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Abstract

A third-order Koch quadric fractal is used to generate a fractal landscape. To generate this
artificial landscape, nonlinear mathematical morphological transformations are used to topo-
logically decompose the binary fractal basin. The decomposed regions of prominence are coded
with different shades for better perception. The 3D surfaces are generated for the topologically
decomposed and coded fractal, which resembles a landscape possessing alluvial fans, of interest
to theoretical geomorphologists.

1. INTRODUCTION

The topological characteristics of a third-order
Koch quadric fractal1 are studied here. The study
aims to generate a fractal landscape by follow-
ing set theory-based transformations and coding
techniques. A binary fractal basin is decomposed
into topologically prominent regions (TPRs) by
following nonlinear mathematical morphological
transformations.2 The TPRs will then be coded

with shades prior to the generating of a landscape

construction of 3D surfaces. This is a maiden at-
tempt which includes morphological rules in the

characterization of binary fractal topology for gen-

eration of fractal landscape. This paper consists of a
total of five sections. In Sec. 2, a brief introduction

on mathematical morphological transformations is
given. This is followed by their importance in de-

composition of fractal into flow direction network
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(FDN) in Sec. 3, decomposition of fractal into TPRs
with coding in Sec. 4, and finally a sample study ap-
plying the morphology-based framework is shown in
Sec. 5.

2. MATHEMATICAL
REPRESENTATION OF
MORPHOLOGICAL PROCESSES

Most of the mathematical formalism and notations
are adopted from Serra.2 Mathematical morphol-
ogy based on set theoretic concepts is a partic-
ular approach to the analysis of geometric prop-
erties of different structures. The main objective
is to study the geometrical properties of a natu-
ral feature represented as a binary image through
the investigation of its microstructures by means of
“structuring templates,” following Serra’s concept.2

It aims to extract information about the geometri-
cal structure of an object (e.g. water body, basin,
channel networks, section of water bodies, etc.) by
mathematical morphological concepts. In this, a
specific fractal is subjected to transformations by
means of another object called the structuring tem-
plate. The main characteristics of the structuring
template are, shape, size, origin and orientation.
The topological characteristics of fractal (e.g. spa-
tial distribution, morphology, connectivity, convex-
ity, smoothness and orientation) can be character-
ized by different structuring templates. According
to Matheron’s3 approach, each image object is as-
sumed to contain its boundary, and thus can be rep-
resented by a closed subset of Euclidean space. In
addition, many structuring templates can be repre-
sented by a compact subset of E, so that constraints
which correspond to the four principles of the the-
ory of mathematical morphology (such as invari-
ance under translation, compatibility with change
of scale, local knowledge and uppersemicontinuty2)
will be imposed on morphological set transforma-
tions (dilation, erosion, opening and closing) for
precise extraction of topological information from
the fractal.

Dilation, erosion, opening and closing are the
simplest quantitative morphological set transfor-
mations. These transformations are based on
Minkowski set addition and subtraction.2 The
Minkowski set addition of two sets, M and S, is
shown as follows [Eq. (1)].

M ⊕ S = {m+ s:m ∈M,s ∈ S} = Us∈SMs . (1)

M and S consists of all points c which can be ex-
pressed as an algebraic vector addition c = m + s,
where the vectors m and s respectively belong to
M and S.

The Minkowski set subtraction of S from M is
denoted as

MΘS = (M c ⊕ S)c =
⋂
s∈S

Ms . (2)

Let M be a binary image where the pixels with zeros
are marked with a dot for a better legibility. Struc-
turing element S will be moved from top to bottom
and left to right by applying the criterion of erosion
principle to achieve shrinking. When the rectangle
S is centered on one point of the frame of the image
M , then it will be truncated and only its intersec-
tion with the shape is kept. The discrete binary im-
age M is defined as a finite subset of Euclidean 2D
space IR2. The geometrical properties of a binary
image possessing set (M) and set complement (M c)
are subjected to the morphological functions. From
geometrical point of view, morphological dilations
and erosions are defined as set transformations that
expand and contract a set. The morphological oper-
ators can be visualized as working with two images.
The image being processed is referred to as the frac-
tal while the other image is that of the structuring
template. Each structuring template has a designed
shape that can be thought of as a probe of the main
feature. The three morphological transformations
involved in this study are dilation to expand, ero-
sion to shrink, and cascade of erosion-dilation to
smoothen the set.

Dilation. Dilation combines two sets using vector
addition of set elements. If M and S are sets in Eu-
clidean space with elements m and s, respectively,
m = (m1, . . . ,mN ) and s = (s1, . . . , sN ) being N -
tuples of element coordinates, then the dilation of
M (binary fractal) by S (structuring template) is
the set of all possible vector sums of pairs of ele-
ments, one coming from M and the other from S.
The dilation of a set M with structuring template
S is defined as the set of all points m such that
Sm intersects M . It is expressed as Eq. (3). It is
worth mentioning here that as long as the struc-
turing element is symmetric (S = Ŝ) Minkowski’s
addition and subtraction are respectively similar to
morphological dilation and erosion. The considered
structuring template in the present investigation is
symmetric.

M ⊕ S = {m:Sm ∩M} = Us∈SMs . (3)
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Properties: The small holes inside the image and
gulfs on the boundary will be closed by this dila-
tion transformation. This operation enlarges the
objects and connects neighboring particles.

Erosion. The erosion of an image M with struc-
turing template S is defined as the set of points m
such that the translated Sm is contained in M . It
is expressed as Eq. (4).

MΘS = {m:Sm ⊆M} =
⋂
s∈S

Ms (4)

where S = {s:s ∈ S}, i.e. S rotated 180◦ round the
origin.

Properties: Isolated points and the small parti-
cles will be removed by this operation. It shrinks
the other particles, discards peak on the boundary
of the object, and disconnects.

The cascades of erosion-dilation and dilation-
erosion are respectively termed as the opening and
the closing transformations which are also nonlinear
transformations.

3. DECOMPOSITION OF BINARY
FRACTAL INTO FDN

The region-based technique is used to represent
the abstract structure of an object. Morpholog-
ical skeletons, an example of abstract structures,
are used to represent the FDN of the fractal for
topological analysis and classification. The process
of skeletonization for binary fractal region charac-
terization is sensitive to the wrinkle in the outline.
A highly contorted fractal produces more intricate
FDNs. The angular points in the successive front-
lines indicate the spurs. Successive front-lines in-
dicate the boundaries of all possible eroded sets
that can be extracted using the concept of structur-
ing template ranging from smaller to bigger sizes.
The width of the angular point in the boundary is
smaller compared to that of the successive front-
lines of the binary fractal. The structural com-
position of the binary fractal reflects through the
characteristics of angular points in the successive
front-lines. The combination of all possible angular
points in all possible front-lines produces an aggre-
gated network of arboreal type. The sources of thin
dendrites are the dendrites of larger size. In order to
segregate the binary fractal into several regions of
various orders, an order designation similar to river
network order designation can be given. However,
this is not within the scope of the study.

3.1 Extraction of FDNs

FDN is a line thinned caricature to summarize the
shape, size, orientation and connectivity of the bi-
nary fractal. It is defined as the union of maximum
possible angular points that can be isolated from
all possible successive front-lines of a binary frac-
tal. The FDN of a binary fractal (M), FDN(M),
viewed as a subset of IR2 (2D space), is defined
mathematically as

FDNn(M) = (MΘSn)/{[(MΘSn)ΘS]⊕ S} ,
n = 0, 1, 2, . . . ,N

(5)

where M and S represent binary fractal and the
structuring template, respectively. In the above ex-
pression, the opening of an eroded set is always by
means of a structuring template of arbitrary size.
Those parts remaining after set difference between
the eroded set and its opening are FDN subsets.

FDN(M) = UN
n=0FDNn(M) (6)

where FDNn(M) denotes the nth subset of binary
fractal (M). In the above expression, while sub-
tracting from the eroded versions of M , their open-
ing by S retains only the angular points (which
are points of the FDN). The union of all such pos-
sible points produces FDNs. The FDN patterns
and their structural composition depend on the
characteristic information of structuring template
(S). Asymmetric 2D morphological structuring
templates produce irregular FDN. In contrast, sym-
metric 2D structuring templates produce symmet-
ric FDNs. Structuring templates of bounded type
produce only the aggregated type of FDNs. The
isolation of angular points in the successive eroded
sets of a binary fractal consists of just the isola-
tion of crenulations in a contour. The boundaries
of successive eroded sets, also termed as successive
front-lines, need to be extracted. Equations (5) and
(6) are to extract FDNs.

4. BINARY FRACTAL
DECOMPOSITION INTO
VARIOUS REGIONS OF
PROMINENCE FROM FDN AND
CODING TO GENERATE
FRACTAL DEM

The topography of the landscape depends on the
morphological rule used to decompose the internal
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topography which varies from region to region. It
may be used to decompose the binary fractal into
regions of prominence. It is visualized that binary
fractal contains several regions of prominence. Each
region will be designated according to the promi-
nence with elevation.

Independent of the structuring template used
for extraction of FDN, the resulting FDN sub-
sets are able to exactly reconstruct the original
binary fractal using Eq. (7). Thus the total in-
formation in the original finite binary fractal (M)
is equivalent to that in the finite ensemble of all
its flow direction subsets FDNn(M) together with
their corresponding index “n”. The sequential
phases involved includes generation of a binary frac-
tal (M), the extraction of FDN subsets, the dila-
tion of FDN subsets, and the composition of the
basin (M).

M = UN
n=0Mn , (7)

where

Mn = [FDNn(M)⊕ Sn] .

The individual FDN subsets ranging from 0 to
N of binary fractal (M) are dilated by struc-
turing templates of respective sizes (S0 to Sn)
used to decompose the binary fractal into vari-
ous regions of prominence (M0 to Mn). The mor-
phological characteristics of regions of prominence
depend on the characteristics of the structuring
template (S). In this study, the considered structur-
ing template is a square. The expansion of Eq. (7)
after coding of each reconstructed elevation is as
follows:

FDN0(M)⊕ S0 = M1
0 ;

FDN1(M)⊕ S1 = M2
1 ; . . . ;

FDNn−1(M)⊕ Sn−1 = MN
n−1;

FDNn(M)⊕ Sn = MN+1
n .

(8)

To differentiate various topologically prominent re-
gions, which may have relevance in terms of topo-
graphic elevations, nth region is coded by N + 1.
The superscripts describe the color assignment.
These coded subregions are represented as elevation
regions of several orders.

M1
0 UM2

1 U · · ·UMN
n−1UMN+1

n = Fractal DEM . (9)

The above expression describes the process of re-
constructing the binary fractal from its FDN sub-
sets and then into a fractal digital elevation model
(DEM). In the above expression various shades are
assigned to various regions of prominence. These
decomposed regions of prominence are assumed as
various regions of topological prominence. The
FDN subsets after respective degree of dilations and
coding, are unified systematically.

5. A SAMPLE STUDY

To decompose a binary fractal into several regions of
prominence, certain transformations from the field
of mathematical morphology (described in the pre-
vious sections) are considered. The decomposed
binary fractal subsets will be dilated by a specific
structuring template to find out the various regions
of prominence. In the following, how a binary frac-
tal is decomposed into various regions of promi-
nence is detailed as a sample study.

A binary fractal (Fig. 1) is considered to show a
sample study. The FDN (Fig. 2) is extracted ac-
cording to the procedures detailed in Eqs. (5) and
(6). By implementing this procedure, the decom-
posed FDN subsets of this binary fractal are di-
lated to the same degree in order to decompose the
binary fractal into its regions of prominence. Fig-
ure 3 shows the simulated DEM with various regions
of topological prominence. A square structuring

Fig. 1 A third-order Koch quadric binary fractal basin.
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Fig. 2 Fluid FDN extracted from binary fractal basin.

Fig. 3 A binary fractal basin after decomposition into
TPRs.

template is considered for a similar decomposition.
However, other types of structuring templates un-
ravel other topological characteristics of the land-
scape. In this sample study, the union of dilated
and coded FDN subsets starts from n = N to n = 0.
Various regions indicated by different shades rep-
resent various elevation levels in simulated DEM.
Individual FDN subsets are dilated to the same
degree and coded with respective shades by fol-
lowing the sequential steps depicted in Eqs. (8)

(a)

(b)

Fig. 4 A fractal landscape generated from Fig. 3. Light
and dark regions of DEM are visualized as high and low ele-
vations, respectively (vertical exaggeration: (a) 5 and (b) 7).

and (9), producing a transcendental DEM (Fig. 3)
from binary fractal (Fig. 1). The binary fractal
basin is decomposed into various TPRs, the sur-
face of which is akin to the fractal landscape. Each
of the shaded region is treated as a specific region
of elevation in the DEM. Light and dark regions
are assumed to represent higher and lower eleva-
tions, respectively. The 3D surfaces are plotted
for this DEM (Fig. 3) with vertical exaggerations
5 [Fig. 4(a)] and 7 [Fig. 4(b)]. The variations in
the fractal landscape topography are subjected to
change in the shape and other characteristic infor-
mation of the structuring template. It is worth
while to mention that the morphology of regions
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of prominence (extracted by decomposing the bi-
nary fractal using the procedures detailed sequen-
tially) is liable to vary with changing structuring
templates. The precision depends on the design of
structuring template. The design of the structur-
ing template can be made by taking into consid-
eration, the morphological characteristics of each
elevation level and interrelationships among all the
spatially distributed elevation levels from a morpho-
logical standpoint; and an asymmetric structuring
template (S), where S is not equal to the transpose
of S, can also be considered to have more realistic
landscapes. The structural variation in the surface
topography determines the formation of dendrites
which is a natural phenomenon. The topologi-
cal description of the binary fractal provides a ba-

sis for classification of the internal region that is
topologically important. This study may be useful
to show some meaningful inferences with elevation
characteristics. This study is of practical interest to
geomorphologists, as the simulated landscape and
FDNs are akin to the natural landscape possessing
alluvial fans.
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