IA, the corresponding NFD
can be calculated for the symmetric folds with three
and two limbs respectively from Eqs. (8) and (9):

a =2log N/[log(5 —4cosf)] — Dr (for N = 3),

(3)
a = log N/[log[2sin(8/2)] — Dt (for N =2).

©)

The above expressions give the NFD of the
symmetric folds with three limbs and two limbs.
The corresponding NFDs for these folds with
#>60°,90° < 180° are a < 1 > 0.

(b)

FIGURE 2 Symmetric folds with several folds of different
IAs are shown schematically. (a) Schematic of self-avoiding
symmetric fold profile with second order folds. The A of first
order fold (shown in dotted line) is greater than 60° and (b) a
schematic of self-intersecting symmetric fold profile with sec-
ond order folds. The 1A of first order fold (shown as dotted
line) is lesser than critical angle, i.e., 60°. Hence, it is self-
intersecting. The intersecting second order folds may be seen.

6 FUNCTIONAL ITERATION BY
CONSIDERING 6’s AT DISCRETE TIME
INTERVALS

Instead of considering the «’s one can consider
the 0 values to carry out simulations for fold model-
ing. Equations (11)—(14) are proposed in which
the TAs are considered instead of the NFDs to
compute the IAs of the fold undergoing dynamics
according to the first order difference equation as a
dynamical rule. These equations are similar to the
Eqgs. (4)-(7).

It is intended to compute the [As at time 7+ 1 by
considering € at time ¢ as some function from the
relation between o and 6 described in Section 5. The
following generalized equation which is akin to that
of Eq. (1) is considered to perform functional
iteration:

9t+1 :f(et)' (10)

The function in Eq. (10) is expanded as follows by
substituting Egs. (4) and (8) for the fold with three
limbs that is undergoing dynamics as

Ors1
=cos ! ([5 —10exp2log N

/{4 {21og N/[log(5 — 4 cos9)] — Dt}
x {1 — {2log N/[log(5 — 4 cos )]

~ Dr}} + Dr}l /4). (11)

The expression as an exponent is based on the
first order nonlinear difference equation. In the
above equation, the strength of stress regulatory
force is a constant stress regulatory parameter.
However, the emphasis is also given in the present
investigation to carry out the iterations to under-
stand the possible dynamics by understanding the
dynamics of the time dependent stress regulatory
parameter. This function for the time dependent
stress regulatory parameter is defined in which
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Egs. (5) and (8) are considered:
041
=cos™! ([5 — 10exp2log N/{4),{2log N
/[log(5 —4cosf)] — Dr}{l1—{2logN
/llog(5 — 4cos )] — Dr}} + DT}]/4>.
(12)
The function expressed in the Eq. (10) isexpanded as
Eq. (13) by considering Eq. (6) and (9) as follows for
the symmetric fold with two limbs:
Ors1
= 2sin~! ([10 explog N/{4\{log N
/llog[2sin(6/2)]] — Dr}
x {1—{log N/[log[2sin(6/2)]]
- Dr}} + Dr}l /2). (13)

By substituting the time dependent stress regulatory
parameter (),) the Eq. (13) is rewritten follows:

0141
= 2sin~! ([IOexp log N/{4X{log N

/llog[2sin(6/2)]] = Dr}
x {1 — {log N/[log[2sin(6/2)]]

- Dr}} - Dr}l2). (14)

Symmetric fold dynamical behaviors can be studied
by these equations.

7 COMPUTATION OF METRIC
UNIVERSALITY BY CONSIDERING THE
AIAs OF SYMMETRIC FOLDS UNDER
DYNAMICS

The critical states are broadly categorized as

attracting to initial state,

attracting to a fixed point state,

oscillating between two points — period 2,
period 3 and chaotic state of fold dynamics.

The threshold stress regulatory parameter is the
value at which the symmetric fold under dynamics
produces critical state(s) or attractor(s). These
threshold stress regulatory parameter, for CSD
(N, and TDSD (), Ar, 11 =0.75; Ay, = 0.865;
Az, 13 =0.89225; and A4, gy =0.8925. The para-
meters A and p respectively represent the constant
and SSM to simulate time dependent stress regula-
tory parameters considered for fold dynamical
systems respectively. Feignbaum [18] proposed the
universality constant, i.e., 4669 ... for the cele-
brated nonlinear first order difference equation (2).
Similarly, the distance between the openings of
attractors at respective threshold stress regulatory
parameters are considered to compute metric uni-
versity (8), that converges to 2.5069 [18]. The AlAs
are computed (Table I(a) and (b)) for both the
types of fold systems that are controlled by both
constant and time dependent stress regulatory
parameters. By considering these AIAs of coupled
and non-coupled fold dynamical systems, Egs. (15)
and (16) to compute Feignbaum’s metric univers-
ality constant (6) for both the types of fold morpho-
logical dynamics are proposed.

Fold type I The parameter 6 that converges to
2.5069 can be computed for the symmetric fold
under dynamics by considering the AIAs by
Eq. (15):

6 ~<{log(5 —4costy, ) }—{log(5 — 4cosby)}

x {log(5 — 4003 ., }H{log(5 — 4cos b))

/({log(S —4cos )} {log(5 —4cosfy )}

x {log(5—4c0s0,) 1 {log(5—4cos By, ),
(15)

where N=2,4,8,16, ...

Fold type II AlAs are liable to vary with
the type of fold. The parameter ¢ can be computed
for the symmetric fold type I under dynamics by
considering the AIAs by Eq. (16). For this type of
fold, the attractor IAs for the two dynamical rules
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will be computed according to Eqs. (13) and (14):
6 ~({log[2sin(0},/2)] - log[2sin(6}/2)]}

x log[2sin(B3.,/2)] log[2sin(03y,3/2)] )

/ (togl2sin(éi/2)] logi2sin 0,1/

x {log[2sin(0y,2/2)] — logl2sin(65 ./ 2)1}),

(16)
where N=2,4,8,16, ...

8 RESULTS OF SIMULATIONS

The recent advancement is that the nonlinear
differential equations are used to represent the
motion of the actual processes in the form of
“maps”. Several natural phenomena of geoscientific
interest are modeled. The cogency of the model can
be justified provided the large amount of time series
data is procurable. Such time series data enable one
to find whether the attractor that describes the
evolutionary pattern of the folds possesses low
dimensionality. However, in the present section,
the time series data that reveal the possible dynamics
of the stress and the fold morphology is simulated to
show the qualitative characteristics. Two cases have
been considered, of which the first one is by
following the constant stress dynamics and, in the
second one, the time dependent stress dynamics is
followed.

Fold Dynamical System Under the Influence of
Constant Stress

A case study is shown by considering the symmetric
fold type I for better understanding. By changing A,
the constant stress, with a fixed initial « value, two
possible states of dynamical behaviors are simulated
qualitatively and illustrated Fig. 3(a) and (b). Based
on Eq. (4) two sets of conditions are considered to
transform a symmetric fold qualitatively with «; as
0.0636314 and control parameter A as 0.975 (chaotic
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FIGURE 3 Evolution of a fold type I with strength of non-
linearities (a) A=0.975 and (b) A=0.7. The numbers repre-
sent the discrete times.

attractor) and 0.7 (fixed point attractor). The IAs ()
of dynamically changing symmetric fold are com-
puted by Eq. (4) and the parameters of the sym-
metric fold under study are presented in Table III.
Figures 3(a) and 3(b) show simulated fold at
successive stages of evolution under different con-
stant stress control parameters represented as A. To
illustrate the chaotic fluctuations in the symmetric
fold evolution, with A =0.975 the evolution process
is simulated on computer (Fig. 3(a)). During this
evolution progressive compressions are followed by
amplification randomly. In Fig. 3(a), the fold was
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TABLE II Certain essential parameters of the fold behavior model

t e! d % of shortenings with respect to initial fold 0 (deg.)
L=2.1364248, \=0.975
1 0.0636314 6 0 136.20495
2 0.2323667 5.2101002 13.17 103.69863
3 0.6956524 4.0838214 31.94 70.334921
4 0.8257085 3.8996213 35.01 65.350395
5 0.5612645 4.3180416 28.04 76.777388
6 0.960362 3.7417248 37.64 61.108436
7 0.1484606 5.5607296 7.3212 116.33816
8 0.4930383 4.4591445 25.681 80.740878
9 0.974811 3.7264139 37.893 60.697772
10 0.0957626 5.8225257 2.958 127.36545
11 0.3377092 4.8568865 19.06 92.41023
12 0.8722808 3.8416856 35.99 63.791861
13 0.4344873 4.5951013 23.42 84.636437
14 0.9582616 3.7439746 37.6 61.168786
15 0.1559856 5.5262096 7.9 115.00552
16 0.511379 4.419505 26.34159 79.587900
17 0.974495 3.726746 37.88757 60.682251
18 0.096933 5.816304 3.0616 127.028912
19 0.341393 4.845945 19.23425 92.039776
20 0.876891 3.836153 36.06412 63.617582
L=2.1364248; A=0.7
1 0.0636314 6 0 136.20495
2 0.1668308 5.4776101 8.706498 113.1671
3 0.3891952 4.7112823 21.478628 88.037037
4 0.6656225 4.1318048 31.136587 71.643445
5 0.6262268 4.198355 30.027417 73.46716
6 0.655387 4.1486897 30.85517 72.105131
7 0.6322937 4.1876539 30.205768 73.173163
8 0.6509213 4.1561442 30.73093 72.309177
9 0.635064 4.183054 30.282433 73.017503
10 0.648922 4.159500 30.675 72.371934

progressively compressed, which is due to horizon-
tal stress upto discrete time, t=6. The fold at
discrete time ¢=6 (approaching critical angle,
0=061°) gets amplified due to dominating internal
forces at time ¢t = 7. At discrete times 1 =7, 10, 15, 18
the fold amplification in the fold profile can be seen
due to higher internal forces than the CSD para-
meter. These observations can be seen from the
numerically represented parameters depicted in
Table I1. This fold evolution process is represented
qualitatively through graphic analysis. It represents
the qualified dynamical behavior of the evolving
fold in a quantitative manner. Figure 4(a) shows
the return map, in which chaotic behavior of the
trajectory can be seen. In Fig. 3(b), symmetric fold
was compressed progressively. The compression is

due to horizontal stress. It may be observed that
after discrete time 7=25, the fold has reached
equilibrium state. This evolution is also qualita-
tively represented through graphic analysis in
Fig. 4(b) in which the trajectory is attracting to a
fixed point. Instead of the fractal dimensions in
normalized scale, their corresponding IAs are repre-
sented on return maps. It is observed when the «
values lie between 0 and 1, their corresponding inter-
limb angles will be between 180° and 60°, respec-
tively. ATAs at respective threshold stress regulatory
parameters are computed (Table III) for the fold
type I under dynamics by considering the initial fold
specification with «=0.00001 (6=179.43028°).
The number of iterations performed are 3 x 10*
time steps.
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FIGURE 4 Logistic maps for the qualitative dynamical
behavior of symmetric folds under evolution shown in (a) and
(b). It may be seen that the values mentioned on the abscissa
are IAs in degrees for the symmetric fold with three limbs.

Fold Dynamical System Under the Influence of
Time Dependent Stress

It is assumed that the fold dynamical system is
controlled by the TDSD. Hence, the study of fold
dynamics system is treated as a coupled system. The
stress dynamics is simulated by considering the first
order nonlinear difference equation as the basis to
further generate the time dependent stress regula-
tory parameter. With this simulated time dependent
stress regulatory parameter the fold dynamics is
controlled. With different possible TDSD, the
symmetric fold dynamics is studied, and sets of
equations are proposed in which the dynamically

changing parameters are IAs and the AIAs. Some
interesting results have been arrived at when the
stress regulatory parameter is made time dependent.
At the threshold stress regulatory parameter in the
coupled system, i.e., u, the time dependent stress
regulatory parameter A, the attractor NFDs and the
corresponding AIAs are computed and compared
with the results for the autonomous fold dynamical
system which is controlled by the non-time-depen-
dent stress regulatory parameter.

Return maps are plotted for the low dimensional
deterministic randomness of the dynamical system
of time dependent stress regulatory parameter
(Arv 1= vs A2 — A1) (Fig. 5(a)—(c)), and the
fold morphology dynamical system that is con-
trolled by the time dependent stress regulatory
parameter (i.e 0,y —6,vs 0, ,,—0,, ) (Fig. 6(a)—
(c)). Plots are constructed by considering the
differences of successive € values in the time domain
tin 0, and 6, ; phase space (Fig. 6(a)—(c)). These
return maps indicate the characteristic behavior of
the simulated time dependent stress and fold
dynamical systems. This demonstrates that one
can analyze the temporal aspects of a system in the
same manner as used to analyze time series data of a
system variable. These return maps are plotted by
considering the variables A\, = 0.00001; 11 = 0.9, 0.95,
0.9925; «,=0.00001 or #,=179.43028; no. of
iterations = 10 x 10° time steps. The AIAs are also
computed by iterating Eqgs. (11), (13) and (12), (14)
respectively for the two symmetric fold dynamical
systems under the influence of constant and time
dependent stresses Table 111 and IV. The difference
in the AIAs from the type I to type Il symmetric
folds is apparent. The variation is also observed in
the AIAs in these two types of folds when they are
subjected to the dynamical rules that include TDSD
and CSD (Table IV). These AIAs are liable to vary
with the variations in the fold specifications,
dynamical rules involved in the fold morphological
dynamics and in the stress dynamics. For instance,
if the rule that controls the stress dynamics is a
linear equation, contrary to the dynamical rule con-
sidered in this study, the AIAs are liable to vary.
This important point can be further justified by
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TABLE III AlAs at the threshold regulatory forces after 3 x 10* time steps: The dynamical rule is simple first order nonlinear

difference equation with constant stress control parameter

Threshold control
parameter

AlAs (deg.)

Symmetric fold type I (a=10.00001, 6;,; = 179.43028°)

Al 0.75 0;="71.663691 0, ="71.53066

A2 0.865 6;=64.896443 04=286.185576 65 =64.14859 0= 82.378284

A3 0.89225 0,=163.154877 03 =180.241149 09 =65.166519 010=289.678203

0, =063.451428 01, =77.326159 0,3=65.932067 0,4=91.542719

A4 0.8925 63.15 80.533198  65.095265  89.514049  63.473466 77.1892 65.969598  91.646881
63.188252  81.513418  63.101017  88.917082  63.558405  76.831445  66.076159  91.887804

Symmetric fold type IT (a=10.00001, 6;,; = 179.43028°)

Al 0.75 98.601081 98.502297

A2 0.865 93.588105 109.48 93.037603 106.61775

A3 0.89225 92.307411 105.01353 93.787106 112.10937

92.525161 102.82903 94.351735 13.5141

A 0.8925 92.302608 105.23 97.734594  111.98573  92.541349  102.72656  94.379436 113.5926

92.33191 105.96831  92.267878  111.53614  92.603746  102.45876  94.458098  113.77415

considering the natural data in relation to stress and
the changes in the fold morphologies in a temporal
domain. Such a justification explains whether the
HDSFs will change its phases. Periodic locking is
observed at the u values between 0.848 and 0.860
(Table V).

This analysis is shown to have better under-
standing that this data is following deterministic
randomness, that is each successive value depends
on the value of its predecessor. The time dependent
stress dynamical system is also represented as return
maps (A, 41— A VS A, 12— A,y 1) forthe £ =10.9,0.95
and 0.9925. Figure 5(a)—(c) illustrates these return
maps. These illustrations allow for qualitative
understanding of the stress dynamics that follow
the deterministic randomness.

Period Locking

Period locking is identified between the dynamics of
the stress regulatory parameter and the dynamics of
the fold system. From the fold dynamics that is
being controlled by time dependent stress regulatory
parameter, one can see that the dynamics of the time
dependent stress regulatory parameter is enslaved to
the dynamics of the fold system. The dynamics of
stress regulatory parameter is following period two,
however, the dynamics of the fold system that is

being controlled by this controlled stress dynamics
follows the period 4. This “period locking” is
observed between the p the stress regulatory
parameter in the modulated logistic system, values
0.848 and 0.860. This possibility of the periodic
locking in the modulated fold dynamical system
needs to be described by analyzing the physical
forces of specific range. This needs to be compared
in a meaningful way with the stress regulatory
control parameter represented as a numerical value
(ie., pu<1>0). It is interesting to see how the
dynamics of the stress regulatory parameter is
enslaved to the dynamics of fold morphological
behavior between the values of 0.848 and 0.860
(Table V).

Bifurcation Diagrams

Fold Dynamics Under the Influence of
Constant Stress

In Fig. 7(a), a bifurcation diagram is shown for
various possible dynamical behaviors of the sym-
metric folds under dynamics, viz, stable, unstable,
chaotic. The evolution types of fold transformations
can be segregated as period zero, period one, period
two, and chaotic. As the parameter A is varied,
changes in the qualitative behaviour of the system
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TABLE IV AlAs at the threshold regulatory forces after 3 x 10 time steps: The dynamical rule is simple first order nonlinear

difference equation with time dependent stress control parameter

Threshold control AlAs (deg.)
parameter
Symmetric fold type I (o= 0.00001, 6;,;, = 179.43028°, A =0.00001)
1 0.75 73.327164 73.728954
M2 0.865 107.68174 64.294614 82.599485 77.825268
13 0.89225 80.778449 84.660144 115.27091 63.503065
79.025155 88.477219 118.38197 63.266815
m 0.8925 80.991449  84.305693 114.9721 63.528255  78.985088  88.734899  118.60113 63.24672
81.746702  83.107759  113.92723  63.613464  78.985146  89.642031  119.39317  63.158243
Symmetric fold type II (c=0.00001, 6;,; = 179.43028°, A =0.00001)
1y 0.75 99.840737 100.14045
Ho 0.865 125.68524 93.145029 106.7839 103.20273
3 0.89225 105.41666 108.33262 131.40715 92.563091
104.10171 111.20491 133.75145 92.389588
I 0.8925 105.57651  108.06612  131.18194  92.581572  104.07168  111.39894  133.91655  92.374946
106.14345  107.16576  130.39438  92.644198  104.07172  112.08213  134.51323  92.309882

TABLE V AlAs of the fold dynamical system following time dependent stress control parameters (A9 = 0.00001; cg =0.00001 or

6,=179.43028°; No. of iterations 3 x 10%)

Stress modulation parameter (1) Arp1=4pr(1=X) AlAs (8"
to control time dependent stress dynamics
Attractor time dependent stress control parameters (\")  Fold typeI  Fold type II
0.848 0.453991 92.389892 114.15255
41.528587 95.894165
0.84082 92.3629 114.13221
41.563547 95.903425
0.860 0.442194 96.82515 117.49648
66.579149 94.829506
0.848505 89.600981 112.05121
70.063627 97.411428

can occur. Such qualitative behavior can be seen in
the bifurcation diagram (Fig. 7(a)) in which the
attractor set against control parameter \ is plotted.
In this bifurcation diagram, as A €[0, 1], the dy-
namical behavior possesses one stable fixed point.
As ) is increased past 0.75, the behavior becomes
unstable and two new stable periodic points appear.
Fold behavior follows periodicity where both ampli-
fication and shortening of folds are subsequently
involved. The dynamics become unstable, each
originating two new stable periodic points of period
4 as M\ is further increased from 0.89225. Through
this bifurcation diagram, the fold dynamical beha-
vior path can be found with respect to the control
parameters. This diagram (Fig. 7(a)) not only

portrays the type of dynamical behaviors of the fold
with respect to the control parameter, but also the
critical states in terms of IAs of the fold under
dynamics. The number of critical states that a fold
reaches under the dynamics depends on the initial
fold state and the control parameter (A). For every
value of A, there will be an attracting point. These
attracting points are represented in two ways: (a) the
fractal dimension in normalized scale and (b) critical
states shown as IA of a symmetric fold under
dynamics. Instead of the fractal dimensions in nor-
malized scale, their corresponding IAs are repre-
sented. If the fold under dynamics is according to
the rule of the first order difference equation (2),
Fig. 7(a) shows various behavior paths and their
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FIGURE 7 (a) Bifurcation diagram showing various possibilities of fold transformations: stable, unstable, chaotic. The value of
A measures the constant strength of stress regulatory parameter which controls the fold. The evolution of the fold system can be
segregated as period zero, period one, period two, and chaotic. Period zero: A contorted fold with «,=0.06363 becomes straight
when «, | approaches zero, A is between 0 and 0.25. This is possible under the process of continuous fold amplification. Period
one: When ) is between 0.25 and 0.75, the fold pattern shortens, and the pattern reaches a fixed point attractor. It means that
the fold reaches the equilibrium state. Period two: The fold pattern oscillates between two points when A is between 0.75 and
0.89225. The fold amplification and compression will occur periodically. Chaotic: The behavior of fold is such that the fold
shapes at different time periods do not overlap. Here, the fold amplification and compressions may occur, as time progresses,
randomly. The values on both sides of the Y-axis represent the IAs of the symmetric folds with three limbs and two limbs
respectively. (b) Bifurcation diagram of Eq. (11) that describes the fold dynamics under the influence of time dependent stress
regulatory parameter. The branches crossing over each other in the 4-cycle region result in a complete modification of the
structure.
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stability with respect to the initial fold state and A
values were shown by means of respective critical
states represented by 6’s. The important contribu-
tion of this diagram (Fig. 7(a)) is the information
regarding the history of folding that can be studied,
provided the initial state of the symmetric fold
and the control parameter that controls the fold
dynamics are precisely computed.

Dynamical System Under the Influence of TDSD

The influence of TDSD on fold dynamical behavior
is depicted through bifurcation diagram (Fig. 7(b)).
This is controlled by considering Egs. (12) and (14).
In these equations, the value of the parameter A at
any instant is a single nonlinear function of its value
in the previous instants. In this, u plays the role of
the control parameter, which is thought of as the
strength of stress modulated parameter.

For 0 < 1 <0.75, stress dynamics follows attract-
ing fixed point for A, and here for 6,, 6, (180°, 60°,
90°) and A €10, 1]. The bifurcation diagram in Fig.
7(b) is generated by starting from a parameter value
@ =0.75and increase it in steps of 0.001, by an initial
values of 0, and )\, say 179.43028 and 0.00001,
respectively.

Due to modulation by TDSD, changes between
the bifurcation diagrams (Fig. 7(a) and (b)) are
observed. The fundamental difference is that the
bifurcation occurs earlier than in the case of the fold
dynamics under the influence of constant stress
dynamics from the observed bifurcation orders. The
normal feature in the modulated system is the
crossing-over of the inner bifurcation branches in
the 4-cycle region. It lacks the symmetry of the
bifurcation structure of the fold dynamical systems
that is influenced by the CSD.

9 CONCLUSIONS

We have studied the highly ductile nature of
symmetric fold dynamical behaviors that are con-
trolled by the constant and the time dependent stress
modulated parameters respectively through numer-
ical simulations. In particular we discuss the

computations of the changing AIAs at respective
stress modulated parameters which are used to
control the behavior of fold dynamical system.
Equations are proposed to compute IA of these
symmetric folds undergoing dynamical changes,
which encompass the rule that is ensued to trans-
form the folds and certain specifications of the folds.
Bifurcation diagrams are described to show how
these symmetric folds under dynamics behave under
the change of constant stress control parameter, A,
and the strength of stress modulated parameter, p,
to control TDSD, \,. The AlIAs (8") are shown on
the bifurcation diagrams. By considering these
AlAs, equations are also proposed to compute
metric universality. The periodic nature of the phase
changes in the fold morphological dynamics is
studied using the time dependent and constant
stresses that follow a dynamical rule. Interesting
conclusions are arrived at in terms of variations in
the AIAs of the fold following these two dynamical
rules. These theoretical conclusions have an impor-
tant bearing when considering strategies for the
understanding of geological fold dynamics; more
generally, when considering the behaviors of natural
time series data in a range of geological situations
where folding is taking place. This type of time series
data indicate that the possibility of predicting
predictability depends on the degree of randomness
in the behavior of the dynamical system. From the
time series data, attractor can be constructed in
phase space. The dimension of the attractor pro-
vides the possibility of predicting predictability.
Low dimensional attractors of dynamical systems
allow the behavior to be predicted through some
nonlinear equations. However, as the dimension-
ality of the attractor that describes the behavior of
dynamical system is high, the predictability becomes
difficult. These two types of systems are termed as
the dynamical systems that follow deterministic
randomness and the natural randomness in their
behaviors. Generally, the system that follows
deterministic randomness will possess the strange
attractor of which the dimensionality is low. The
assumptions considered as the bases are that the
dynamics of both fold morphology and the acting
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stress possess the low dimensional attractors. To
infer whether the attractor of fold morphological
dynamics posesses the low dimensionality, a long
time series data is required.

This deterministic approach emphasizes to give
certain possible behaviors of fold dynamics with the
respective critical states represented by IAs. It is
concluded that the critical states of symmetric folds
under dynamics depend on the stress that influences
the fold, and the initial state of the fold. With the aid
of the SSM parameter and the specifications of
initial state of symmetric fold, graphic analysis may
be carried out to investigate the history of folding.
Such an investigation, to find out the critical states
of several possible behaviors, will shed light on
predicting the fold dynamical behaviors. The
dynamically transforming symmetric fold with
different time dependent and constant stress con-
trolling parameters was shown for a better qualita-
tive understanding. This qualitative study is an
attempt as an example for academic interest to
furnish the interplay between numerical experi-
ments and analytical theory. This maiden attempt
is considered as a preliminary effort to introduce
bifurcation theory for the understanding of the
dynamical behavior of symmetric folds. In brief,
this paper presents a maiden attempt to show how a
symmetric fold can modify its shape, in particular
the interlimb angle, through a nonlinear first order
difference equation. This approach could be valid as
a potential application of these equations to a
geological problem to resolve real fold cases.
However, with historical data available, the phase
that the fold has undergone can be studied by
investigating the fold at different time intervals to
fit the equations. From such derived equations,
assumed to be first order nonlinear difference
equations, as the underlying dynamical rule in the
present qualitative investigation, our understanding
of the fold dynamics will certainly be enhanced.
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