
Computers & Geosciences 37 (2011) 1285–1294
Contents lists available at ScienceDirect
Computers & Geosciences
0098-30

doi:10.1

n Corr

E-m

sinliang
journal homepage: www.elsevier.com/locate/cageo
Morphological convexity measures for terrestrial basins derived from digital
elevation models
Sin Liang Lim a,n, B.S. Daya Sagar b, Voon Chet Koo a, Lea Tien Tay c

a Faculty of Engineering and Technology, Melaka Campus, Multimedia University, Jalan Ayer Keroh Lama, 75450 Melaka, Malaysia
b Systems Science and Informatics Unit (SSIU), Indian Statistical Institute-Bangalore Centre, 8th Mile, Mysore Road, RV College PO, Bangalore 560059, India
c School of Electrical and Electronic Engineering, Universiti Sains Malaysia, Engineering Campus, Nibong Tebal, 14300 Penang, Malaysia
a r t i c l e i n f o

Article history:

Received 26 April 2010

Received in revised form

12 October 2010

Accepted 15 October 2010
Available online 12 November 2010

Keywords:

Convexity measures

Spatial variability

Mathematical morphology
04/$ - see front matter & 2010 Elsevier Ltd. A

016/j.cageo.2010.10.002

esponding author. Tel.: +60 3 8312 5367; fax

ail addresses: lim.sin.liang@mmu.edu.my,

_lim@yahoo.com (S.L. Lim).
a b s t r a c t

Geophysical basins of terrestrial surfaces have been quantitatively characterized through a host of indices

such as topological quantities (e.g. channel bifurcation and length ratios), allometric scaling exponents

(e.g. fractal dimensions), and other geomorphometric parameters (channel density, Hack’s and Hurst

exponents). Channel density, estimated by taking the ratio between the length of channel network (L)

and the area of basin (A) in planar form, provides a quantitative index that has hitherto been related to

various geomorphologically significant processes. This index, computed by taking the planar forms of

channel network and its corresponding basin, is a kind of convexity measure in the two-dimensional case.

Such a measure – estimated in general as a function of basin area and channel network length, where the

important elevation values of the topological region within a basin and channel network are ignored –

fails to capture the spatial variability between homotopic basins possessing different altitude-ranges. Two

types of convexity measures that have potential to capture the terrain elevation variability are defined

as the ratio of (i) length of channel network function and area of basin function and (ii) areas of basin and

its convex hull functions. These two convexity measures are estimated in three data sets that include

(a) synthetic basin functions, (b) fractal basin functions, and (c) realistic digital elevation models (DEMs)

of two regions of peninsular Malaysia. It is proven that the proposed convexity measures are altitude-

dependent and that they could capture the spatial variability across the homotopic basins of different

altitudes. It is also demonstrated on terrestrial DEMs that these convexity measures possess relationships

with other quantitative indexes such as fractal dimensions and complexity measures (roughness

indexes).

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Conventional geomorphometric quantities (e.g. Horton, 1945;
Strahler, 1964) were previously computed based on the details
available from two-dimensional topographic map-sources in order
to quantitatively characterize terrestrial surfaces. These geomorpho-
metric quantities include a host of indices such as channel bifurcation
and length ratios, channel density, and Hack’s and Hurst exponents.
Length of the channel network divided by the area of the basin in
planar forms provides a quantitative index termed as channel density,
which is defined here as a convexity measure of the basin in two
dimensions. In the context of hydrogeology, the channel density is
related to climate, geology, rainfall, erosion rate, and relief (e.g. Kirkby,
1980, 1993; Howard, 1997; Schumm et al., 1987; Montgomery and
Dietrich, 1989, 1994). During the last two decades, several techniques
ll rights reserved.

: +60 3 8318 3029.
have emerged to quantitatively characterize terrestrial surfaces. These
geometrically rigorous techniques, to name a few, originated from
fractal geometry (Mandelbrot, 1982) and mathematical morphological
(Serra, 1982) concepts. Their potential were demonstrated in digital
elevation models (DEMs) derived from multiscale multitemporal
remotely sensed data acquired through various sensing mechanisms.
In subsequent investigations, the importance of digital elevation
models (DEMs) in deriving quantitative geomorphological indicators
(e.g. roughness characteristics, channel densities) that exhibit rich
scale-invariant properties is greatly realized (Tarboton et al., 1992;
Tarboton, 1997; Tarboton and Ames, 2001). While explaining the
importance of DEM analysis in understanding the landscape state and
process interactions, Tucker and Bras (1998) have shown how drainage
density is related to topographic relief through the sign of the predicted
relationship between drainage density and relief. From their results, a
positive sign of the predicted relationship implies low topographic
relief, while a negative sign of the predicted relationship implies high
topographic relief. Tucker et al. (2001) proposed to map drainage
density using two scalar fields, namely: the local hillslope length from
any unchannelled site to the channel network and the local hillslope

www.elsevier.com/locate/cageo
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length to the valley networks. All these studies addressed the drainage
density as either main topics or the subtopics of studies on fluvial
basins. In a recent study, Marani et al. (2003) addressed the problem of
estimation of drainage density of tidal basins.

No watershed or basin is fully convex due to the presence of
valleys and ridges. A parameter that computes the degree of
convexity of a watershed is the convexity measure, which is in
some way related to channel (drainage) density estimated by taking
two basic measures, the planar basin’s area and the planar network’s
length, as major inputs. Drainage density, according to Horton
(1945), is defined dimensionally as the ratio of the total network
length to its watershed area, DD¼L/A, where L and A, respectively,
denote length of network and area of the basin. The basic
parameters required to estimate this measurement heavily rely
on plan-forms of basin and network. The plan-view of the
basin and its corresponding network provide the 2-dimensional
flat basin and the network. Hence, this definition, from the point
of convexity measure, has a limitation as it cannot capture the
elevation variability among different drainage basins. The maps of
drainage density do not carry information on terrain morphology as
high drainage density may occur in flat, low relief basins as well as in
mountainous, high relief basins. This type of estimation is of limited
use as it cannot capture the basic difference involved in two
seemingly alike basins and their networks over a planar view. It
is intuitively true that the convexity measures of the seemingly alike
(homotopic) basins with varied altitudes should be different in such
a way that it reflects the changes in the altitudes involved. Our
proposed method shows distinction between the cases that belong
to two altitude-regions. Such a distinction could be shown through
alternative measures that we proposed in this paper. Here the inputs
are represented as 3-dimensional functions and not as planar sets.

The three significant parameters, which require morphological
quantities in the form of functions, include (i) basin function,
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Fig. 1. (a, b) Synthetic basins depicted as discrete functions, in which the higher the value

with two different altitudes set-up, (c) typical planar form of drainage network that s

following morphology based transformations (e.g. Sagar et al., 2000). In Fig. 1c, 1s are chan

of the two synthetic basin functions, threshold value employed is o20 and o15 (resp

value(s), (e, f) the elevation values from basin functions shown in Fig. 1a, b corresponding

functions constructed according to a procedure due to Soille (1998). The step-wise pro
(ii) channel network function, and (iii) convex hull of basin
function. These three functions are respectively denoted as f(x,y),
g(x,y), and CH(f). The two alternative measures that we propose in
this paper for estimation of the convexity measures are mainly
based on estimations of the length of network function and that of
areas under basin and its convex hull functions. The basic measures
to compute these convexity measures include the basin area A(f),
the length of the networks A(g), and the area of convex hull of basin
A[CH(f)]. The convex hull of the basin is the smallest convex
function containing f such that A(f)oA[CH(f)]. These two convexity
measures include (i) ratio between the length of channel network
function A(g) and the area of basin function A(f) and (ii) ratio
between the area of basin function A(f) and the area of its
corresponding convex hull A[CH(f)].
2. Data used and their specifications

We implement our proposed methods with two types of data,
namely synthetic DEMs (simple synthetic functions and fractal
basin functions) and real world DEMs. These synthetic DEMs
include: (i) rectangle-like discrete synthetic basin functions,
denoted as basin functions f1 and f2, respectively, shown in
(Fig. 1a and b), and (ii) fractal basin functions, indicated as basin
functions f3 and f4 depicted in (Fig. 2a and b). In these basin
functions, each discrete element with a specific numerical value
represents the elevation at spatial coordinates (x, y). These two
pairs of synthetic basins possess a similar spatial organization of
networks, but it is obvious that they belong to two different
altitudes. It is heuristically true that these two pairs of functions
possess different spatial organizations of hillslopes, and thus
different geomorphic processes, as they belong to different
categories of elevations. The plan views of the basin and its
1

0
0

0

0

0

0

0

0

0

1

0

1
0

0

0

0

0

0

0

1

0

0

0
1

0

0

0

0

0

1

0

0

0

0
0

1

0

0

0

1

0

0

0

0

0
0

0

1

0

1

0

0

0

0

0

0
0

0

0

1

0

0

0

0

0

0

0
0

0

1

0

1

0

0

0

0

0

0
0

1

0

0

0

1

0

0

0

0

0
1

0

0

0

0

0

1

0

0

0

1
0

0

0

0

0

0

0

1

0

1

0
0

0

0

0

0

0

0

0

1

1

1
1

1

1

1

1

1

1

1

1

1

1
1

1

1

1

1

1

1

1

1

1

1
1

1

1

1

1

1

1

1

1

1

1
1

1

1

1

1

1

1

1

1

1

1
1

1

1

1

1

1

1

1

1

1

1
1

1

1

1

1

1

1

1

1

1

1
1

1

1

1

1

1

1

1

1

1

1
1

1

1

1

1

1

1

1

1

1

1
1

1

1

1

1

1

1

1

1

1

1
1

1

1

1

1

1

1

1

1

1

1
1

1

1

1

1

1

1

1

1

20

20
20

20

20

20

20

20

20

20

20

20

20
20

20

20

20

20

20

20

20

20

20

20
20

20

20

20

20

20

20

20

20

20

20
20

20

20

20

20

20

20

20

20

20

20
20

20

20

20

20

20

20

20

20

20

20
20

20

20

20

20

20

20

20

20

20

20
20

20

20

20

20

20

20

20

20

20

20
20

20

20

20

20

20

20

20

20

20

20
20

20

20

20

20

20

20

20

20

20

20
20

20

20

20

20

20

20

20

20

20

20
20

20

20

20

20

20

20

20

20

15

15
15

15

15

15

15

15

15

15

15

15

15
15

15

15

15

15

15

15

15

15

15

15
15

15

15

15

15

15

15

15

15

15

15
15

15

15

15

15

15

15

15

15

15

15
15

15

15

15

15

15

15

15

15

15

15
15

15

15

15

15

15

15

15

15

15

15
15

15

15

15

15

15

15

15

15

15

15
15

15

15

15

15

15

15

15

15

15

15
15

15

15

15

15

15

15

15

15

15

15
15

15

15

15

15

15

15

15

15

15

15
15

15

15

15

15

15

15

15

15

the higher is the elevation. In turn, these functions are treated as two different basins

ummarizes the connectivity and shape of these two functions. It is extracted by

nel subsets and 0s represent non-channel regions, (d) planar form of the basin areas

ectively, for two functions shown in (a, b)) and converted into 1s, and 0s for other

to the channel subsets shown in Fig. 1c, and (g, h) convex hulls of two synthetic basin

cedure to construct the convex hull is explained in Section 3.2 and Fig. 6.
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Fig. 2. (a, b) Fractal basin functions with elevation ranges of 1–11 and 5–15 and (c, d) 3-D representation of fractal basin functions shown in (a, b).
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corresponding channel network are like sets that are decomposed
from a function (f), where its landscape is represented by the digital
elevation model (DEM) (e.g. Fig. 2c–d).

DEM is denoted as a function represented by a non-negative 2-D
sequence f(m, n), which assumed I+1 possible intensity (elevation)
values: i¼0, 1, 2, ..., I. The data range in synthetic data is within the
interval from 0 to 255 (I¼255) elevations. The function, f, is
discrete, defined on a (rectangular) subset of the discrete plane
Z2. The higher the intensity value, the higher is the topographic
elevation, and vice versa. Fractal basin functions, f3 and f4, are
simulated by transforming a binary fractal shape into fractal basin
functions (Fig. 2a, b) that mimic digital elevation models. The
transformation process is performed in the following way. Firstly,
the binary fractal shape, whose network follows the Hortonian
laws of morphometry (Sagar et al., 2001), is subjected to iterative
morphologic erosions by means of the structuring of an element of
octagonal shape (Sagar and Tien, 2004; Chockalingam and Sagar,
2005). Each eroded version is coded with a specific color to denote
different elevation level. Eleven iterative erosions are performed to
transform binary fractal shape of size 256�256 into eleven eroded
versions. Each eroded version is color-coded separately to
generate two fractal basin functions (Fig. 2a, b). The color-numbers
employed to respectively denote these two functions are in the
ranges of 1–11 and 5–15. These ranges are used to show that these
two homotopically similar synthetic fractal basin functions with
similar geometric organizations possess different altitude-ranges.
These two functions are also shown in 3-D representation (Fig. 2c, d).
The real world DEMs correspond to the topographic synthetic
aperture radar (TOPSAR) DEMs of the Cameron Highlands (Fig. 4a)
and those of the Petaling regions (Fig. 4b) of Malaysia from Tay et al.
(2007). The Cameron Highlands study area is enclosed by latitude
41310–41360N and longitude 1011150–1011200E, while the Petaling
region is enclosed by latitude 21590–31020N and longitude 1011370–
1011400E. Cameron Highlands is a highland region situated in the
state of Perak, Malaysia. It is a hilly terrain with elevation range in
between 400 and 1800 m. The Petaling region is located in Selangor
state in Malaysia, and it is comparatively flat with an altitude of not
more than 215 m. The Cameron Highlands, DEM covers an area of
900�900 pixels with 10 m resolution, while Petaling’s DEM covers
a region of 750�800 pixels with 5 m resolution. Fourteen sub-
basins were demarcated from the DEMs of Cameron Highlands and
those of the Petaling regions (Fig. 4a and b). Each of the 14 sub-
basins has different values of I, depending on its maximum altitude.
The Cameron Highlands sub-basins are high altitude basins,
whereas the Petaling sub-basins have relatively lower altitudes;
hence, the value I in Cameron Highlands sub-basins is generally
greater than that of the Petaling sub-basins. For instance, basin
1 (of Cameron Highlands region) has a value of I of 1280 m, while
basin 8 (of Petaling region) has maximum elevation (and thus I)
of 208 m.
3. Methodology

In this section, we will briefly discuss the (i) derivation of a
channel network from a basin function, (ii) derivation of a convex
hull of a basin function, and (iii) area estimations of functions and
convexity measure computation.

3.1. Derivation of a channel network from a basin function

Drainage network and drainage basins were delineated from
the DEMs via various methods (O’Callaghan and Mark, 1984;
Jenson and Domingue, 1988; Tarboton et al., 1991; Band, 1993;
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Sagar et al., 2000; Lindsay, 2005). In this paper, the channel
network (e.g. Fig. 1c) is isolated from DEM via the (i) threshold
decomposition of the basin function into threshold elevation sets,
(ii) isolation of channel subsets through skeletonization operations
from threshold elevation sets, (iii) subtraction of channel subsets
from immediate higher level threshold elevation sets, and
(iv) composition of channel subsets obtained at step (iii) is super-
posed on the basin function (e.g. Fig. 1a and b) to perform the
maximum (3) operation between the network (subsets derived in
the form of a planar set) and their corresponding points from the
basin function. Such maxima form the network function (e.g. Fig. 1e–f).
This method of obtaining the network function is applicable in both
synthetic DEMs and real world DEMs of fluvial and tidal basins. The
planar forms of networks extracted from fractal function (Fig. 2a, b)
and real world DEMs (Fig. 4a, b) obtained by following an approach
due to Sagar et al. (2000) are shown in Figs. 3a, 4c and d. As the
procedure to extract channel networks from DEM is well estab-
lished by various methods, we will not further elaborate it here.
Besides, since the focus of this paper is not on channel network
extraction, the detailed procedure of extracting the channel net-
work is omitted to avoid confusion.
Fig. 3. (a) Planar view of the network that represents channel network from both fracta

functions, (c, d) 3-D representation of channel network functions of the two fractal basin fu

functions.
3.2. Derivation of a convex hull of a basin function

A typical example of a function and its convex hull include a bowl
with open end (Fig. 5a) and a bowl with a closed lid (Fig. 5b).
As another example, if the cloud surface is considered to be a
function, then its corresponding convex hull will be a blanket-like
cover (Lim and Sagar, 2008). We derive the convex hull of a basin
function by following an approach credited to Soille (1998). This
approach to generate convex hull requires two steps: (i) transforma-
tion of a basin via closings using half planes of various directions and
(ii) applying a point-wise minimum (4) operation between all
versions of closing generated by half planes in all possible directions.
The two-step process of convex hull, CH(f), construction is shown as
CHðf Þ ¼Ly½fpy

þ ðf ÞLfpy
� ðf Þ�, where ðpy

þ Þ
c
¼ py

� denotes two half
planes at the orientation y, and f(f) represents the closing of a basin
function f. A more precise convex hull can be obtained by increasing
the number of directions of half planes. For better comprehension,
the generation of convex hull on a synthetic basin function of size
3�3 is illustrated in Fig. 6. The maximum value of the column before
the first column is considered to be zero. Fig. 6a is the input function,
while Fig. 6b–d depicts three required translations computed by
l basin functions, (b) planar view of the threshold basin region of both fractal basin

nctions, and (e, f) 3-D representation of convex hull functions of the two fractal basin



Fig. 4. (a) Seven delineated sub-basins of Cameron Highlands DEM, (b) seven delineated sub-basins of Petaling DEM, (c) stream networks extracted from Cameron Highlands

DEM, (d) stream networks extracted from Petaling DEM, (e) DEM of basin 1, and (f) convex hull of basin 1.
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following the left-vertical half-plane, and the resultant left-vertical
half-plane is shown in Fig. 6e. The closings computed using the
half planes of eight different directions are shown in Fig. 6(e–l).
Fig. 6(e–h) shows closings of f by left (right)-vertical half planes and
there by the lower (upper)-horizontal half planes, accordingly.
Fig. 6(i–l) presents the closings of the remaining two pairs of
orientations, namely 3p/4 and p/4. Finally, the infimum of
Fig. 6(e–l) results in the convex hull, as shown in Fig. 6m. Half
planes of eight different directions are considered to generate a
sequence of closed versions of a function. These directions include
vertical half planes of right and left, horizontal half planes of the top
and bottom, and diagonal half planes of top-left, bottom-right, top-
right, and bottom-left. To transform a function via a closing of the
left-vertical half-plane in the forward direction (shown as a dark
line), the half-plane is moved to the first column of the function, as
shown in Fig. 6b. The values (elevation values) in that column that
coincide with the half-plane are evaluated to find out the maximum
values. The first translation involved replacing all the values in that
column with the maximum value, if such a value is not lesser than
the value in the previous translation (Fig. 6b). This is a recursive
process that is continued until the last column in that direction. Once
all the columns of the function in the left-right direction have been
translated via the left-vertical half-plane (Fig. 6b–d), the result is a
closing function by left-vertical half-plane (Fig. 6e), and it is denoted
by [fpy+(f)]. Similarly, by considering the right-vertical half-plane in
the direction right-left from the right most column, the values are
translated until the left most column generates the closing function
by means of the right-vertical half-plane (Fig. 6f). In a similar fashion,
closings of the function by other half planes are generated by
changing the directions. Finally, the convex hull is constructed by



Fig. 5. (a) 3-D representation of synthetic bowl-like function and (b) 3-D repre-

sentation of convex hull of synthetic bowl-like function from (a).

S.L. Lim et al. / Computers & Geosciences 37 (2011) 1285–12941290
taking the point-wise minimum among the considered eight half-
plane closings. For more details on the convex hull construction via
mathematical morphology, the reader may refer to Soille (1998);
Lim and Sagar (2008).

As for discrete basin functions f1 and f2 (Fig. 1a and b), the
computed convex hulls are shown, respectively, in Fig. 1g and h.
The reason to obtain convex hulls with only 20s and 15s, respec-
tively, in Fig. 1g and h, is that the highest elevation values of 20s and
15s surround the outlets, which are located at the centers of the
discrete basin functions and are of lower elevation values. Thus, the
convex hull of these basin functions would look like ‘‘closed lids’’
with higher altitude values than that of the centers of the basin
functions. Here, the rectangles with the highest elevation of the
basins form the convex hulls of basins f1 and f2. Similarly in case of
the fractal basin functions (f3 and f4) shown in Fig. 2a and b, the
generated convex hulls are, respectively, shown in Fig. 3e and f,
where convex polygons with eight straight line segments are
observed. Hence, from Fig. 1g and h and Fig. 3e and f, the hulls
of the synthetic basin functions (f1 and f2) and fractal basin
functions (f3 and f4) are obviously convex.
3.3. Area estimations for functions and convexity measure

computation

The area extent of functions is estimated using Aðf Þ ¼
P
ðx, yÞf ðx, yÞ,

AðgÞ ¼
P
ðx, yÞgðx, yÞ, and AðCHÞ ¼

P
ðx, yÞCH½f ðx, yÞ�, according to

Maragos (1989). Obviously, the area of a convex hull of a function
is greater than its basin function, the area of whom is greater than its
corresponding channel network function, where the relationship can
be shown as A(CH)4A(f)4A(g). For instance, the area of an image of
size 3�3 that depicts nine elevation values, shown in Fig. 6a, is 17
and the area of its convex hull (Fig. 6m) is 20. The length of the
network function and the area of the basin function are significantly
greater than the length of the network and the area of the basin
that are depicted as planar sets, respectively. The areas of these
three morphologically significant functions (i.e. A(f), A(g), and
A(CH)) are evidently elevation dependent, and hence they are more
appropriate for use in the estimation of the convexity measure that
can capture the basic spatial variability between the basins of
different altitudes. This is unlike the Hortonian drainage density
computation, which does not consider the altitudes of the DEMs, and
thus shows similar result with homotopic DEMs with different
heights, as seen in simple synthetic DEMs in Fig. 1a, b, 2a–d, the
results are given in Table 1. The units in Tables 1 and 2 are the sums of
pixels weighted by elevation in each pixel with ‘Areas of planar forms’
and ‘Areas of functions’. ‘Convexity measures’, ‘Normalized complex-
ity measures’, and ‘Fractal dimensions’ are dimensionless quantities
(i.e. unitless) as they define the ratio of measurements.

To compute convexity measure (CMf), we consider the ratio
between (i) length of channel network function and area of
corresponding basin function, and (ii) area of basin function and
area of corresponding convex hull function, as shown in the
following equations: (i) CMf¼A(g)/A(f) and (ii) CMf¼A(f)/A(CH).
Hereafter, we denote equation (i) as method-1, and equation (ii) as
method-2.
4. Results and discussion

We demonstrate our proposed estimation first on two different
simple synthetic functions (f1 and f2) that depict varied topographic
elevations (Fig. 1a, b). Note that both basins, f1 and f2, have a similar
geometrical arrangement (that simply, both are rectangular in
shape). However, basin f1 has a higher elevation range than does
basin f2: 15–20 versus 10–15. Their projections and corresponding
channel networks are in 2-dimensional space (or plan views). The
conventional Hortonian drainage density estimation relies on the
area and the length of planar sets (e.g. basin and channel network).
In a flat surface form (i.e. in planar form), the areas of both basins, f1
and f2, are the same, with a value of 121. Similarly, the length of the
planar networks extracted from corresponding basins is also the
same, which is 21. Therefore, it is obvious that Horton drainage
density computed with both basins, f1 and f2, will also be the same,
yielding (21/121)¼0.1736, although both basins possess different
elevation ranges. This clearly shows that Horton drainage density,
where A(g1)¼A(g2) and A(f1)¼A(f2) on plan view, respectively,
denote the length of networks and area of basins on plan view, is
the same with both functions f1 and f2. Here, we show synthetic
DEMs (Fig. 1a, b), in whom the spatially distributed numerical values
represent topographic elevations, the higher the numerical values,
the higher the elevation, and vice versa. The DEM is represented by
the grayscale function (e.g. Fig. 1a, b), where each gray value
(intensity I) at its respective spatial coordinates (x,y) denotes the
elevation value. The area is nothing but the sum of those elevation
values across all the spatial positions. Such areas of the synthetic
DEMs shown in Fig. 1a, b are A(f1)¼2255 and A(f2)¼1650 in pixel
units, respectively. Similarly, the lengths of the channel network
functions A(g1) and A(g2), extracted by following morphology based
algorithms (Sagar et al. 2000), are 375 and 270, respectively. The
areas of convex hulls of these two functions, A[CH(f1)] and A[CH(f2)],
are obtained, respectively, as 2420 and 1815.

According to Horton’s definition, the drainage density of both
functions f1 and f2, is estimated to be 0.1736, which is similar to the
other’s value irrespective of the elevations’ differences that exist in
both functions. This approach clearly could not capture the spatial
variability that is meaningful in basins with different elevations’
set-ups. However, the convexity measures computed via our
two proposed methods clearly capture the spatial variability
(see Table 1). Consider the two synthetic basins, f1 and f2; the
drainage densities according to the Hortonian method yield similar
values (0.1736), whereas the values obtained through method-1
are 0.1663 and 0.1636, respectively. According to method-2, these
values include 0.9318 and 0.9091. The ranges of elevation values of
functions f3 and f4 include 1–11 and 5–15. These ranges are used to
show that these two homotopically similar synthetic fractal basin
functions with similar geometric organizations possess different
altitude-ranges. These two functions are also shown in a 3-D
representation (Fig. 2c, d). The lengths of the planar network
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Fig. 6. (a) 3�3 array depicting a synthetic basin function, (b) first translate—obtained via left-vertical half-plane by considering the previous value of the first column as 0,

(c, d) second and third translates obtained via left-vertical half-plane, (e) left-vertical half-plane closing after three translations from (b to d), (f) right-vertical half-plane

closing, (g) bottom–top horizontal half-plane closing, (h) top–bottom horizontal half-plane closing, (i) right half-plane (with 3p/4 orientation) closing, (j) left half-plane

(with 3p/4 orientation) closing, (k) right half-plane (with p/4 orientation) closing, (l) left half-plane (with orientation p/4) closing, and (m) convex hull constructed by

computing infimum values across the closing versions obtained by eight directional half planes, as shown in Fig. 6(e–l).

Table 1
Comparison between drainage density and convexity measures of synthetic and fractal DEMs.

Basin Areas of planar forms Areas of functions Convexity measures

Basin Network Basin Network Convex hull Horton-DD Method-1 Method-2

f1 121 21 2255 375 2420 0.1736 0.1663 0.9318

f2 121 21 1650 270 1815 0.1736 0.1636 0.9091

f3 20,334 1838 152,844 12,132 396,814 0.0904 0.0794 0.3852

f4 20,334 1838 234,180 19,484 541,110 0.0904 0.0832 0.4328
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(Fig. 3a) (obtained by following the method proposed by Sagar et al.
(2000)), and the areas of plan view of these two functions (Fig. 3b)
are found to be the same. As a result, the Hortonian drainage
densities computed for f3 and f4 are the same (0.0904) although
they exhibit different altitude-ranges. In contrast, the lengths of
network functions (Fig. 3c, d) and areas of basin functions and their
corresponding convex hull functions (Fig. 3e, f) show distinction in
the convexity measures of these two fractal basin functions. As
shown in Table 1, the convexity measures, respectively, of fractal
basin functions f3 and f4 are 0.0794 and 0.0832, according to
method-1, and are 0.3852 and 0.4328 according to method-2 seen
early. We hypothesize that these convexity measures vary linearly
with elevations of the basins. As the fractal basin function f3 has a
lower altitude range than does f4, its convexity measures computed
through methods-1 and -2 are lower than that of f4. In general, it is
clearly visible in Tables 1 and 2 that values from method-1 are



Table 2
Comparisons among drainage density, convexity measures, complexity measures, and fractal dimensions of realistic DEMs.

Basin Areas of planar forms Areas of functions Convexity measures Normalized

complexity

measures

Fractal

dimensions

Basin Network Basin Network Convex hull Horton-DD Method-1 Method-2

1 71,045 3826 60,291,000 3,072,600 85,558,000 0.0539 0.0510 0.7047 0.9130 1.5141

2 77,780 4612 73,903,000 4,204,400 125,490,000 0.0593 0.0569 0.5889 0.9362 1.5506

3 84,699 4775 83,499,000 4,452,000 122,740,000 0.0564 0.0533 0.6803 0.8963 1.5814

4 55,912 3227 50,863,000 2,774,300 80,163,000 0.0577 0.0545 0.6345 0.9165 1.4692

5 41,253 2583 43,913,000 2,662,800 76,397,000 0.0626 0.0606 0.5748 0.9255 1.4519

6 31,226 2101 30,471,000 1,981,400 45,184,000 0.0673 0.0650 0.6744 0.9291 1.4776

7 19,780 1156 14,265,000 772,550 20,828,000 0.0584 0.0542 0.6849 0.9255 1.3192

8 66,824 1629 8,124,200 167,870 14,854,000 0.0244 0.0207 0.5469 0.7413 1.3140

9 25,164 588 2,605,000 46,830 5,458,100 0.0234 0.0180 0.4773 0.7788 1.2398

10 31,779 767 3,769,600 75,553 6,088,900 0.0241 0.0200 0.6191 0.8038 1.2445

11 35,805 808 3,703,100 65,298 7,216,900 0.0226 0.0176 0.5131 0.8134 1.1817

12 36,953 884 3,798,300 62,811 7,609,700 0.0239 0.0165 0.4991 0.8516 1.2946

13 40,845 933 3,189,600 50,907 6,578,400 0.0228 0.0160 0.4849 0.7921 1.1706

14 23,497 576 1,786,700 31,969 3,268,300 0.0245 0.0179 0.5467 0.7951 1.1721

Method-1, method-2, normalized complexity measures, and fractal
dimensions vs basin number
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Fig. 7. (a) Convexity measures computed from methods-1, -2, and normalized complexity measures and fractal dimensions (via box-counting method) for all 14 basins,

(b) channel densities from Horton–Strahler and method-1.
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always smaller or equal to the traditional drainage density, the
equal case will occur only with a basin that is flat with slightly
incised valleys; the smaller the values from method-1 in
comparison with the traditional drainage density, the more will
be incised the valleys. Hence, the convexity measures estimated
according to the two proposed methods clearly exhibit spatial
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variability of the basins, especially with those homotopically similar
basins with different altitude-ranges.

On the basis of Table 2, we note that the Hortonian drainage
density computed in case of Cameron basins have a range of
0.0539–0.0673, while in Petaling basins, the range falls within
0.0226 to 0.0245. All fourteen sub-basins have different areas of
plan views, and generally the Cameron basins have larger basin
areas and network lengths than do Petaling basins. Thus, the
Hortonian drainage density ranges of Cameron basins are larger
than those of Petaling basins. In fact, the same trend is observed
also from the convexity measures obtained from methods-1 and -2.
These convexity measures yield the ranges of 0.051–0.065 and
0.0160–0.0207, and 0.5748–0.7047 and 0.4773–0.6191, with
Cameron basins and Petaling basins, respectively. These results
match the trend observed from convexity measures computed via
methods-1 and -2 in cases of fractal basin functions, i.e. the
convexity measure varies with the altitude-ranges of the basins.
The higher the altitude-range of the basin, the greater is the
convexity measure, and vice versa.

To investigate the relationship between these convexity mea-
sures and complexity measures of Cameron basins and those of
Petaling basins, normalized complexity measures (roughness
values) are generated by following the method explained in Tay
et al. (2007). Significantly, a clear distinction exists in the complex-
ity measures between the Cameron basins and Petaling basins as
the Cameron basins are highland and mountainous regions, while
Petaling basins comprise relatively low and flat terrain. As such, the
roughness values of Cameron basins are generally greater than that
of Petaling basins. This statement is justified by the result shown in
Table 2, where the ranges of normalized complexity measures of
Cameron basins are 0.8963–0.9362, and 0.7413–0.8516 with
Petaling basins. Besides, the fractal dimensions of the basin-wise
channel networks (Fig. 4c, d) extracted from DEMs of Cameron
Highlands and Petaling regions also indicate a clear distinction
between these two regions (see last column of Table 2).
Fractal dimensions of these networks are calculated using the
box-counting method, where extracted networks of both DEMs
are taken as foreground objects. It is noticed from Fig. 4c, d
that Petaling sub-basins have a sparser network in comparison
to the intricate denser network found in Cameron sub-basins. This
observation is reflected in the fractal dimensions in Cameron basins
(1.3192–1.5814) and Petaling (1.1706–1.314) basins. Fig. 7a, b
show a better view of the relationships among these various
parameters. From these graphs, we can infer that Cameron basins,
which have higher altitude basins than do low-lying Petaling
basins, show higher drainage densities and convexity measures
(whether Horton, method-1, or method-2), higher normalized
complexity measures, and also higher fractal dimension values
than do Petaling basins. Besides, unlike the case of synthetic basin
and fractal basin functions, the convexity measures obtained from
methods-1 and -2 with Cameron and Petaling basins correspond
well with the Horton drainage density. Furthermore, it is interest-
ing to note from Fig. 7b that the convexity measure from method-1
follows closely the Horton drainage density. Hence, we conjecture
that our proposed methods-1 and -2 offer alternative ways to
quantitatively characterize basins, complementing already exist-
ing quantitative geomorphometric techniques.
5. Conclusion

Factors such as climate, soil permeability, and several other
hydrologically relevant parameters affect geomorphological pro-
cesses within a basin, besides physical characteristics including
relief levels. In this paper, we investigate the changes in convexity
measures due to different elevation ranges of basins with similar
geometrical arrangement. From our results, it is conspicuous
that planimetric based Hortonian drainage density is of limited
use. Our proposed function-based convexity measures not only
could capture the spatial variability between basins with different
altitudes, but they are also appropriate quantitative geomorpho-
metric parameters. Many quantitative geomorphometric para-
meters derived from conventional map-based feature analysis
are terrain independent, whereas our proposed convexity
measures, which are computed through these function-based
approaches are clearly terrain dependent. An interesting open
problem is that of validation of the relationship between these
convexity measures of realistic basins that possess different
physiographic set-ups. In summary, we provide a method/
approach to estimate the convexity measure of a basin when it
is considered to be a function rather than a set. These convexity
measures, which are related to fractals and granulometric analysis,
derived via geometry-based techniques, provide new insights to
the exploration of further links with various other established and
to be derived parameterized morphometric measures. The study on
the drawing of scale-invariant characteristics from these convexity
measures has a potential scope in this investigation.
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