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[1] Morphometric analysis of channel network of a basin provides several scale-
independent measures. To better characterize basin morphology, one requires, besides
channel morphometric properties, scale-independent but shape-dependent measures to
record the sensitive differences in the morphological organization of nonnetwork spaces.
These spaces are planar forms of hillslopes or the retained portion after subtracting the
channel network from the basin space. The principal aim of this paper is to focus on
explaining the importance of alternative scale-independent but shape-dependent measures
of nonnetwork spaces of basins. Toward this goal, we explore how mathematical
morphology-based decomposition procedures can be used to derive basic measures
required to quantify estimates, such as dimensionless power laws, that are useful to
express the importance of characteristics of nonnetwork spaces via decomposition rules.
We demonstrate our results through characterization of nonnetwork spaces of eight
subbasins of the Gunung Ledang region of peninsular Malaysia. We decompose the
nonnetwork spaces of eight fourth-order basins in a two-dimensional discrete space into
simple nonoverlapping disks (NODs) of various sizes by employing morphological
transformations. Furthermore, we show relationships between the dimensions estimated
via morphometries of the network and their corresponding nonnetwork spaces. This
study can be extended to characterize hillslope morphologies, where decomposition of

three-dimensional hillslopes needs to be addressed.
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1. Introduction

[2] Characterization of branched networks, such as rivers,
bronchial trees, vortex dynamic structures, and diffusion-
limited aggregation to name a few, is one of the important
research areas in geomorphology in recent decades. It is
evident, from numerous studies, that various loopless
networks ranging from geomorphologic [e.g., Horton,
1945; Strahler, 1957; Mandelbrot, 1982; Turcotte, 1997,
Rodriguez-Iturbe and Rinaldo, 1997], physical [Olson
et al., 1998; Mehta et al., 1999], and sociological
networks [Arenas et al., 2004] follow Hortonian laws.
The Horton-Strahler morphometric statistics of networks
that summarize the connectivity and orientation of convex
zones of basins offer useful tools for quantitative description
of landscapes. From the geophysical context, river networks
are characterized via Hortonian laws and fractal-based
power laws. Derivation of these laws based on stream
number, mean stream length, and mean areas for river
networks facilitates computation of topological quantities,
such as bifurcation ratio (Rg), length ratio (R;) and stream
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area ratio (R4) as well as certain scaling laws to further
validate and characterize numerous realistic and synthetic
network [e.g., Shreve, 1967; Mandelbrot, 1982; Tokunaga,
1984; LaBarbera and Rosso, 1987; Tarboton et al., 1988;
Takayasu, 1990; Howard, 1990; Marani et al., 1991; Rigon
et al., 1993; Rinaldo et al., 1993; Beer and Borgas, 1993,
Nikora and Sapozhnikov, 1993; Kirchner, 1993; Karlinger
et al., 1994; Sagar, 1996; Maritan et al., 1996a, 1996b;
Rodriguez-Iturbe and Rinaldo, 1997; Turcotte, 1997; Sagar
et al., 1998; Peckham and Gupta, 1999; Sagar et al., 2001;
Gupta and Veitzer, 2000; Dodds and Rothman, 2001;
Maritan et al., 2002; Sagar and Tien, 2004). Geomorphic
processes are explained by relation with the dimension, and
certain scaling laws exhibited by networks.

[3] Besides channel network, nonnetwork spaces, the
planar forms of hillslopes, are also important features within
a basin, If the notion “geometry and topology of the basin
have direct relationship with geomorphic processes” has
merit, then scaling laws and dimension of the network are of
limited use, as they enable less about the geometry and
topology. Although, the organization of the network is
strictly controlled by the spatial organization of concave
zones, it is obvious that the Hortonian laws, which iron out
much of the information, and scaling laws have emphasized
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Figure 1.

only little on any shape-dependent quantity. Heuristically,
similar networks that exist in an elongated and circular
basins provide more or less similar Hortonion quantities.
However, the processes involved, respectively, in elongated
and circular basins differ significantly due to distinct
geometries of nonnetwork space; in other words, planar
forms of hillslope morphologies. We argue, as it is intui-
tively true, that network-based characteristics alone would
be insufficient to quantify the sensible variations in the
geometric and spatial organization of nonnetworks spaces,
and to explore links with geomorphic expression and
processes. To better explain this argument, we show three
synthetic networks (Figure 1) with distinct topologies and
geometric organizations of nonnetwork spaces, possessing
similar laws of Horton’s number and stream lengths. The
typical difference between these three schematic networks
(Figure 1) is obvious from the diverging angles between
the segments and their overall geometry, and also the
geometric organization of nonnetwork spaces. As the
number of segments and their lengths of these three
schematic networks, after designated with Horton-Strahler
ordering scheme, are similar, the resultant topological
quantities would also be similar. These similarities, irre-
spective of their dissimilarities in the topological organi-
zation of nonnetwork spaces, iron out much of the
details.

[4] The quantitative description of concavity of the
surface is done through the popularly known slope-area
diagram [e.g., Montgomery and Dietrich, 1988, 1994,
Willgoose et al., 1991; Tarboton and Bras, 1992; Moglen
and Bras, 1995; Whipple and Tucker, 1999]. Hillslopes,
their morphologies and responses to changes in the tectonic
and climatic settings were thoroughly investigated by
numerous researchers to explore the characterization of
hillslope morphologies via linear transport models [Kirkby,
1971; Koons, 1989; Fernandes and Dietrich, 1997] and
nonlinear transport models [4Anderson, 1994; Howard,
1994; Roering et al., 1999]. Characterization of the planar
form of hillslopes, which we term here as nonnetwork
space, and its geometric composition enable rich clues to
explore links with geomorphic processes within a basin.
The topographically significant regions in the nonnetwork
space include regions with varied degrees of slope, narrow
regions with steep gradient, and the corner portions adjacent
to the stream confluence.

Schematically represented networks with three different geometric organizations.

[5] The components of the possible nonnetwork spaces;
which may be isolated by subtracting the networks from
their corresponding reconstructed basin, can be closely
approximated with triangle, square and circle. We hypoth-
esize that the geomorphic expression and activity depends
upon the morphology of the components of nonnetwork
spaces. Hence we propose morphometry of the nonnet-
work space. We employ an elegant methodology, proposed
by Sagar and Chockalingam [2004], whereby we derive
shape-dependent dimensions, which consider the spatial
organization of nonnetwork spaces that may be more
relevant to relate with geomorphic processes that shape
the basin.

[6] The paper is organized as follows. A brief outline
of the basic morphological transformations used in
implementation of procedures to isolate nonnetwork
spaces from the reconstructed basins and to decompose
the nonnetwork spaces into nonoverlapping disks (NODs)
is presented in section 2. Then the results of our analysis
on morphometry as applied to network and nonnetwork
spaces of eight fourth-order basins of Gunung Ledang
region are presented in section 3. We close by briefly
discussing the implications of our results on morphologic
characterization of networks and nonnetwork spaces in
section 4.

2. Morphological Transformations, Nonnetwork
Space Generation and Its Morphologic
Decomposition

2.1. Basic Morphological Transformations

[77 We define channel network and nonnetwork spaces
within a basin as if C in a two-dimensional Euclidean
discrete space Z* belongs to the set 4, the pixel representing
channel network in the basin is white; otherwise it is black.
The complement of channel networks (C°) represents the
channel network background. A symmetric template that
performs various morphological transformations such as
binary erosion, dilation, opening, and closing [Serra,
1982] at various phases of this investigation, is defined as
follows: 8¢ = [—s:s€S}, where S°® is obtained by rotating S
by 180° on the plane. Application of these transformations
would be shown to reconstruct basins from channel net-
works and to decompose nonnetwork spaces into simpler
convex components. We perform these transformations by

2 of 15



B08203

means of § that is symmetric with respect to the origin,
octagonal in shape and has the size of 5 x 5.

[¢] Erosion transformation of C by S expressed in
equation (1) (denoted by ©) is defined as the set of three
points ¢ such that the translated S, is contained in the
original set C and is equivalent to intersection of all the
translates:

CoS={c:S.SCt=0Cs. (1)

where for better legibility, this transformation is illustrated
in matrix form (Figure 2a). In Figure 2a, a 3 x 3 size Cis
represented with 1 and O that stand for channel occupying
and channel background regions, respectively. In Figures 2a
and 2b, five channel points are obvious. These channel
points are systematically translated in terms of symmetric S
with characteristic information of size 3 x 3 and rhombus in
shape as well as with center as origin. The number of
translates required to achieve either erosion or dilation
(Figures 2a and 2b) is equivalent to the number of channel
points present. Hence five translates are required each for
erosion and dilation. For the case of erosion, each channel
point in C is systematically translated by means of S. The
first translate is achieved in such a way that the origin in S
(i.e., center point) is matched with the first encountered
point of C at location (2, 1). This location depicts the
second column of first scan line of C. Then we observe
that § is not exactly overlapped with all the neighborhood
channel points. Hence we consider this as “mismatch”,
and the first encountered channel point is transformed into
channel background point. This is shown in the first
translate involved in the erosion process. Similar transla-
tion is done for the second encountered channel point
located at (1, 2) to check whether it exactly matches with
S. As this second channel point also mismatches with
reference to the origin of S, the second translate for
channel point at location (1, 2) is transformed into channel
background point. Similar exercise provides five translates
as shown in Figure 2a. It is obvious that the translate
achieved for the third encountered channel point at
location (2, 2) exactly matches with S. Hence no change
is observed in the corresponding translate. Further, the
intersection of all the translates provides eroded version of
C by S.

[s] Dilation transformation expressed in equation @)
(denoted by @) of C by S is defined as the set of all those
points ¢ such that the translated S. intersects C and is
equivalent to the union of all translates:

C®S={C:ScﬂC#®}=gSC_S. 2)
3§

The rule followed to translate the channel points to further
achieve dilation is slightly different from the rule followed
in erosion process. Here, while matching the first
encountered channel point at location (2, 1) with reference
to center point of S, we check for exact overlap with all
points in § with all channel points. As for the first
encountered channel point, we see that there is a
mismatch. Then the points of S that are not exactly
matched with channel points would be placed at locations
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beyond the channel points. This can be better compre-
hended from the first translate shown in Figure 2b.
Similarly, the second and further translates are shown. As
at the third encountered channel point the matching is
exactly identified by means of S, there is no change
observed in the corresponding translate. The union of all
these translates produces dilated version of C by S as
illustrated in matrix form (Figure 2b).

[10] The dilation with an elementary structuring template
expands the set with a uniform layer of elements, while the
erosion operator eliminates a layer from the set. To avoid
confusion, C © § and C @ S are simply referred to as
erosion and dilation. Multiscale erosions and dilations are
expressed as

(CesS)esSe...eS=(Cos,) 3)

CaS)®S®...05=(CaS,), (4)

respectively, where S, =S, @ S, & ... @ S,. By employing
erosion and dilation of C by S opening and closing
transformations (denoted by o and e, respectively) are
further represented as

CoS=((CoS)®Ss)) (5)

CeS=((C®S)oS)). (6)

These transformations are illustrated in Figures 2¢ and 24,
where cascade of erosion followed by dilation of C of size
3 x 3 with nine channel points by means of § is shown. To
perform erosion first on the nine channel points, nine
translates are required. Then the resultant eroded version
would be dilated to achieve the opened version of C by S as
shown in Figure 2c. Similarly, to achieve closed version of
C by § (Figure 2d), we first perform dilation on C of size
3 x 3 with nine channel points by means of S followed by
erosion on the resultant dilated version. To perform these
transformations shown in Figures 2a—2d, by changing the
scale of S, one requires taking the addition of S by Sto a
desired level. As an example, we show in Figure 2e how we
get S, by adding S, with S,. We employ recursive erosions
and dilations to perform multiscale opening and closing
transformations in equations (7) and (8).

(COS,,) = [(C eSn) @Sn)] (7)

(CoeSy)=[(Ca S) © Sn)l, 8)

where n is the number of times the transformations are
repeated. We encourage the reader to refer to Matheron
[1975] and Serra [1982] for morphological transformations
and their numerous applications. These transformations are
employed systematically (Figure 3) as explained in the
equations to first achieve the reconstructed basin space (X)
from channel network (C) and then to generate nonnetwork
space (M). Once M is achieved, we employ these
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(2)  Morphological Erosion of C by S
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Figure 2. Matrix representations of morphological transformations and certain logical operations.
(a) Morphological erosion and involved translates, (b) dilation and involved translates, (c) opening,
(d) closing, and () structuring templates of varied sizes and their Minkowski additions. Refer to
text for detailed explanation. See color version of this figure in the HTML.

transformations again to convert M into nonoverlapping 2.2. Nonnetwork Space of Basins

disks (NODs), which are simpler convex components. We [11] The landscape of a part of Gunung Ledang region
replace C with M. One can perform these transformations (Figure 4), situated between 02°21’—02°27'N latitude and
also on nonnetwork space. 102°35'~102°41'E longitude, with varied topographic
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Figure 4. Gunung Ledang DEM after partitioning into eight fourth-order basins. See color version of
this figure in the HTML.

relief, consisting of eight fourth-order basins of several
sizes and shapes, is considered in the present study. The
Gunung Ledang forested mountainous landscape region is
tropical, being characterized by fairly uniform high tem-
peratures, high humidity and fairly heavy rainfall, and is
occupied with granite massif that projects above the
surrounding undulation, low-lying sedimentary and pyro-
clastic rocks. The observed drainage patterns include
trellis and radial type. Our investigation of nonnetwork
spaces is motivated by these observations from the
Gunung Ledang region, although this methodology can
be applied to any nonnetwork space.

[12] The channel connectivity networks (Figure 3)
derived from eight basins are illustrated with Horton-
Strahler ordering scheme. The spatial organization of
these network patterns determines the basin processes.
We employ these channel networks to reconstruct the
basins with proper characteristics. A framework (Figure 3)
based on morphological transformations due to Sagar
and Chockalingam [2004] is employed to reconstruct the
basins and their internal topological organizations. From
such a reconstructed basin, it is also possible to attain a
network much similar to the network that is used to
reconstruct the basin.

[13] To reconstruct the basin and its topology from
channel network, we let C be the channel network
(Figure 5) and a discrete probing rule, with S € Z
(e.g., Figure 2¢), bounded, convex, symmetric and con-
taining the origin. Channel networks and their comple-
mentary spaces are represented with white and black
pixels, respectively. To reconstruct the basins from chan-

nel networks, we employ multiscale closing as expressed
in equation (9).

N
X=UCeS, 9
n=0

where C C X, C and X are channel network and basin
reconstructed from channel network by performing multi-
scale morphological closing transformation iteratively until
X becomes equivalent to X e S;; in other words, the closure
of the closure of a set X is equal to the closure of that set.
Channel networks are subtracted from the reconstructed
basins to achieve nonnetwork spaces within basins. We
define nonnetwork space (M) within each reconstructed
basin (X) as a combination of disconnected, bounded,
binary valued discrete space object as depicted

M = [X\C] c Z2, (10)
where reverse slash denotes subtraction. By subtracting the
channel networks from the bounded reconstructed basins X,
we obtain nonnetwork spaces M (Figure 6) of the eight
basins. For better understanding of basin reconstruction
process from the network, we show an evolutionary
sequence of network for basin 1 after respective multiscale
closings in the inset picture (Figure 6). The nonnetwork
space (M) is similar to the nonchannelized convex region
that consists of varied degrees of topographically convex
regions within a basin. As an extension, we emphasize on
characterization of nonnetwork spaces of the eight basins by
involving decomposition rules that are similar to random
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Figure 5. Fourth-order channel networks of eight basins of Gunung Ledang region. See color version of

this figure in the HTML.

packing of space, reported elsewhere [Manna and
Herrmann, 1991; Dodds and Weitz, 2002, 2003; Lian et
al., 2004; Radhakrishnan et al., 2004]. Decomposition of
these nonnetwork spaces into nonoverlapping disks (NODs)
of various sizes such that the nonnetwork space within each
is filled with NODs of decreasing sizes provides valuable
insight for modeling and understanding basins. The
characterization of such a scale-dependent topological
organization of nonnetwork space has hitherto been
received little attention.

2.3. Morphological Decomposition of Nonnetwork
Space

[14] Complex nonnetwork spaces (M) of eight basins are
transformed into “simpler convex polygon-like’” NODs. A

symmetric octagonal structuring element, as a simple
probing rule, is considered to convert M into NODs by
employing morphological decomposition according to the
following recursive relation. Three steps involved in re-
cursive relation:

Step | M= [(M—M_,)©S,]® S,
Step 2 M = ;

ep i 0<ijsi'Mj’ (11)
Step3  Mj =0,

where n; denotes the maximal size of the maximum
inscribable disks S,; in any of the connected components
of M — M!_;. The description of the above equation with
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Figure 6. M = X\C is nonnetwork space in white and networks in black within a basin, For basin
reconstruction stages, we explain with reference to first basin. A similar approach has been followed to
generate topological spaces within the other seven basins. Evolution of networks of first basin after
respective multiscale closings is shown in inset.
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Figure 7. Nonnetwork spaces of eight basins after filling with nonoverlapping octagons of several
sizes. Evolution of decay of nonnetwork space of first basin into nonoverlapping disks of decreasing sizes
is shown as an inset picture.

three steps involved in morphological decomposition of
nonnetwork space of the basin into NODs includes
obtaining the set of maximum inscribable disk(s) that has
(have) the maximum radius in M. This set is the first level
decomposed disk(s) in the decomposition. The second set of
the maximum inscribable disks in the portion of the basin is
that obtained by subtracting the first cluster from M. The
procedure is repeated on the portion of each basin that is

obtained by subtracting the first and second decomposed
disks, until the remainder of the nonnetwork space becomes
an empty set. The more regular is the set M, the smaller is
the number of categories of regular type NODs of different
sizes. Here, we decompose the space in a nonoverlapping
manner with an octagon. The shape, size, orientation, and
origin of § can be changed to unravel various other
topological characteristics of nonnetwork spaces of basins.
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Figure 8. (a, b) Graphical plots between stream order and order-wise stream number and lengths and
(c, d) stream orders versus logarithms of order-wise numbers, and mean stream lengths of eight basins.

See color version of this figure in the HTML.

The nonoverlapping disks [M,. . ., M,] whose union is M, is
depicted

l

M

i

M;,

: (12)

where M; is a simple set that is equal to discrete rule S of
size r; : M; = S,;, where 7, is the same integer as in the
relation M; =S & S & ... @ S (n times, where circled cross
denotes Minkowski addition; see Figure 2e). Figure 7
illustrates the decomposition of nonnetwork spaces of eight
basins into NODs explained in sequential phases. For better
legibility, each category of NODs is coded with gray shades.
These NODs, corresponding to each basin achieved through
morphological decomposition procedure, are considered to
quantify the geometric complexities of nonnetwork spaces.
Nonnetwork spaces of each basin consist of several isolated
connected components, which are the planar forms of
hillslopes within a basin. It is obvious that the nonconvex
connected components consist of more size categories of
NODs than that of convex connected components.

3. Morphometry of Network and Nonnetwork
Space of Eight Basins of Gunung Ledang Region

[1s] In this section, we provide morphometric parameters
of both network and nonnetwork spaces of eight basins.
3.1. Morphometry of Networks

[16] Eight subbasins are derived from the hilly Gunung
Ledang region of Malaysia. The channel networks within

these basins are traced and designated the stream ordering
according to Horton-Strahler scheme. The order-wise num-
ber of streams and their lengths in pixel units are computed
(Table 1). Figures 8a and 8b depict graphical relationships
between the stream order and order-wise stream numbers
and lengths. Graphical plots between the stream orders and
logarithms of order-wise stream lengths and numbers for all
the eight basins (Figures 6¢ and 6d) facilitate computations
of bifurcation and stream length ratios (Table 1). Order-wise
stream numbers and lengths are plotted as functions of
stream orders for eight fourth-order networks of the Gunung
Ledang region. Linear relationships are observed for loga-
rithms of mean stream lengths and number plotted as
functions of stream orders. These linearities indicate Hor-
tonity of the networks. From these linear relationships, we
derive Hortonian laws of stream lengths and numbers, We
compute the antilogarithms of absolute slope values com-
puted from these linear relationships that represent basin-
wise bifurcation (Rg) and stream length (Ry) ratios,
respectively, for the eight basins (Table 1). Basin 7
possesses the highest bifurcation ratio followed by basins
3, 8 and 6, indicating that the underlain geological structures
disturb the stream networks relatively lesser than that of
other basins 2, 5, 4 and 1. Estimated higher fractal dimen-
sions for basins 8, 6, 4, and 5 indicate higher degrees of
space-filling characteristics. We infer that these dimensions
derived from morphometry of networks explain space-
filling characteristics of networks. However, these measures
offer little scope to quantify the geometric complexity of
hillslopes. On the basis of the morphometric statistics of the
eight networks, the networks’ complexity is in ascending
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Table 1. Basic Measures of Networks of Eight Basins

Order Stream Length, pixels
Basin 1 2 3 4 1 2 3 4 Rp R,
1 85 18 4 2 4891 1611 551 849 345 1.90
2 58 15 3 1 2818 775 187 767 397 233
3 45 11 1 0 2346 594 770 0 6.64 3.87
4 53 11 4 1 2789 748 703 328 3.64 1.90
5 55 17 3 1 2834 961 659 374 396 2.07
6 70 18 4 1 3671 1182 518 431 416 2.01
7 46 8 I 0 2042 3562 479 0 6.78 3.28
8 8 17 3 1 2477 809 194 294 457  2.09

order for the basins 3, 7, 2, 5, 1, 4, 6, and 8. We
demonstrate, on the basis of the arguments made
with reference to Hortonically similar synthetic net-
works (Figures la—1c), that the characterization of
nonnetwork spaces through statistical relationships of
NOD’ statistics would provide geometric-dependent
complexity measures.

3.2. Morphometry of Nonnetwork Spaces

[17] The geometric complexity of nonnetwork spaces
that are computed via fragmentation rules provides four
different shape-based measures. We record the number of
decomposed nonoverlapping disks, of sizes lesser than the
template of specific radius, and their contributing area in
pixels (Table 2). The statistics of NODs of various sizes
that reveal other interesting characteristics for the eight
nonnetwork spaces include number of NODs and their
contributing areas. We observe that more number of
smaller size category NODs exist in the eight basins.
Decay in the number of NODs in these basins is obvious
(Figure 9a). Similarly the distributary patterns in the
contributing areas of size-wise NODs for these eight
basins (Figure 9b) show significant oscillations indicating
different NOD size categories, which are less in number,
occupying larger contributing areas.
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[18] The largest templates that could be fit in the eight
basins ranging from the first to the eighth basins are of the
radii of 32, 28, 26, 26, 34, 26, 24, and 26 pixels, respec-
tively (Table 2). We estimate the fractal dimension of the
nonnetwork space through the following steps. We deter-
mine power law exponents for the NODs’ number and size
distributions by means of a connection to the decay of
nonnetwork space of basin. On the basis of the assumption
that the shape of the nonnetwork space alters the number
and size distributions of NODs, these exponents are
strongly shape-dependent. We compute the number of
NODs smaller than the specified threshold radius of the
structuring template and their contributing areas (Table 3)
denoted as N[NODs (<S,)] and A[NODs(<S, )1,
respectively. The distribution of number and area of non-
overlapping disks, decomposed from nonnetwork space,
depends on the diverging angles of streams. The rate at
which the nonnetwork space within a basin gets decayed via
morphological decomposition depends on the area, geomet-
ric organization, and the outline roughness of connected
components of nonnetwork space. We propose that the
dimensions derived from analysis of nonnetwork space
provide better reasons to explore links with processes and
geomorphic expression of the basin than that of network
morphometric characteristics. By employing the numbers of
NODs of various sizes, their contributing areas, and the
corresponding radius of template, we derive simple
power law relationships for these eight realistic basins.
Figures 9c—9j show double logarithmic graphs for the
cumulative number of NODs (diamonds) smaller than the
threshold radius of the structuring template (disk) and their
corresponding contributing areas (squares) versus the radii
of structuring elements 7. The slopes of the best fit lines (cuy
and o) for number-radius and area-radius relationships,
respectively (Table 4) (Figures 9c—9j), are obtained from
the well fitted relationships as N[NODs(<S§,))] or
A[NODs{<S,,)] ~ n*¥ " ®« where n is radius of template,
and o is slope of the best fit line. These slope values of the
best fit lines provide shape-dependent dimensions as Dy =

Table 2. Basic Statistics of Distributed Number of Nonoverlapping Disks and Their Contributing Areas of Various Sizes Decomposed

From Nonnetwork Space of Eight Basins®

Disk N 4

Size 1 2 3 4 5 6 7 8 2 3 4 5 6 7 8
1 247 139 88 136 148 167 79 197 13201 7300 4863 7642 7985 9404 4778 10011
2 88 50 38 48 50 56 32 81 11358 7280 5416 6228 7395 8267 4080 12807
3 323 19 27 41 48 27 56 15444 6198 4231 8609 11946 13936 8254 18218
4 3518 13 19 19 31 15 36 13888 8630 5237 7858 7831 13460 6004 14990
5 28 19 14 18 14 13 13 24 13785 13083 10164 10304 8496 7772 7814 16167
6 1 9 12 12 12 18 4 12 11648 6697 9924 11033 10710 14843 4277 8743
7 19 77 1 8 12 4 12 23316 7778 7421 11195 7484 12396 3836 11741
8 8 7 4 7 7 51 11 12216 8143 4646 8350 7630 5404 945 16512
9 1 i 5 3 4 30 3 18416 4802 7455 4197 6020 4271 0 4538
10 9 30 2 3 4 2 4 16468 5276 0 3715 5815 7243 3453 6743
11 5 21 3 2 4 1 2 13918 3702 2083 6639 4190 12777 3075 4067
12 2 0 0 1 2 4 1 4337 0 0 2834 4475 10031 2360 3446
13 2 1 2 1 2 2 0 I 8160 2445 6711 2753 7159 5978 0 2632
14 0 10 0 2 0 0 0 0 3339 0 0 5916 0 0 0
15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
16 2 0 0 0 I 0 0 0 5859 0 0 0 3681 0 0 0
19 0 0 0 0 1 0 0 0 0 0 0 0 2407 0 0 0

N is number of respective stream orders.
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Table 3. Cumulatnve Number and Corresponding Contributing Areas of Nonoverlapping Disks of Vunious Sizes Decomposed From
Nomnetwork Space of Eight Basins®
Basin

1 2 3 4 § 6 7 L3
SE N A N A N 4 N A N A4 N A N 4 N {
34 - - - - - - - - 316 109149 - - - - - -
32 A2 182014 - - - - - - 168 101164 - - . - - -
30 273 16KK13 - - . - - - 118 93769 - - - - - -
W 273 16KKI3 22 K467 . - . - 18 w3769 - . - . . -
26 273 16KEL3 143 77373 203 6KISI1 288 91357 77 K1823 367 125782 - . 440 130615
24 1%5 157455 93 TO93 IS 63288 152 R3715 Sy 73992 200 116378 179 48876 243 120604
22 132 142041 Y3 T3 115 63288 104 77487 44 65496 144 108111 100 34098 162 107797
26 47 128123 70 6HABYS 77 57872 77 6RRTE 32 54786 96 94175 68 40018 106 8957y
18 [ 114338 52 582658 717 57872 58 61020 24 47302 65 BOTLS 41 3763 7 74584
16 bl 12680 33 42182 88 53641 40 50716 17 39672 52 72943 41 31764 46 58422
14 kL 79374 24 38485 45 48404 28 39683 13 33652 34 SR 26 257660 34 9674
2 31 671K 17 27707 31 38240 17 28488 10 27837 22 45704 13 17946 22 37938
i 20 48742 HY {9564 19 28316 10 2003808 23638 17 40300 Y 13669 I 21426
3 it 3274 7 14762 12 20895 7 15941 6 19163 14 36029 5 YK33 ] 16888
[ 4] 18356 4 Y4EhH 8 16249 5 12226 4 120444 10 28786 4 BEEY 4 10145
4 4 14019 2 5784 i B794 2 5587 2 GO8R 6 160049 2 5438 2 607%
2 2 4854 i 3339 2 6711 1 2753 1 2407 2 5978 I 2360 1 2632

*SE 1 structunng element, o s arca m pixel units, and N is number of NODs.

o 1, and Dy = ay vield Dy and D, for nonnetwork
spaces of eight basins. The slopes are under 1.61 for the
number of NODs, and are under 2.38 for the contributing
areas of NODs. These slope values can be related with
erosion laws. These relations can also be linked with
slope-area dugram. These statistically derived measures
are dependent upon characteristic information of template
used to convert the nonnetwork spaces into NODs. The
third measure s derived from the plots made by con-
sidering the number of NODs as functions of their
corresponding  areas. The geometric complexities for
these eight networks, computed by taking the contribut-
ing areas of NODs as functions of radii of templates, are
in the ascending order for the basins 3, 6, 7, 2, 1, 5, 4,
and ¥. It is obvious, from the comparison, that there is
no relation between network-based topologic quantities
and nonnetwork-based complexity measures. In addition
to these statistically derived power law relationships for
nonnetwork spaces, we also derive shape-based complex-
ity measures by estimating uncertainty index for the
number of NODs and their areas. The NODs of various
sizes are categorized according to their sizes by
performing opening with increasing cycles. For instance,
the NODs of nonnetwork space of first basin are
segregated into 16 size categories. The distributions of
the number of NODs and their contributing areas are
computed for these eight basins (Table 2). We employ
these basic measures of size distributed NODs to esti-
mate probability distribution functions of number and

area (Table 4). By employing these normalized plots of
number and area, we estimate complexity measures
(Table 4) by following entropy equations

i9
H(N)/M = =" pxin)loglpx (n);

RS

19

H{AVM = - Zp,(r;glogfpﬂn}].
LN

where py, p,, H(NYM, and H(A4YM denote probability
distribution functions and average uncertainty indexes for
the number of NODs and their areas, respectively. These
measures are also scale-independent and shape-dependent
that quantify the degree of randomness in the distributions
of the number of NODs and their corresponding areas.
[19] For the considered eight subbasins, we show
these shape-dependent and nonshape-dependent dimensions
derived from the nonnetwork spaces and network morpho-
metries of eight basins, respectively (Figure 10). Character-
ization of network via nonshape-dependent morphometric
parameters is not sensitive to sinuosity of stream segments.
However, the nonnetwork space characterized via dimen-
sions is sensitive to sinuosity of network (or) curvature and
geometric organization of space occupied by varied degrees
of convex region within a basin. On the other hand, the

Figure 9. Morphometric parameter computations achieved through decomposition of nonnetwork space. (a, b) Numbers
of NODs of nonnetwork spaces and their corresponding areas as functions of radius of structuring element for considered

nonnetwork spaces of eight basins, (c~j) double logarithmic

relationships between the radius of template and number of

NODs and their contributing areas lesser than the radius of template for eight basins, and (k—r) areas of NODs and number
of NODs lesser than the template. The points of these graphs organize themselves into a straight line, the slopes of which
for these basins characterize nonnetwork spaces of basins. See color version of this figure in the HTML.
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Iimensions Derived From Morphometry of Network and Power Laws Derived From Nonoverlapping

Disks of Nonnetwork Space and Shape Complexity Measures Estimated for NODs Number and Thew

Corresponding Areas®

Network Nonnetwork Space
Basin Network FD {log Rg/log Ri} R versus A R versus N 4 versus N HiNVM Hidy M
1 1.83 1.93 1.34 2.04 1.50 676 I 116
2 (.86 1.63 1.33 1.23 1.59 073 1078
3 (.98 1.41 1.02 1.87 1.80 0.77 RIS
4 207 201 1.43 217 1.52 0.75 10758
s 1.73 1.90 1.34 1.94 1.43 .76 10K
6 1.84 2.04 1.13 1.87 1.63 4.77 1.0%6
7 1.33 1.61 1.23 208 1.70 0.72 04491
8 1.65 2.06 1.61 2.38 1.49 .74 1.050)

“FD is fractals dimension; Ry is bifurcation ratio; R, is stream length ratio; R is radius of structuring element; NV is number of

NODs.

dimensions derived from their corresponding nonnetwork
spaces are shape-dependent.

4. Conclusions

[z6] This paper addresses four aspects: (1) reconstruction
of the basin from channel networks, (2) generation of
nonnetwork spaces () from the basins (X) reconstructed
from channel network such that the channel networks
are contained in X, (3) decomposition of M into NODs
to compute morphometry of nonnetwork spaces, and
{4) derivation of relationships among several parameters of
morphometries of networks and their nonnetwork spaces.
To achieve these, we use set theory and topology-based
mathematical transformations that have hitherto been
relatively less employed in geophysics. This framework
and the results derived from realistic cases allow system-
atic characterization and validation of the topological
properties of the nonnetwork space of vartous realistic
and simulated networks via shape-dependent measures.
This systematic framework to quantify the organization
of hillslope morphologies would be useful in modeling the
landscape evolution.

[21] We conclude that morphological decomposition of
nonnetwork space into NODs facilitates new measures
based on the general statistical relationships and probability
distribution functions of the number of NODs and their
comesponding areas. We argue that these shape-dependent
measures, which are useful to capture the basic dissimilar-
ities between Hortonically similar basing and to adequately

WOOG R w A NOOeR vo
e O S Bven M SO0 Unoedenty 0 ranbes
% w02, Unmerlanity 1 B

3 4 5
Basin number

Figure 10. Basin number versus varied dimensions
derived from morphometry of networks and nonnetwork
spaces. See color version of this figure in the HTML.

characterize the Hortonian and non-Hortonian basin {e.g.
Scheidegger, 1967] morphologies, are better indicators than
Hortonian-based measures.

[22] Intuitively, the hypotheses are that (1) the invelved
morphologic process in a circular nonnetwork space is
different from that of an irregular nonnetwork space and
(2) rate of erosion would be relatively lesser in the
connected components with higher degree of convexity. In
turn, the number distribution functions of NODs would
provide insights to explore links with morphologic orgam-
zation of hillslopes and erosion laws. In order to quantify
the basic differences in terms of geomorphic process and
landscape response to perturbation due to tectonic and’or
climatic settings, shape-dependent measures are particularly
useful. This provides an additional important procedure for
shape-based classification of landscape. A broader imphica-
tion is that the nonnetwork spaces within basins with lesser
relief ratio (e.g., tidal basins and braided channels) can be
better quantified through these shape-based measures. This
approach has important yet unexplored implications for how
hillslopes can be classified on the basis of geometric
organization in a three-dimensional space. Further imphca-
tions of such a classification would provide insightful 1deas
toward exploring links between quantitative results and the
morphological processes of basins.

[23] Acknowledgments. This work was supported i part by MMU
internal research grant PR/2003/0273. We gratctully acknowledge Bellw
Sivakumar and an anonymous reviewer for providing insightful and helpful
recommendations that have improved the paper.
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