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Science Out of DEMS

Spatial Data

What does it
have?

Relevant
Mathematics

Science out of
spatial data and
spatial
Information
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Digital Elevation Model (DEM) is an Engineering
Marvel: An important source of data for geoscientists

» DEMs (f(x,y))are with rich but hidden geometric,

morphologic, and topologic (GMT) gquantities (X) and
the associated parameters.

Having expertise in mathematical morphology and
fractal geometry would be a huge advantage to unravel
GMT quantities and associated parameters

Studying DEMs, GMT quantities and associated
parameters across space-time scales facilitate
researchers derive important science-outcomes to
develop models through which one can Dbetter
understand the dynamical behaviors of several
terrestrial phenomena and processes of the Earth planet
and Earth-like extra-terrestrial planets
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Geometric, Morphologic, and Topologic (GMT) quantities
Include peaks, pits, global and local minima and maxima,
contours, crenulations, unique valley and ridge connectivity
networks, topographic depressions, flat regions, mountain
objects. Associated parameters include width function
determination; roughness estimation; directional roughness
estimation; structural and textural complexity; basin
geodesics; basin-stage classification; feature mapping;
quantitative characterization and reasoning; modelling,
simulation and visualization
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Why & What

To understand the dynamical behavior of surficial process, a

good Is essential. To develop such a
model, well- and well- that

could be from spatial and/or temporal data are

Important required ingredients.

Mathematical Morphology Is one of the better choices to deal
with all these key aspects mentioned.

"Mathematical Morphology Is an area of geoscience
that most people don’t realize will literally change the

way they look at Earth!*

In Mathematical Morphology, Data (f(X,y)) is investigated with respect to another
data (B or g, a probing rule with certain characteristic information) to address tasks
such as retrieval, characterization, reasoning, modeling and simulation, and

visualization.
11 November 2021 B. S. Daya Sagar 5




This Lecture

 Digital Elevation Model (DEM) Is an important
source data for those who study Earth surface.

* Processing and analysis of the DEMs: Five cases
studied with respect to
— Skeletonization, SKIZ and WSKI1Z
— Granulometries
— Geodesic spectrum
— Morphological interpolations
— Morphological distances

11 November 2021 B. S. Daya Sagar



In One Slide

Multiscale opening/closing by rhombus
* Scale 1, 40, 80, 120, 160
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Overview

|. Digital Elevation Models (DEMS): An Important
Source Data for Geoscientists

1. Mathematical Morphology: Notations, Equations, and
Transformations

I[11. Mathematical Morphology in DEMs
Skeletonization in DEMs and DEM Partitions
Granulometries: Surficial roughness characterization/ quantification
Geodesic Spectrum in Bottom Topography Studies
Morphological Interpolations: Morphing of Source DEM into Target DEM
Ranks for Pairs of Images; DEM Classification
Morphological distances in spatial optimization and interaction modeling

V. How the above studies could be integrated to better
understand the surficial process dynamics?

11 November 2021 B. S. Daya Sagar 8



EDUCATION

B.5. DAYA SAGAR

Digital Elevation Models: An Important
Source of Data for Geoscientists

atellite technology has revolutionized the way we

acquire termestrial surface data. Such remately sensed
terrestrial data have made it possible to generate digital
elevation models [[DEMs) at mubtiple spatial and tempo-
ral scales by exploiting stereographic, interferometric,
radargrammetric, and lidar principles |1]-]10]. Schemes
adapied to generate DEMs are hugely successful, and,
as such, DEM generation is considered an engineering
marvel. In turn, the availability of DEMs to the geosci-
entific community is a blessing.

Both terrestrial and Earth-like planetary DEMs [eg.
Advanced Spaceborne Thermal Emission and Reflection
Radiometer Clobal DEM, NASA DEM, Shuttle Radar To-
pography Mission (SRTM) DEM, Cartosat DEM, SPOT
Sterec DEM, Chandrayaan DEM, Orbiter High Resolu-
tion Camera DEM, Mars DEM, Venus DEM, and lidar
DEM] provide rich geometric, topologic, and morpho-
logic information. As a result, DEMs offer an excellent
resource for geoscientists, mathematicians, statisticians,
peophysicists, computer scientists, cartographers, geo-
graphic information science professionals, engineers,
and spatial planners in various phases of research to
understand the spatiotemporal behavior of Farth and
Earth-like planetary processes and visualize them in
real time.

DEMs offer much more than is apparent at a visual
inspection for those who are able to extract informa-
tion of relevance to geometry, topology, and morphol-
ogy from these models, which are available at multiple
spatial and temporal scales. Until now, DEMs have been
underutilized due to the lack of awareness of how they
could be mathematically exploited, and they have not
vet been studied for their geoscientific relevance. DEMs
contain incredibly rich information that is best extract-
ed with novel mathematical methods [11]-[26], such

Dol of CuTen! eTsion: 1 Decembes ot

as discrete mathematics, geostatistics, exploratory data
analysis, fractal peometry and scaling theory, fuszy set
theory, stochastic peometry. mathematical morphol-
ogy, geomathematics, graph theory, compositional data
analysis, nonlinear dynamical systems, and wavelets. It
would serve the educational needs of the Socdiety 1o en-
courage the training of experis in the relevance of DEMs
in these areas. This would enrich the application of
DEMs not only in geosciences but also in a host of other
stundies, such as resource estimation and identification,
spatial planning, decision making, predictive analytics,
and many more.

Processing and analysis of DEMs by these math-
ematical techniques would lead to sequentially in-
tertwined outcomes, such as the application of these
methods o unigque valley-ridge connectivity networks,
partitioned basins, surface roughness, geodesic spec-
tra, categories of basins, ridge-valley spacing, geodesic
distances, the rate of surficial evolution, synthetic ter-
restrial surfaces, revealing spatiotemporal behavior,
and many more. Readers may refer to several technical
papers for demonstrations on how these approaches
are employed in the processing and analysis of DEMs
as well as how challenges ranging from feature retriev-
al [27]-137] to quantitative analysis and reasoning
|38]-]52] and modeling and visualization [52]-[55] of
the phenomenon- or process-specific spatiotemporal
behavior are addressed.

Two illustrative examples, selected from numer-
ous examples of our group, show the application
of one of the previously mentioned mathematical
theories on a synthetic random discrete topographic
function [Figure 1{a)] and on a realistic DEM [Fig-
ure 2{b)] in mapping the unique connectivity net-
works [Figure 1(b]] and hierarchical watershed
partitioning [Figure 1{c]] and the watershed-wise
classification |Figure 2(b) and (c]] via directional
roughness values computed through multivariate

I|EEE GEQSCIENCE AND REMOTE SENSING MAGAZINE  DECEMBER X020
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FIGURE 2. (3) An SRTM DEM of the lower Indus River subbasin, (b) a watershed-wise das-
sification based on global roughness indexes computed using granulometric analysis, and (c)
3 watershed-wise classification of high-directional granulometric index values computed via
directional granulometric analysis. For mathematical details, see [55).

geosciences, should be made mandatory, as should the
necessary foundational mathematical courses required
for these studies. This will both foster the self-reliance
described previously and broaden the interdisciplinary
nature of the field.

DEMs themselves are rich enough as a subject to war-
rant inclusion as a full-length subject at undergraduate
and pe dh levels, a rigorous curricu-

Klichi

" lum to train the next generation of geoscientists. This can

140

B. S. Daya Sagar

be done by incorporating syllabi re-
lated to generating DEMs; character-
izing their errors; devising descrip-
tors via geometry, algebra, physics,
and mathematics; developing phys-
ics-based algorithms for processing
and analysis DEMs; and processing
and analyzing DEMs using robust
spatial algorithms. This dedicated,
mathematically sound curriculum
should be developed as a joint effort
with mathematicians, statisticians,
and scientists drawn from across
disciplines: cartographers, comput-
er engineers, photogrammetrists, and
remote sensing specialists.
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Terrestrial and Earth-Like planetary DEMs
Synthetic DEMs
ASTER GDEM,
NASA DEM,
SRTM DEM,
Cartosat DEM,
SPOT Stereo DEM,
Chandrayaan DEM,
OHRC DEM,
Mars DEM,
Venus DEM,
LiDar DEM,
NEXTMap, and many more

11 November 2021 B. S. Daya Sagar
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Mathematical Morphology in DEMS

Modelling

and
Visualization
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Digital Elevation Models

B. S. Daya Sagar

1.Fractal-Hortonian-DEM
2. TOPSAR DEMs

3. Cartosat-DEM

4, SRTM-DEM

5. Bathymetric SF-Bay

6. CartoSat DEM
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Overview

|. Digital Elevation Models (DEMS): An Important
Source Data for Geoscientists

Il. Mathematical Morphology: Notations, Equations, and
Transformations

1. Mathematical Morphology in DEMs
Skeletonization in DEMs and DEM Partitions
Granulometries: Surficial roughness characterization/ quantification
Geodesic Spectrum in Bottom Topography Studies
Morphological Interpolations: Morphing of Source DEM into Target DEM
Ranks for Pairs of Images; DEM Classification
Morphological distances in spatial optimization and interaction modeling

V. How the above studies could be integrated to
better understand the surficial process dynamics?
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I1. Mathematical Morphology

FOUNDING FATHERS OF

Jean Serra

i\) Grayscale Morphology

Q Graph Mathematical Morphology
. % Adaptive Mathematical Morphology

11 November 2021 B. S. Daya Sagar 14



Basic Notations of Mathematical Morphology

Nowton

X, M, B Spatial objects, Sets (e.g.: GMT Quantities)

f(x,y) Spatial elevations over x and y spatial coordinates (e.qg.:
DEM or any other spatial function)

A(f) Area of spatial function is sum of all the values over x,y

B and g Flat structuring element and a non-flat structuring function

ftand f/ ith and jth spatial functions

D, ©,9,0 Symbols for dilation, erosion, closing and opening

X'"X’ and X*UX’ Intersection and Union of X*and X/
finfland fivf/  Infima and suprema of f*and f/
XX = XX X=X
Finfi=fivf! fi=f
A(fH) — A(f7)  Algebraic difference between the areas of f'and f/

(f) = (f/)  Point-wise algebraic difference between f'and f’
11 November 2021 B. S. Daya Sagar 15



Notations Contd...

Notation |

d(X,, X)), e(X,, X)), p(X,, X7), o(X', X)) Dilation, erosion, Hausdorff dilation and
Hausdorff erosion distances between X‘and X/

A(fAfT) and A(fiveT) Areas of the infima and suprema of fand f/
d(f5, f7) and e(f?, f7) Grayscale dilation and erosion distances
between f'and f7
(XOB), (X®B), (XoB), (XeB) Morphological binary erosion, dilation, opening

and closing of X with respect to B

(XOnB), (X®&nB), (XonB), (XenB)  Multiscale Morphological binary erosion,
dilation, opening and closing of X w.r.t B

(f®B),(f®B), (foB),(f*B) Morphological grayscale erosion, dilation,
opening and closing of f with respect to B

(fenB), (f&nB), (fonB), (fenB) Multiscale Morphological grayscale erosion,
dilation, opening and closing of X w.r.t B

B®B®B®... ®B=nB nth size B

11 November 2021 B. S. Daya Sagar 16



Binary and Grayscale Morphological

Equaﬁons

(XeB x B CX}—ﬂXb

X®B A} =uX Sl
( ) { (xnm } =UAy (f@B)(X,y)
XoB (X © B) © B)) (foB)
(X e B) (X@ B) © B)) (foB)
(X © nB) X©B)oBo..oB (f © nB)
(X @ nB) X®B)®B®...®B
(f © nB)
(X o nB) [(X&nB)®nB)] f o nB)
(X o nB) [(X ® nB)S nB)] (f ° _
(XonB)enB Alternative Sequential (fnB)
Filter Black (fonB)enB
(XenB)onB Alternative Sequential
Filter White (fenB) onB
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min{f(x+1,y +)),(
max{f(x+t,Y+1),(.}) B}
(f© B)®B))
((f ® B) © B))
feBoBo...oB
fOB)®B®...®B
[(f © nB) @ nB)]
[(f ® nB)© nB)]

Alternative Sequential Filter
Black

Alternative Sequential Filter
White
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Flat and Non-Flat Structuring Elements
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Fig. 2. (a) Rhombic symmetric flat-structuring element B of primitive size 3 x
3. (b) Rhombic symmetric nonflat-structuring element G of primitive size 3 x
3. (¢) Flat rhombic B of size 5 x 5. (d) Nonflat rhombic G of size 5 x 5. (e) Flat

-

rhombic B of size 7 x 7. (f) Nonflat rhombic G of size 7 x 7.
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Grayscale Morphological Operations w.r.t
Non-Flat Structuring Element (g)

(fO)(x.1) =%{i§{f (x+i,y+7)-g(i.))}
(f @g)u,y):l}}qgi{f (x+i,y+) )+g(i,j)}

g@g@---@g:ng

n—times

(feng)=((rog)0g Sg)
(feng)=((f@g)®g® - Dg)

11 November 2021 B. S. Daya Sagar 19



[llustrations w.r.t. B and ¢
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(X}
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(a)[194]168] 9 ] (b)[ 25 [ 81 [112

190 | 44 | 71 210 | 243 | 98

101 | 181 | 12 178 1 9 | 196

(a-b) Spatial fields.

(a) 194 [ 194 | 168 [(D)[ 168 9 | 9
194 | 190 | 71 4
190 | 181 | 181 101 | 12 | 12

\D

(C)[ 196 [195 [ 169 |(d) [44 [ B8] 7
195 | 194 | 181 39
191 | 190 | 182 44|11 |10

[®.a]

Fig. 3. (a) Dilation of a spatial field shown in 1(a) by flat B of size 3x3, (b)
Erosion of a spatial field shown in 1(a) by flat B of size 3x3, (c¢) Dilation of
a spatial field shown in 1(a) by non-flat B of size 3x3, (d) Erosion of a
spatial field shown in 1(a) by non-flat B of size 3x3.
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Graph-Morphological Operations

Figure 2: Non-structured elementary dilation of a binary graph.

Y
\ = structuring graph

Figure 17. Two different openings
gwen s-graph.

of a binary graph with respect to a

&«

"\ = stucturing graph
*

(a) Structuring graph : \_ S

=]

oo A T oA T

Figure 19: (a) Evample of an annular apening. () Some typical invari-
ants of the annular opening: note that every invarient is a
“union of translates” of the invariant at the left




Mathematical Morphological Operations

The mathematical morphological transformations useful to develop elegant

(I Iy Iy Iy Ny Ny By Ny By

algorithms to address the challenges in relation to Image Analysis and Spatial

Informatics include:

Morphological Erosion

Morphological Dilation

Morphological Opening

Morphological Closing

Multiscale Morphological Operations
Hit-or-Miss Transformation

Morphological Thinning, Thickening, Pruning
Geodesic Morphological Operations
Morphological Skeletonization

Skeletonization by Zones of Influence
Weighted Skeletonization by Zones of Influence
Granulometries and Anti-Granulometries
Morphological Distances

Hausdorff Dilation Distances

Hausdorff Erosion Distances

Morphological Interpolations and Extrapolations

The implementations of the aforementioned transformations in binary, grayscale, graph and geodesic domains

B. S. Daya Sagar 22
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Binary Skeletonization, Granulometries, Morphological
Interpolations, Morphological Distances

SK(X)
H(X/B)

d (X, X))
d(X’, Xy
e(X, X))
e(X/, XY
M(X, X7)
MA(XE XT)
H(X/B)

11 November 2021

UN_, SK,(X),where SK,(X)= (X ©nB)\(X ©nB) o B,
forn=012,... N

- i PninPn Where
min%:zo: Xic(X®nB)}
min{n: X'c(X’®&nB)}
min{n: X’'c(X'©nB)}
min{n: X'c(X’©nB)}

Un=o(((X'nX)) ®nB)n((X'uX7) ©nB))
NN_o(((XinX)) ®nB) U((XiuX)) OnB))
—YN_,P,InP,, where,

P, = % PS.(X/B) = A(XonB)\A(Xo(n + 1)B)

B. S. Daya Sagar 23



Grayscale Skeletonization, Granulometries,
Morphological Interpolations, Morphological Distances

SK(f) Vvn(SK,) , where, (SK,,) =
Vyn(f©OnB) — (fOnB)oB
H(f/B) —YN_, P,InP,, where,
P, =212, PS,(f/B) = A(fonB) — A(fo(n + 1)B)
M(f4 1)

\/((FrmenBya(rvnenB))
vn

R A (FrmenByvrvens)

vn
dCf, ) = df, £ min{n: AGFv 1) < A(Fnf)®OnB)
e(f', 1) = e(f, ) min{n: A(Fvf)OnB < AFAf))
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Mathematical Morphological Operations: Many
Application Domains

Morphological Operator

Application domain

Major references

Morphological Cartography. Hy- | Sagar et al (2000,
Skeletonization drology,  Geomor- | 2003), Soille
phology (2003)
Skeletonization by Zones of | Cartography,  Hy- | Beucher (1990),
Influence and Weighted | drology.,  Geomor- | Rajasckhara et al
Skeletonization by Zones of | phology (2012). Sagar
Influence (2014)
Granulometries and Anti- | Petrology, Geomor- | Serra (1982),
Granulometries phology, Hydrology | Sagar (2013). Tay
et al (2005, 2007),
Vardhan et al
(2013)
Morphological  Distances, | GISei, Limmnology. | Serra (1988),
Hausdorff Dilation (Ero- | Biogeography. Spa- | Sagar (2010,

sion) Distances

tial planning

2013), Sagar and
Lim (2015a.b)

Binary and Grayscale Mor- | Petrology,  GISci. | Serra (1982).
phological Erosion. Dila- | Geosciences, Re- | Sagar 2013).
tion. Opening. Closing. | mote sensing Brunet and Sills
Multiscale Morphological (2017), Beucher
Operations (1990, 1999)
Geodesic  Morphological | Remote sensing, | Lantuejoul
Operations GISe1,  Geography. | (1978),
Petrology Lantuejoul  and
Beucher (1981).
Sagar and Lim
(2008), Challa et
al (2017)
Hit-or-Miss Transformation | Geomorphology, Serra (1982). Tay
Hydrology et al (2005)

Morphological  Thinning,
Thickening. Pruning

Hydrology., Cartog-
raphy

Soille (2003).
Sagar (2013)

Morphological  Interpola-
tions and Extrapolations

Geophysies, Atmos-
phetic secience. Ge-
ology. Remote sens-
ing. Cartography

Sagar
Brunet
(2017).
Rajasekhara et al
(2012), Sagar
(2014), Sagar and
Lim (2015a.b)

(2010)
and Sills

11 November 2021

Watershed Transformation

Hydrology, Remote

sensing.  Mapping,
Borchole studies,
Seismic data pro-
cessing

Beucher and
Meyer (1992),
Rivest et al
(1992). Sagar
(2007)

B. S. Daya Sagar
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Overview

|. Digital Elevation Models (DEMS): An Important
Source Data for Geoscientists

II. Mathematical Morphology: Notations, Equations, and
Transformations

[11. Mathematical Morphology in DEMs

Skeletonization in DEMs and DEM Partitions

Granulometries: Surficial roughness characterization/ quantification
Geodesic Spectrum in Bottom Topography Studies

Morphological Interpolations: Morphing of Source DEM into Target DEM
Ranks for Pairs of Images; DEM Classification

Morphological distances in spatial optimization and interaction modeling

V. How the above studies could be integrated to better
understand the surficial process dynamics?
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[11.1.1. Ridge-Valley Network Extraction from
DEMSs: Skeletonization

Functions (DEMs, Satellite Images,
Microscopic Images etc)

Sets (Thresholded Elevation regions,
Binary images decomposed from
Images)

B. S. Daya Sagar, M. Venu and D. Srinivas, 2000, Morphological operators to extract channel networks from Digital Elevation Models, International
Journal of Remote Sensing. v. 21, no. 1, p. 21-30.

B. S. Daya Sagar, M. B. R. Murthy, C. Babu Rao and Baldev Raj, 2003, Morphological approach to extract ridge-valley connectivity networks from Digital
Elevation Models (DEMs), International Journal of Remote Sensing, V. 24, No. 3, 573 — 581.
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Binary morphology-based Grayscale-based network extraction—

network extraction is: more May not be accurate like binary-

stable. more accurate. and morphology based—generates network
’ ’ that yields disconnections some times,

computationally expensive : _
but computationally not expensive.

Decomposed basins and networks

B. S. Daya Sagar 29
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Networks : Binary Vs Grayscale

Binary Morphology Gray-scale Morphology
Binary morphology-based Grayscale-based network
network extraction is: extraction—
= more stable, = may not be accurate like
" more accurate, and binary-morphology based—
= computationally expensive " generates network that yields
disconnections some times,
but
= computationally not
expensive.
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111.1.11. Synthetic Fractal DEM and Unique Topological
Networks: Reconstruction from Skeleton

Fig. 2 Fluid FDN extracted from binary fractal basin

(b)

Fig. 4 A fractal landscape generated from Fig. 3. Light
and dark regions of DEM are visualized as high and low ele-
vations, respectively (vertical exaggeration: (a) 5 and (b) 7).

Fig. 3 A binary fractal basin after decomposition into

and (9), producing a transcendental DEM (Fig. 3)
TPRs.

from binary fractal (Fig. 1). The binary fractal

B. S. Daya Sagar and K S R Murthy, 2000,
Generation of fractal landscape using

nonlinear mathematical morphological
transformations, Fractals, v. 8, no. 3, p.267-
272.
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[11.1.11. Synthetic Landscapes: Simulated DEM

Five main steps involved in the simulation are:

Successive erosion frontlines are generated via (X©Bn) by increasing the size of
structuring element. Erosions are performed iteratively to generate erosion
frontlines within a binary fractal basin.

Smoothening of the erosion frontlines is achieved via (X& Bn)@%] B. Here, the
?i)lati(()jn combines the eroded version of the eroded binary basin achieved at step

1) and S.
Various orders of network subset ranging from n=0 to N are isolated from each
erosion frontline by subtracting the resultant information achieved in step (i)
from step (i).
TPRs are generated by dilating the resultant information, which is achieved at step
(iii) by Bn. This is an iterative procedure till the whole basin is converted into
TPRs. Each TPR is assigned a specific value assuming that the spatially
distributed TPRs are akin to spatially distributed elevation regions, and

Various orders of coded TPRs are combined to produce the simualted DEM. By
employing these sequential steps, a self-affine fractal DEM is generated.
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Overview

|. Digital Elevation Models (DEMS): An Important
Source Data for Geoscientists

II. Mathematical Morphology: Notations, Equations, and
Transformations

I11. Mathematical Morphology in DEMs

Skeletonization in DEMs and DEM Partitions

Granulometries: Surficial roughness characterization/ quantification
Geodesic Spectrum in Bottom Topography Studies

Morphological Interpolations: Morphing of Source DEM into Target DEM
Ranks for Pairs of Images; DEM Classification

Morphological distances in spatial optimization and interaction modeling

V. How the above studies could be integrated to better
understand the surficial process dynamics?

B. S. Daya Sagar 33
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[11.11. Mathematical Morphology in Quantitative Analysis

Scale Invariant but Shape-Dependent Measures

B. S. Daya Sagar and L. Chockalingam, 2004, Fractal dimension of non-network space of a catchment basin Geophysical Research Letters, v.31, no.12,
L12502.

L. Chockalingam and B. S. Daya Sagar, 2005, Morphometry of networks and non-network spaces, Journal of Geophysical Research-Solid Earth, v.
110, B08203, doi:10.1029/2005JB003641.

Roughness Characterization

Lea Tien Tay, B. S. Daya Sagar and Hean Teik Chuah, 2007, Granulometric analysis of basin-wise DEMs: a comparative study, International Journal
of Remote Sensing, 28, 15.

K. Nagajothi and B. S. Daya Sagar, Classification of Geophysical Basins Derived From SRTM and Cartosat DEMs via Directional Granulometries,
IEEE Journal on Selected Topics on Applied Earth Observation and Remote Sensing, v. 12, no. 12, p. 5259-5267, 2019.

11 November 2021 B. S. Daya Sagar 34



11 November 2021

B. S. Daya Sagar

35



Proposed Technigue

rStepl: Channel network is traced from topographic map.

[Stepz: Channel network is dilated and eroded iteratively until the entire basin is\
filled up with white space. This step is to generate catchment boundary
automatically. Dilation followed by erosion is called structural closing, which will

smoothen the image.
N J y

4 . . )
Step3: Generate the basin with channel network and non-network space with
boundary by subtracting the channel network from the catchment boundary
\achieved in Step2.

J
~Step4: Structural opening (erosion followed by dilation) is performed recursively®
In basin achieved in Step3 to fill the entire basin of non-network space with
varying size of octagons. y

Step5: Assign unique color for each size of octagons.

rStep6: Compute morphometry for the basin.

, Step: Noamputezshape dependent diBngnsi@rsagar 36




Algorithm Implementation:

Step 1: Channel network of sub basin 1

Step 2: Close-Hull Generation

BBABSH
5559
F

N
.l ‘ ‘ d

[terative dilation of channel network of basin 1

11 November 2021 B. S. Daya Sagar
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i

;E Step 3: Non- network space of basin
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(a) Appollonian Space, and (b) after decomposition by
means of octagon.

B. S. Daya Sagar



Morphometric parameter
computations achieved through

Dimensions derived from

morphometry of network

and non network space decomposition of non-network

t a yo | M%) 220K 1,
: R = 0041
_ b 264 {o | 500061
Basi | Network | LogRs/ | Rvs | Rvs | Avs te g et 4 e
n# | FD |LogRn| A N N || 8 | 220K 08 |
% b 16
1 | 183 | 193 | 1.34 | 206 | 150 E; I ‘/';"wf. |
14 1
2 | 08 | 163 | 133 | 123 | 159 ||3" L AT 054 /
Q4 )
3 0.98 141 1.02 1.87 1.80 4y e ' W 0 : J ) '
Log racllss of shucturhg clomnt {Badin 1) 1% 4 4 § 15
4 2.07 2.01 143 | 217 1.52
5 1.73 1.90 1.34 1.94 1.43
6 1.84 2.04 1.13 1.87 1.63 B. S. Daya Sagar and L. Chockalingam, 2004, Fractal dimension of non-network
space of a catchment basin Geophysical Research Letters, v.31, no.12, L12502.
L. Chockali d B. S. Daya S , 2005, Morph f ks and
! 133 161 1.23 2.08 1.70 non-n(e)fwgrw%?)r;cgg Journal (?12/ E(iBe((’;lgﬁ;/sical Resggﬁzh?gglﬁg I(E)ar?ﬁ,tv\\;?rllso?n
B08203, doi:10.1029/2005JB003641.
8 1.65 2.06 1.61 | 2.38 1.49
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[11.11.11. Roughness Characterization
(Granulometries)

Morphological multiscaling transformations are shown to be a potential tool in
deriving meaningful terrain roughness indexes.

Consider two different basins of two different physiographic setups (fluvial

and tidal) that possess similar topological quantities, i.e., their networks
may be topologically similar to each other. But the processes involved
therein may be highly contrasting due to their different physiographic
origins. Under such circumstances, the results that exhibit similarities iIn
terms of topological quantities and scaling exponents would be insufficient
to make an appropriate relationship with involved processes.

Therefore, granulometric approach 1is proposed to derive shape-size
complexity measures of basins. This approach is based on probability
distribution functions computed for both protrusions and intrusions (in other
words supremums and infimums) of various degrees of sub-basins.

This granulometry-based technique is tested on sub-basins with various sizes
and shapes decomposed from DEMSs of two distinct geomorphic regions.
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Granulometric Analysis

« Multi-scale opening till completely black

« Multi-scale closing till completely white

e Subtraction

* Probability function Ps:CnB=AlfeB)=(fBJli<n=K

PS,(+n,B)=Al(foB,)-(foB,,,)j0o<n<N
A(foB,)-A(foB,,)

. ps(n, f) = A(T0B,) ,n=012,...N
* Average size e ATB)ATeB
" A(feB)-A(feB) T
AS(f/B):ZN:nps(n,f)
» Average roughness H(1/8)=—>" ps(n, T )log ps(n, 1)
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Anti(Granulometric) Analysis

Multiscale opening/closing by rhombus ~ Multiscale opening/closing by square

» Scale 1, 40, 80, 120, 160 L1 » Scale 1, 20, 40, 60, 80 11

EEEE EERRE
DO B

Multiscale opening/closing by octagon

« Scale 1, 30, 60,90,120 o0

Basin Bacin Basin Basin Basin Basin Basin Basin Basin Basin Basin Basin Basin Basin Bacin Besin Bach Bsen Badn Baen Busin Besin Bvch Bssin Been Bagn Bsen Badn
12 3 4 5 € 1 8 % W 1 ou B ou 12 1

basin nubes basin e

Average size and Average roughness

4} sub-basins

11 November 2021 B. S. Daya Sa 42



Terrestrial Global and Directional
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Terrestrial Surface

Lea Tien Tay, B. S. Daya Sagar and Hean Teik Chuah, 2007,
Granulometric analysis of basin-wise DEMSs: a comparative
study, International Journal of Remote Sensing, 28, 15.

K. Nagajothi and B. S. Daya Sagar, Classification of
Geophysical Basins Derived From SRTM and Cartosat DEMs
via Directional Granulometries, IEEE Journal on Selected
Topics on Applied Earth Observation and Remote Sensing, V.
12, no. 12, p. 5259-5267, 2019.
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Lower-Indus basin shown in Fig. 1(a) after Lower-Indus subbasin subject to

multiscale opening by (a) 10 cycles, (b) multiscale openings by (a) B, (b) B?,
100 cycles, (c) 1000 cycles, and (d) 10000 (c) B3, and (d) B# after 100 cycles of
cycles. morphological opening.

©) (d) (c) (d)
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_ Behaviors of watersheds from Carto-1 DEM
Evolution of watershed-19 under recursive  ynder multiscale opening of (a) 3 by B, (b) f’
opening cycles with respect to B, B!, B% B®  py B2 (c) f by B3, and (d) 18 by B4, at the
and B* cycles 0,50,100,150 & 200.
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Normalized Granulometric Indices Carto-1 DEM. Categories : (1) 0-0.25, (2) 0.26-5.0, (3)
0.51-0.75, (4) 0.76-1.0.

- -~
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Granulometric Analysis : Basin wise analysis

The number of iterations required to make each sub-basin either become darker or brighter
depends on the size, shape, origin, orientation of considered primitive template used to perform
multiscale openings or closings, and also on the size of the basin and its physiographic
composition. More opening/closing cycles are needed when structuring element rhombus is used,
and it is followed by octagon and square.

Mean roughness indicates the shape-content of the basins. If the shape of SE is geometrically
similar to basin regions, the average roughness result possesses lower analytical values. If the
topography of basin is very different from the shape of SE, high roughness value is produced,
which indicates that the basin is rough relative to that SE. In general, all basins are rougher
relative to square shape as highest roughness indices are derived when square is used as SE.

A clear distinction is obvious between the Cameron and Petaling basins. Generally, roughness
values of Cameron basins are significantly higher than that of Petaling basins.

The terrain complexity measures derived granulometrically are scale-independent, but strictly
shape-dependent. The shape dependent complexity measures are sensitive to record the variations
in basin shape, topology, and geometric organisation of hillslopes.

Granulometric analysis of basin-wise DEMs is a helpful tool for defining roughness parameters
and other morphological/topological quantities.
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Overview

|. Digital Elevation Models (DEMS): An Important
Source Data for Geoscientists

Il. Mathematical Morphology: Notations, Equations, and
Transformations

1. Mathematical Morphology in DEMs

Skeletonization in DEMs and DEM Partitions

Granulometries: Surficial roughness characterization/ quantification
Geodesic Spectrum in Bottom Topography Studies

Morphological Interpolations: Morphing of Source DEM into Target DEM
Ranks for Pairs of Images; DEM Classification

Morphological distances in spatial optimization and interaction modeling

V. How the above studies could be integrated to better
understand the surficial process dynamics?
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[ Fig 5.4 Decomposition of synthetic tidal basin shown in Fig 1.5c¢ into sets, that consists of
‘} W/ channelized and nonchannelized regions. (a)-(i) sets representing channelized and
nonchannelized regions of which the mean elevations increase from S, to Sy. The sets
i designated with even- and odd-numbered indexes, represent the zones occupied by
\ channelized and nonchannelized regions respectively.
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Fig 5.5 (a) Flow fields with isotropic propagation, (b) isotropic flow fields, and orthogonality between the flow fields of

channelized and nonchannelized zones is obvious, and (c) flow fields within the tidal basin.
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Fig 5.5 Result of simulation at different time instances for Case 3.




(a) (b) (c)
Fig (a) 3D view of remote sensing data of Central San Francisco Bay, (b) bathymetry of Central San Francisco Bay, (c)
bathymetry of inset of (b).

@) (b)
Fig (a) 3D view of Santa Cruz, and (b) Digital elevation map of Santa Cruz.
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() (c)

Fig (a) Flow field simulated on Santa Cruz DEM by using octagon structuring element, (b) flow field simulated on San Francisco
Bay bathymetry by using octagon structuring element, and (c) flow field simulated on San Francisco Bay without considering
bathymetry.
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Overview

|. Digital Elevation Models (DEMS): An Important
Source Data for Geoscientists

Il. Mathematical Morphology: Notations, Equations, and
Transformations

11. Mathematical Morphology in DEMs
Skeletonization in DEMs and DEM Partitions
Granulometries: Surficial roughness characterization/ quantification
Geodesic Spectrum in Bottom Topography Studies
Morphological Interpolations: Morphing of Source DEM into Target DEM
Ranks for Pairs of Images; DEM Classification
Morphological distances in spatial optimization and interaction modeling

V. How the above studies could be integrated to better
understand the surficial process dynamics?
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[11.1V. Mathematical Morphological Interpolations:
Different Scenarios

B. S. Daya Sagar, 2010, Visualization of spatiotemporal behavior of discrete maps via generation of recursive median
elements, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 32, no. 2, p. 378-384.

B. S. Daya Sagar, and Lim, S. L.: Morphing of grayscale DEMs via morphological interpolations, IEEE Journal on Selected
Topics on Applied Earth Observation and Remote Sensing, 8, 11, 5190-5198, 2015.

B. S. Daya Sagar, and Lim, S. L.: Ranks for pairs of spatial fields via metric based on grayscale morphological distances,
IEEE Transactions on Image Processing, 24, 3, 908-918, 2015.

Aditya Challa, Sravan Danda, B. S. Daya Sagar, and Laurent Najman, Some Properties of Interpolations Using Mathematical
Morphology, IEEE Transactions on Image Processing, 27, 4, 2038-2048, 2018.

Watersheds, SKI1Z & WSKIZ

B. S. Daya Sagar, Universal scaling laws in surface water bodies and their zones of influence, Water Resources Research, v. 43,
no. 2, W02416, 2007.

K. Nagajothi, H. M. Rajashekara, and B. S. Daya Sagar, 2021, Universal Fractal Scaling Laws for Surface Water Bodies and
Their Zones of Influence, IEEE Geoscience and Remote Sensing Letters, (In Press), 10.1109/LGRS.2020.2988119

Rajashekara, H. M., Vardhan, P., and B. S. Daya Sagar, Generation of zonal map from point data via weighted skeletonization
by influence zone, IEEE Geoscience and Remote Sensing Letters, 9, 3, 403-407, 2012.

B. S. Daya Sagar, Cartograms via mathematical morphology, Information Visualization, 13, 1, 42-48, 2014.
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Grayscale Morphological Interpolations

. . 3.2. Algorithm for Hnrphol-ogical median
1 J)_; i 27\ _ i i J Step 1. Consider f' and f’as the tw tial fields be-
(f VAN f ) - mf(f 9f ) =min {f (xa y)af (x9 y)} ' t:gen which ﬂlefma:rpl{c;l:;mal me 31:11Paneed.ez ::: I:e
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(ST )= sup (£ ) = max (£ (e 9 ()} et o e i

size specifications.
Step 3. Compute the f )m§ vfl
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Morphological Interpolations via Numerical Illustrations

(a)[192]168] 9 | (b)[25 [ 81 [112 (a)[ 25 [81] 9 |(b)[194] 168112
190 | 44 | 71 210 | 243 | 98 190 144 | 71 210 | 243 | 98
101 | 181 | 12 178 | 9 | 196 101 | 9 | 12 178 | 181 | 196
Fig. 1. (a-b) Spatial fields. Fig. 4. (a) infima and (b) suprema of two spatial fields shown in figure la
and 1b.
- 191 [ 190 | 82 |(b)[ 167 [ 98 [ 97 | ()| 167 [ 98 | &2
(a) [190] 81 [81](b) [168 112 ] 68 |(¢)[ 168 [ 81 81 (@) 193 | 191 31( )'Jriﬂ 57 | 96 ( }‘ 168 |97 | 81
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(d)[mor [ [90](e) |98 ]9 |97 ] () [e8]9s]o7 193 [ 192 | 191 97 [ 96 [ 95 97 [ 96 | 95
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(j) [2e8 98 98 11*_': zz 33'
178 98 | 98 i | o | S
178 | 101 | 8 Fig. 6. Generation of morphological medians generated by non-flat structur-

mg element, between the two spatial fields shovwn m figure 1a and 1b. (a)

Fig. 5. Generation of morphological medians generated by flat structuring dilation of mfima shown m figure 4a, (b) erosion of suprema shown in

element, between the two spatial fields shown in figure la and 1b. (a) dila- figure 4b by 3x3 nen-flat { g) . () infima between figure 6a and 6b, (d)

tion of infima shown in figure 4a, (b) erosion of suprema shown in figure . ) ) s .

4b by 3x3 flat B, (c) infima between figure Sa and Sb, (d) dilation of infima dilation of mfima shown m figure 4a by 5x5 non-flat {g) , () erosion of

shown in figure 4a‘by 5x5 flat B, (e) erosion of suprema sh_owr_l n ﬁg_ure 4b suprema shewn in figure 4b by 5x3 non-flat (g) . (f) infima between

by 5x5 flat B, (f) infima between figure 5d and Se, (g) dilation of infima figure 6d and e, () dilation of infima shown in figure 4a by 7x7 non-flat

shown in figure 4a by 7x7 flat B, (h) erosion of suprema shown in figure 4b B ) - : i
(g) . (h} erosion of suprema shown m figure £b by 7x7 non-flat (gj i)

by 7x7 flat B, (i) infima between figure 5g and 5h, and (j) suprema of fig- . _ -
ures 5c, 5f, and 5i is considered as a morphological median between the two infima betwesn figure 6z and 6k, and (j) suprema of figures 6c, 6f and Giis
considered as & morphelogical median between the two spatal fields (Fig.

spatial fields (Fig. la and 1b), M(f, /). T2 2nd 15, M(7. )
a and 1b), M(f', 1.

11 November 2021 B. S. Daya Sagar 60



Morphological Interpolation: Earth
Surface Transformation

Hierarchical Morphological
Interpolation between landscape
functions, say, f, and f,c

fl f256

f128
1:64 1:192

f32 f96 f160 f224
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Source and Target DEMs MORPHOLOGICAL MEDIANS
(a) (b) & I8

Morphing via Flat and a Non-Flat
Structuring Elements

§|“HMIIHHH|.ll|nun“

lllllllllllllllllllllllllllllll

11 November 2021 B. S. Daya Sagar 62



Morphing: Flat Vs Non-Flat

25 4

B Number of iterations taken by flat structuring element
B Number of iterations taken by non-flat structuring element

20
15 1

10 4

Number of iterations taken by flat and non-flat structuring elements

1224444888888 8 8161616161616161616161616161616163232323232323232323232323232323232323232323232323232323232323232

Six levels of morphological medians
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Watersheds (Zones of Influence) and Powerlaws

-
" W

z(4)=UJ(s" (4)n4) (™ (4)N4)

_ c
z(4)=|U(z(4))|

> <>

cay o> «

oo o> cor

Fig. S1. (a) original map with three points (shown with 1s) for (4 ). (4 ). and (4 ). @) ™ point (4)=(4) . (<) umion

(4).®
4) and

() smmlarly for mext sterasom: 579 (4)JsT3(4). @

le of dilation of i point (4)by B with the propagation speed of i-2. &7 (4). (2) unon of &

L@ ST

U

4B U (4. © Z(4)-Uf s> (41 s ) Us

(m) similarly follow the staps from (b-D by

chanzing the 7 point from (4)to (4,), and by weatinz (4)and (4,) as i points; the Z(.4)is obtmined (u) obmined

Z(4,),and (o) three zomes Z(4). Zi4),snd Z(4) are shown with 1s. 25, and 33
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11 November 2021

(<) {d)
Fiz. 4. ml 34 points (locations) of ramn-gauge stations ~pread over India
ulde\ed (A: — Asg). (b) Rainfall zonal map Geu-ﬁrﬂted by having various
possible propagation speeds, and the variable strengths in terms of propaga-
tion speeds are given according to ranks shown in Table 1. (¢) broader
zones obtained after merging the zones (Fig. 4b) obtained with similar
propagation speeds. and (d) knged map generated for 34 gauge station data.

B. S. Daya Sagar
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States as Basins, MSPs, SKI1Z, WSKIZ & Cartograms

cz(4;) = |J (6 (AC)FTA)\U(SP (4) na) l g, (
C

i nsidersd is south India, and (b) gauge-station locations
fff"@r(/w ﬂﬂ
" |
= (a) (b) © (d)
Fig. 3. The vanable strengths (in terms of propagation speeds are given as
@4y, = Ay >4 > 4. b) A4 4 4 Ay (c)

‘{] = "13 = ;f: >4, and (d) _-_{1 = _-1_‘ = _-_{3 > ;.
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Overview

|. Digital Elevation Models (DEMS): An Important
Source Data for Geoscientists

Il. Mathematical Morphology: Notations, Equations, and
Transformations

11. Mathematical Morphology in DEMs
Skeletonization in DEMs and DEM Partitions
Granulometries: Surficial roughness characterization/ quantification
Geodesic Spectrum in Bottom Topography Studies
Morphological Interpolations: Morphing of Source DEM into Target DEM
Ranks for Pairs of Images; DEM Classification
Morphological distances in spatial optimization and interaction modeling

V. How the above studies could be integrated to better
understand the surficial process dynamics?

67
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[11.V. Mathematical Morphology in Classification

I. Morphology in classification
I1. Grouping of remotely sensed satellite data via rankings for pairs

Morphology in Classification

Jon Atli Benediktsson, Jon Aevar Palmason, and Johannes R. Sveinsson, Classification of Hyperspectral Data From Urban
Areas Based on Extended Morphological Profiles, IEEE Transaction on Geoscience and Remote Sensing, v. 43, no. 3, p. 48-
491, 2005.

Aditya Challa, Sravan Danda, B. S. Daya Sagar, and Laurent Najman, 2021, Triplet-Watershed for Hyperspectral Image
Classification, IEEE Transactions on Geoscience and Remote Sensing, (In Press). DOI: 10.1109/TGRS.2021.3113721

Grouping of Remotely Sensed Satellite Data via Rankings for Pairs

B. S. Daya Sagar and Lim Sin Liang, 2015, Ranks for pairs of spatial fields via metric based on grayscale morphological
distances, IEEE Transactions on Image Processing, v. 24, no. 3, p. 908-918, (DOI:10.1109/T1P.2015.2390135).
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EQUATIONS

d (f"'* fﬂ") =min {n A (ff Vv ff) < A ((f" A ff') . E'IB)}

(6)

e (‘f"* ff') —=min {H. A ((ff v f'j) = ”B) <A (ff 4 ‘fj)}

d*(f'. ') = l'nin{n ((q (f'~f7)@nB) )

=(A(f'AfI)® (n+1)B)

<A(riv fj)} (8)
et (f"', f‘j) _ min{n (({ (ff vV f‘f) o HB) )

=(A(f'v f/)em+1)B)
&L A (_ff A f-f")} 9)
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[11.V.1. Ranks for Pairs of Images: DEM

Classification
EQUATIONS

R, = (A (/' A ff'))(min (e (1 17) (", ff'))),

A(fiv i) J\max (e (f7. f1),d (f, f7))
(22)
CAIALY)  APALY) e AN AT drtrt)y d(rrrt) e d(Norh) ]
A(FP AP APALY) o A(FY AP d(rlor?) d(r?r?) - d ()

. . . _ (14) : : ) : (17)
LA(F ANy A(PPAFYY o AN AFY) d(flof)y d(fPo Ny e d (Vo) |
—A(fl\/fl) A(fzv_fl} A(fNVfl)— e(fl,fl) e(fz,fl) L’(fN,fl)‘
A(fPviry) APV o ANV e(fl ) e o ey

. . . . (15) ) ‘ _ (18)
LAY ARV ) Al ] | (PN () el

Rfl’fl Rfl’fl RfN’fl

R R ... R

ff,fz f%,fz N f2 23)
Rfl.,fN sz.,fN Rff\;’fN

From (23), one can rank the pair of spatial fields from most
similar to the most dissimilar as (24).

[ (Ri ) 24
Bifi fi n}ft_‘x{mjﬂx Fifi } (24)
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PROPERTIES

This ranking index satisfies the following conditions:

1) This ranking equation (24) provides symmetric results

such that when designating the rank to a pair

(f" and f/), exchanging the order of the spatial fields
as f/ and f' should not "-lffeCT the results.

2) Boundedness: R fifi = [, such that the upper bound
serves as an indication of how the f* and f/ are being
perfectly identical.

3) Unique Maximum: Ryipj =1 < f' = f/. The perfect
score 1s achieved if and only if the f' and f/ being
compared are identical.

11 November 2021 B. S. Daya Sagar
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Histogram Equalized Spatial Fields

50 100, 150, 200. 250

USG SRTM Data | Segmentation into 4 equal halves

----

1 0.442 0.493 0.419
F12 0.442 1 0.329 0.150
F13 0.493 0.329 1 0.468
F14 0.419 0.150 0.468 1
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DIGITAL ELEVATION
MODELS

® ()

(a) d) (o)

Fig. 7. (a) Digital Elevation Model of size 256256 pixels depicting Mount
St Helens, (b-e) four quadrants of size 128x128 pixels partitioned from

DEM (Fig. 7a) include top-left ( f‘). top-right ( fl). bottom-left ( f3). and
bottom-right ( f“) portions.
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BEST-PAIRS OF DEMSs

SIMILARITY INDEXES COMPUTED FOR ALL POSSIELE
PAIRS OF SPATIAL ELEVATION FIELDS

(b)

T VA VR
I3 1 08514 | 06305 | 05694
F n8s14 | 1 0.5456 | 0.6120
F 06505 | 0.5456 | 1 0.6505
i 05694 [ 06120 | 06305 | 1

(c)

Fig. 8. Three best ranked pairs of spatial elevation fields shown in Fig. 7b-e
(@ (f',fz). (b) (f', fﬂ). and () (f3, f“).
11 novemoer cuczt

B. S. Daya Sagar
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Overview

|. Digital Elevation Models (DEMS): An Important
Source Data for Geoscientists

Il. Mathematical Morphology: Notations, Equations, and
Transformations

1. Mathematical Morphology in DEMs
Skeletonization in DEMs and DEM Partitions
Granulometries: Surficial roughness characterization/ quantification
Geodesic Spectrum in Bottom Topography Studies
Morphological Interpolations: Morphing of Source DEM into Target DEM
Ranks for Pairs of Images; DEM Classification
Morphological distances in spatial optimization and interaction modeling

V. How the above studies could be integrated to better
understand the surficial process dynamics?
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III.VI. Quantitative Spatial Resoning

Strategic Set Identification

e Spatial Entities (e.g.: water bodies, zones of
influence, geomorphic basins, and urban
features of the specific thematic maps) can
be well identified/ mapped from Digital
Elevation Models generated from high
resolution remotely sensed data.

e Understanding the organization of these
spatial entities is an important aspect from
the point of ‘Spatial Reasoning’.
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Spatially Significant Zones

e Spatially Significant Zone (SSZ) can be defined
as “a zone from which it is easy to reach all
of its neighbouring zones”.

e Cluster of spatial entities (zones) can be
treated as a ‘Spatial System’ (e.g.:
Geomorphological basin (cluster of sub-
basins) consists of sub-basins (zones), and
sub-basins consist of still minor sub-basins,
and so on).
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Spatial System - SSZ

O
A AS A 5 A B A P A N
1=l
As
Ag A7 I
As Ao
A
10 “
Fig: A 2-D representation of a
spatial system with 10 zones. N N
11 (4;©B)N L S[i O e N4 |2
J= J=
For a geometric basin (Ai), if Al is e )\
considered as an origin zone, relations 1| & Il
then all the other zones (A2-A10) water  bodies, nodes,
. . point-specific data
are treated as destination zones. = Relation I
cluster
are in contiguous form
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Iterative Dilation Distances

Let non-empty, disjoint compact zones Ai and Aj
be the original and destination zones. (Ai < Aj)

® The distance from Ai to Aj
o

represented by:

d(A-) mm(n:A- g(A-@nB)) f = == ‘
© ditonce botween \ 1 ]”
® The distance between Aj and =g -

Ai represented by:

d(AU) mm(n Aic(a eanB)) __

Iij

The following conditions will be satisfied, iff both
‘A’ & ‘Aj’ possess identical size, shape & orientation.

d(;)=d(a;) __
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SSI & NSSI of a Zone

e Normalized Spatial Significance Index (NSSI)
that ranges between 0 and 1 takes form of:

S [l ()
S0 = miny; (dmax (Aij))

ol (4
e |f the zones of a cluster are identical, then:

]nln_, (”‘]Tll‘(( !)) ll'lll]x_j((fmﬂ(;fl” ))
e |fthe zones of a cluster are dissimilar, then:

min; (dmm( ”n “’“”%—; ("-'fnm'{(A;r ))
e When aII the zones in a cluster are similar both

in terms of size & shape, the following
relationship holds good. | min{dmax(4)) [@;‘(‘fmax(f‘ﬁ))

“;??‘(d max(Azj)) : “??‘(d max(Aji ))
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SSI-Cluster of Zones of Water Body Influence

18997

(@) ; (b)
:‘m :‘:_‘ l/\/
e Ty g: RNV
a. LISS-1ll input image, b. 66 extracted
. TABLE . S810F TOP FIVE WATER BODIES AND ZONES
water bodies from RS data, c.
. . Raw | water | DhDist | zowe | D- | wsspo | Nssi
Corresponding Zones of influence, water ¢ | Booy(W) o |os| w | @
bodies. d. Water bodies and zones with LABEL LABEL | ‘
' | 35 53 [ oL 04 |04
D) . 2% cm B EREEE RSN
. 0 6 7 7 3 L 59 | 5T 0 |05l
X 5 0 4 5 4 49 fl L 60| 05 |0
X 750 7 5 46 2 4 | 62 | 056 | 056
axXy) 7 6 7
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Dilation-Distance Based Directional Spatial
Relationship and Orientation Detection: Animation

object. 3. with ongin. G dilation: 44

11 November 2021 B. S. Daya Sagar
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Spatial Interactions
EQUATIONS: SPATIAL INTERACTION

max(d (X )

Y mX mX
G

- = = J
N ux; =2 FX = J (ox;) = - ;
p=! i 2 e
o dX max max{d(/&g ])
j# i A7 A
X, X, Xy 1
X, d(Xxy,) d(Xn) d(Xy,) d y
d(X,)=| X, d(X,) d(X,) - d(x,,)| © o % B D
: : : . : 0 6 7 7)
Xy d(Xm') d(XZN) d(XW) 5 0 4 3
[ oX, X, o= X, | 7 5 0 7
) oY, (eXpX)) (pXeX) - (pXpX)) (10)
(pX0X,)=| 0¥, (pXoX.) (pXpXs) - (pXupy) 76 7
7?-‘{3; (?’X1@X:\‘ ) ((D-Yz‘-’p/‘:ﬁ; ] e (@X_.\-'wX_v ]7
[ mX, mX, mX,
mX, (mXmX)) (mXmX) - (mXmX)| (1)
(mXmX )= mX, (mX¥mX,) (mX¥mX,) - (mXmX,)
: : : . : 2
mXy (mXpmXy) (m¥.emXy) - (m¥ymX,) (d (XU )) (@XI @X} )

Level of interaction matrix is
X X,

X, FlX)=—
(d(a

FE)-{ X Pl

X, F(X,

(mEmY,)

F(x.

w )= T a0 )= — T L
Sl erex,) T () (eXe,
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BEST PAIRS: FORCE OF
INTERACTIONS

BY, = max lZF(Y)ZFU( } {m ZF(‘L | |ZFU{)\]

1.13)

max(F(XU))) (14a)

BXﬁ = max(

BX = max(m_a}x(F(Xﬁ)))

7

z| ZFx; = L. (16)
U™ sl slove )
i X b pXi0X

~.[]
~M
R
Pt

|

(17)

i i ﬂ B 2
v(de) “(Q’XJQ’X)
7 "B.S'Ddya Sagar 84

Z mX j mX . ; }
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Variable-Specific Classification of Zones, Pairs of Zones, and
Clusters of a Spatial System via Modified Gravity Model

Figure 5. India map with each state designated with a ranlk with respect to

'
four different parameters. (a) @2.X,. (b) nmx‘ S Fx, ] ()
U ] ’

““}N( > Fx, J and (d) ax [ 111;;1)([ > FX, ] 111,§1x( > FX, j }
T I b [

2, p. 230-241, 2019.

Figure 1 (a) Asian continent--Spatial system. (b) India-a cluster of the spa-
tial system shown in (a), and (c) States of India-zones of the cluster shown
in (b), which is a map of India (cluster of a spatial system) with 28 states
(zones)—indexed according to alphabetical order—Andhra Pradesh (X)),
Arunachal Pradesh (X;), Assam (X;), Bihar (X,), Chhattisgath (Xs), Goa
(Xs), Gujarat (X5), Haryana (Xs), Himachal Pradesh (X;), Jammu & Kash-
mir (X,,), Jarkhand (X,;). Karnataka (X,,), Kerala (X;;), Madhya Pradesh
(X14), Maharashtra (X;5), Manipur (X;s). Meghalaya (X;7), Mizoram (X;3),
Nagaland (Xj5). Orissa (Xs), Punjab (X5;), Rajasthan (Xs,), Sikkim (Xos).
Tamilnadu (Xo4), Tripura (Xos), Uttarapradesh (Xos), Uttarakhand (Xo7),
West Bengal (Xag).

. . . . X,
Figure 6. Five best pairs exhibited the high levels of interactions (a) ~ %7,

Xz 27, (d) Xia >, and (e) 120 Five pairs exhibited the

XG.QS X2:'\,6

least levels of interactions (1) . (2)

(b) )(14,35_ (<)

6.19

ey e

: 23.6 - - - . . - .

. and (3) . Animation of the 756 successive interacting pairs
can be seen at  http://www.isibang.ac.in/~bsdsagar/MGM-Spatial-
Interaction.avi.

6.23

B. S. Daya Sagar, Variable-Specific classification of zones, pairs of zones, and clusters of a spatial
system via modified gravity model, IEEE Transactions on Emerging Topics in Computing, v.7, no.
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Digital Elevation Model (DEM) is an Engineering
Marvel: An important source of data for geoscientists

"Mathematical Morphology is an area of
geoscience that most people don’t realize will
literally change the way they look at Earth!"

Mathematical Morphology: A
Robust Mathematical Theory That
Needs More Attention By Geoscience
and Remote Sensing Communities
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My Lectures on YouTube

MM in Spatial Geodata Sciences

Binary Morphology

Binary and Grayscale Morphology
Grayscale MM, SKIZ, Interpolations
Interpolation and Cartogarms

Binary Granulometries

Directional and Grayscale Granulometries
Fractals and MSD

Morphological Distances

Morphing and Morphological Interpolations
Grayscale Morphological Interpolations

©oONO O~ WN P

o
= o
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Call for Papers

http://www.grss-ieee.org/wp-content/uploads/2019/11/Call_for_Paper MMRSG.pdf

CALL FOR PAPERS

IEEFE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
Special Issue on “Mathematical Morphology in Remote Sensing and Geozcience”

H il i 1 hology was the first -linear image analysis theory, which from the

wvery start included not only theorefical results but also many practical aspects. Mathematical morphology is

capable of handling the most varied image types. in 2 way that 15 often subtle yet efficient. It can also be wsed to

process general graphs, suwrfaces, mmpleit and explot vohmmes, mamfolds, nmemspec(nl seres, mbudl
and

determiniztic and stochastic contexts. In the last five years, d signal

operators have emerged as tools for segmentation :nd ﬁlmmg leading fo extremely versatle techmaues for

.o]\.mgpmblem..ma\mnen ofd.omnmm Tudi science and mage and siznal analysis
hol m and analysis of emotely sensed spatial

dau :oqumed:r Ii-spatial-spectral-temporal scales and by-products such as Digital Elevation Model (DEM}
and themane mformation m map forms has shown 1gm.ﬂcant suecess m the last two decades. From data
aoquisition to the level of making theme-specific predictions, there exists several phases that melnde feature

setrieval), inf 1y ization, mf: £. spatio-temporal

delling and visaal } bes/ ka/achemes/ algorithms are available to
address information retrieval when mmpm to those :lpprnachm svailsble to address the r2st of the topics. With
the availability of data across various =p besides inf other
topies like pattern retrieval, patmn :mahm, m:m:ul rEz:.nnmg and somulation and modeling of spatiotemporal
behaviors of several lxo need tobe given emphasis. This malmmmm
to bring hizh quality papers on theory and lications of v and scaling theories in

ddressing T ined topics.

The broad topics include (but are not limited to):

# Theory and applications of classical and modern mathematical morphelogy

* Mathematical morphology in color spaces

+ Advancesin ﬁltenn; and segmentation and applications in remotely sensed data processing and analysis.

# Feature-based classification and cl £

* Morphelogical newral networks

* Stochastic peometry for deep leamng

. helogy m pattam remeval mesu\al panem analysis, quanttative spanal

e delling simul and and 1

. hol m g and amtv‘sl_. of Dhaztal H.E\mModeL. (DEM:)

. Apphcaunn_. efdmc:ll andmodam hology: Hy mage analysis; 3 -D DbJecx
refmeval Image T texture b hical image

supespositions; cartographic images with emphasis on 1emote sensing, geoscience and information mining

Schedule
October 1, 2020 Subs ion system opening
March 31,2021 Submission system closing

Format
All submissions will be peer reviewed according to the IEEE Geoscience and Remote Sensing Society guidelines.
Submitted articles should not have been publiched or be under review elsewhere. Submit your manuseript on

_chould comsult  the  site

" ] Y i g s and information on paper
b All submissions mmast be usmgtheIEEE standard format {deuble column, single spaced).
Please visit hitp.//www ieee org/publications standardspublications'authors/author_templates himl to download
a template for ransactions. Please note that as of Jan. 1, 2020, IEEE J-STARS will become 2 fully open-aceess
journal charging a flat publication fee $1,230 per paper.

Guest Editors

B. 5. Daya Sagar Indian Stanistical Institute — Bangalore Centre, India (bsdsagari@isibang ac.in)

Jom Atli Benediktzson University of Iceland, Ieeland (benediktiahi is)

Lorenzo Bruzzone  University of Trento, Italy (lorenzo bruzzone @amitn i)

Jocelyn Chamussot  Grenoble Institute of Technology, France (jocelyn lgipsa-lab. ble-inp. fr)
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A Quick Recap...

 Essential ingredients to develop any model that
leads to behavioral predictions are:

— Retrieval of information
— Quantitative information analysis
— Quantitative information reasoning

— Simulation and modeling of spatio-temporal
behavior (attractor construction!)
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Overview

|. Digital Elevation Models (DEMS): An Important
Source Data for Geoscientists

Il. Mathematical Morphology: Notations, Equations, and
Transformations

1. Mathematical Morphology in DEMs
Skeletonization in DEMs and DEM Partitions
Granulometries: Surficial roughness characterization/ quantification
Geodesic Spectrum in Bottom Topography Studies
Morphological Interpolations: Morphing of Source DEM into Target DEM
Ranks for Pairs of Images; DEM Classification
Morphological distances in spatial optimization and interaction modeling

V. How the above studies could be integrated to better
understand the surficial process dynamics?
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What Is the use of these studies?

 With all these algorithms developed and/or
developed to derive geometrically and
topologically relevant information, can we make
use of this information gathered across time
Instances to better understand (1) spatiotemporal
behavior of terrestrial  phenomena and (ii)
dynamical behavior of terrestrial processes? This
would be an Open challenge.
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Attractors 1n Predictions

« Data and Information retrieved corresponding to systems with
simple behaviors can be represented in the form of simple
attractors

« Data and Information retrieved corresponding to systems with
strange behaviors can be represented in the form of strange
attractors

« Simple Attractors possess low dimensionality, whereas Strange
Attractors possess high dimensionality

« The predicting predictability of the systems with low
dimensional attractors is rather straightforward.

« The predicting predictability of the systems with high
dimensional attractors is complex.
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BIG Question(s)

« Do we have information thus retrieved precisely from
DATA (whether Small or Big) that leads to construction of
system-specific attractor?

 How big is the data that we require to construct such an
attractor? An ad hoc answer is another question: What is
the system that we are targeting?

e (Can we categorize the systems as ‘soft’ and ‘hard’.
 Soft — simple attractor — prediction possible

« Hard — strange attractor — prediction (locally) is
possible
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Examples of Attractors: Toy Models
Numerical Data Blehavior ke 4‘
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(b)A=3.0
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Behavior of Sand Dunes

(a) Initial sand dune profile
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But too many questions on
DATA...

What is the noise sensitivity on the final results?

Noise the component that does not contribute anything to the process of accurate
predictions

Noise misleads the accurate prediction process.
How to detect the noise?
How to make the data noise-free?

A crude definition of ‘noise’ is the component that does not have any relationship
with the main components. How to make the distinction between the noise-
component and the main-component?

Scalability of data—’Small is Beautiful”

How to scale the data to the smallest possible such that it does not affect the
results?

More and more data is getting aded. What is its impact on the final predictions?
How stable are the predictions made across spatial and/or temporal scales?
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Open Challenge

« Can we  construct  system-specific
attractor(s) with all these ingredients?

« Addressing such a challenge may provide
rich clues and insights In our strides and
struggle to make precise predictions!

« “At the end this Is not a job of one person.
A great team work with excellent
coordination Is required”’.
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Q&A
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