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Abstract

Morphological decomposition procedure is applied to estimate fractal dimension of a pore–space, which is isolated

from a sandstone microphotograph. The fractal dimensions that have been computed by considering various probing

rules have precisely followed the universal power-law relationships proposed elsewhere. These results are derived by

considering structuring elements such as octagon, square and rhombus that have been used to decompose the pore–

space of sandstone image. The radii of the structuring elements are made to increase in a cyclic fashion. To perceive the

decomposed pore image, a color-coding scheme is adapted, from which one can identify several sizes of these struc-

turing elements that could be fit into this pore. This exercise facilitates testing of the relationship between the radius of

the structuring elements that could be used to decompose the pore at different levels, and the number of decomposed

shapes that could be fit into the pore while using the corresponding structuring element. From the number–radius

relationship, the fractal dimensions of pore–space estimated, by considering these structuring elements, yield the values

of 1.82, 1.76, and 1.79. These values are in conformity with the values arising from estimation of box dimension

method, as well as the dimensions of the corresponding pore connectivity networks (PCNs).

� 2003 Elsevier Ltd. All rights reserved.
1. Introduction

Pore–spaces of sandstone samples are fractals [1], and are self-similar [1]. It is reported that the percolation theory

does not describe the pore–space geometry [2]. For sandstone samples of varied nature such as tight glass sand with

#965, and #466, Coconino, and Navajo the range of fractal dimensions is given between 2.57 and 2.87, which suggests

that the pore formation processes do not fall within a single universality class [3]. It is also assumed by these researchers

that the sandstone pore–space has the fractal properties of the interface implying a simple relationship between the

fractal dimension and the porosity of the rock as also opined by Mandelbrot [1]. Several methods have been adapted to

compute the fractal dimension of such objects. Packing of objects, pore being one such example, gives an idea of es-

timating fractal dimensions through power-law relationships. The two seminal studies of recent past based on the

concept of packing of objects have been carried out by Manna and Herrmann [4], and Dodds and Weitz [5]. The re-

cent studies [4,5] have emphasized on deriving universal power-law relationships applying scaling theory. A few at-

tempts have been made to estimate the fractal dimension of planar shape by applying mathematical morphological
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transformations [6–13]. In our previous study, a method was proposed and implemented to decompose a fractal object

into shapes such as rhombus, octagon, and square [13]. In this study, we have considered the decomposition procedure

that utilizes non-overlapping structuring elements with sizes distributed from radius Rmax to Rmin in pore image. Such a

procedure first decomposes the available pore–space with structuring elements of higher radius ðRmaxÞ. Once the filling is

performed using Rmax, it will be followed by a procedure that reduces the radius of the structuring elements and de-

composing again. The procedure will repeat until leftover pore is filled with structuring element with minimum radius

ðRminÞ. This type of decomposition facilitates a procedure to estimate the dimension, akin to fractal dimension, through

a power-law relationship between size (or) radius, and number of decomposed and disconnected shapes at a given

threshold value. The power-law relationship can be represented by
NðrÞ / r�a with D ¼ a� 1 ð1Þ
where N , r, a, and D respectively represent the number of decomposed shapes that are larger than the threshold radius,

radius, slope of the regression line, and fractal dimension. In the remainder of the paper, basic introduction to

mathematical morphology (Section 2), packing of pore–space through morphological decomposition procedure with its

implementation on Appollonian space (Section 3), and results, discussion on the sample pore–space derived from a

sandstone image with a scope (Section 4) have been given with mathematical equations and illustrations.
2. Morphological transformations

The discrete binary image is defined as a finite subset of Euclidean two-dimensional space, lR2 that can have values 0

and 1. Let a digital binary pore M be represented by a set of elements m 2 M . The image ðMÞ can be decomposed by

probing it with various structuring templates to unravel certain complex features of topological nature. Several se-

quential transformations are involved in this morphological decomposition procedure. These transformations can be

visualized as working with two images namely the image being processed ðMÞ, and structuring template ðSÞ. Each
structuring template has a designed shape that acts as a probe. Morphological operations transform M to a new image

by a structuring element S. The four basic morphological transformations are defined with respect to structuring el-

ement S. These four morphological transformations include dilation to enlarge, erosion to shrink, and opening and

closing to smoothen [11]. These are represented as Eqs. (2a–d).
Dilation: M � S ¼ fmþ s : m 2 M ; s 2 Sg ¼
[
s2S

Ms ð2aÞ
Dilation enlarges the bright spots and neighbouring grey levels will be connected.
Erosion: M � S ¼ fm� s : m 2 M ; s 2 Sg ¼
\
s2S

Ms ð2bÞ

Opening: M � S ¼ ðM � SÞ � S ð2cÞ

Closing: M � S ¼ ðM � SÞ � S ð2dÞ
It is worthwhile to mention that the Minkowski�s addition and subtraction are similar to morphological dilation and

erosion, if considered structuring element S ¼ bSS . These transformations can be carried out in multiscale approach

[6,13]. In the multiscale transformations of cascades of erosion–dilation and dilation–erosion are defined with respect to

structuring element S with scaling factor n. In the multiscale approach, size of structuring template will be increased

from iteration to iteration as shown in Eq. (3).
Sn ¼ s� s� s� � � � � s|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
n times

ð3Þ
In this paper, we have considered three types of structuring elements that include rhombus, square and octagon (Fig.

1). To perform multiscale processes, size of structuring template will be increased as shown in Eq. (3). The radius of

structuring element ðRÞ is one of the important parameters in establishing the power-law relationship. The radii of

rhombus, square and octagon structuring elements at various iterations are diagrammatically illustrated (Fig. 1).

Consequently, it was observed that the sizes of square and rhombus structuring elements increase from iteration to

iteration as Sn : R ¼ n. However, the size of octagon structuring element ðSnÞ increases with increasing cycle number ðnÞ
and its corresponding relationship is given as Sn : R ¼ nþ 2. Incorporating these basic morphological transformations,

a morphological decomposition procedure for packing of pore–space is explained in following section.



Fig. 1. Various sizes of structuring templates (a) rhombus, (b) square, and (c) octagon.
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3. Model for packing of pore: a morphological approach

Tiling space with circles by putting them iteratively in each hole between three mutually touching circles and the

circle that tangentially touches all three is known as ‘‘Appollonian packing’’ [4]. Morphological decomposition pro-

cedure for packing of fractal object was discussed in our previous study [13]. To estimate the fractal dimension of an

Appollonian space (termed as a set) (Fig. 2a), morphological decomposition procedure is adapted. This procedure

includes systematic use of multiscale opening and certain logical operators. The following set of Eq. (4) enables to show

how to decompose a shape by following these morphological transformations.



Fig. 2. (a) Appollonian space, and (b) after decomposition by means of octagon.
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M2 ¼ M1 nM1 � Sn
M3 ¼ M2 nM2 � Sn

..

.

Mn ¼ Mn�1 nMn�1 � Sn and Mnþ1 ¼ Mn nMn � Sn

*
Sn
n¼0

Mn ¼ M and *Mnþ1 ¼ /

MDecomp ¼ ðM � SnÞ [ ðM1 � SnÞ [ ðM2 � SnÞ [ � � � [ ðMn�1 � SnÞ
*Mn � Mn�1 � � � � � M3 � M2 � M1 � M

9>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>;

ð4Þ
After performing n times of multiscale opening on Appollonian space of which the fractal dimension is to be es-

timated, the opened version needs to be subtracted from the original version. This can be achieved by simple logical

operation, which is represented with a symbol ðnÞ. If nþ 1 iterations require vanishing a set (or shape), n iterations of
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multiscale opening need to be performed to decompose a main set, and successively achieved subtracted portions of this

set. By taking the condition that nþ 1 iterations of multiscale opening vanishes respective set or the successive sub-

tracted portions into consideration, each subtracted portion is subjected to further decomposition. Number of sub-

tracted portions that may appear while decomposing a set depends on size and shape of a considered set, and of a

structuring template with its characteristic information. To have a better understanding of these superficially simple

morphological transformations, various steps involved in morphological decomposition procedure are represented in

Eq. (4). Implementing these sequential steps by means of octagon, Fig. 2b is resulted. For better perception each level of

decomposed region is color-coded. Application of these sequential steps, which are implemented on Appollonian space

in this section, is extended to decompose a pore–space isolated from a sandstone image. The results and other power-

law relationships are discussed in the next section.
Fig. 3. (a) Sandstone image that contains both grain and pore, retrieved from SEM, (b) histogram and statistics obtained from

sandstone image, (c) cross-section of sandstone grain (black in color) and pore (white in color), (d–f) decomposition of isolated pore

by means of octagon, square, and rhombus structuring elements.
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4. Power-law relationship, sample study, results and scope

To estimate the fractal dimension, a method by employing certain mathematical morphological transformations,

which was discussed in Section 3 is used. This straightforward method is applied on a pore–space that is isolated from a

sample sandstone image acquired through scanning electron microscope (SEM). As a sample study to implement the

framework thus described in Section 3, the decomposition procedure is performed on a pore–space that is isolated from

a sandstone image (Fig. 3a). The pore is isolated by a simple thresholding technique. The threshold gray level is taken as

a value of 128 (Fig. 3b). This isolated pore image is decomposed into various sizes of octagon, square, and rhombus.

This image (Fig. 3c) decomposed by means of octagon, rhombus and square structuring elements are color-coded for

better understanding, and shown in Fig. 3d–f. Size distribution histograms of area of number of decomposed shapes

and the radius of corresponding structuring element are also plotted (Fig. 4a–c). The number of decomposed patterns of

various sizes of octagon, square, and rhombus, and other associated parameters are given in Table 1. It is apparent that

the smaller the size of primary pattern that is used to decompose a pore–space, the larger the number of cycles (or)

radius is required for decomposition. A power-law relationship as NðrÞ / r�a (with D ¼ a� 1) is shown for this pore–

space decomposed by means of octagon, rhombus and square structuring elements. The fractal dimensions of this pore–

space derived by means of a number–radius relationship by these three types of structuring elements are respectively,
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Fig. 4. Histogram plots of area of number of decomposed shapes achieved by structuring elements, (a) octagon, (b) square, and (c)

rhombus, versus radii of structuring elements.



Table 1

Fractal dimensions estimated from number–radius power-law relationship

Type of structuring element Radius ðrÞ Number of decomposed shapes ðNÞ Fractal dimension ðD ¼ a� 1Þ
Octagon 20 1 1.8261

18 1

16 4

14 10

12 28

10 25

8 52

6 98

4 279

2 629

Square 19 1 1.764

17 1

16 1

15 1

14 5

13 9

12 7

11 12

10 17

9 13

8 21

7 27

6 55

5 52

4 123

3 192

2 365

Rhombus 24 1 1.7833

23 1

21 4

20 3

19 4

18 6

17 4

16 7

15 17

14 13

13 11

12 8

11 17

10 27

9 33

8 48

7 86

6 102

5 109

4 177
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1.8, 1.76, and 1.78 (Fig. 5a–c). It is proved that this power-law of relationship ðNðrÞ / r�aÞ, the number of cycles

required to decompose depend on radius of structuring template. In this case, a size–radius relationship is verified,

which is in accord with a universal power-law proposed elsewhere [4,12].
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Fig. 5. Graphical plots of logarithms of number of decomposed and disconnected portions of pore versus logarithms of radius of

structuring element for (a) octagon, (b) square and (c) rhombus.
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