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Science Out of DEMs

Spatial Data

What does it 

have?

Relevant 

Mathematics

Science out of 

spatial data and 

spatial 

information

 Digital Elevation Model (DEM) is an Engineering 

Marvel: An important source of data for geoscientists

 DEMs (f(x,y))are with rich but hidden geometric,

morphologic, and topologic (GMT) quantities (X) and

the associated parameters.

 Having expertise in mathematical morphology and

fractal geometry would be a huge advantage to unravel

GMT quantities and associated parameters

 Studying DEMs, GMT quantities and associated

parameters across space-time scales facilitate

researchers derive important science-outcomes to

develop models through which one can better

understand the dynamical behaviors of several

terrestrial phenomena and processes of the Earth planet

and Earth-like extra-terrestrial planets
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Geometric, Morphologic, and Topologic (GMT) quantities 

include peaks, pits, global and local minima and maxima, 

contours, crenulations, unique valley and ridge connectivity 

networks, topographic depressions, flat regions, mountain 

objects. Associated parameters include width function 

determination; roughness estimation; directional roughness 

estimation; structural and textural complexity; basin 

geodesics; basin-stage classification; feature mapping; 

quantitative characterization and reasoning; modelling, 

simulation and visualization
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Why & What
To understand the dynamical behavior of surficial process, a
good spatiotemporal model is essential. To develop such a
model, well-analyzed and well-reasoned information that
could be retrieved from spatial and/or temporal data are
important required ingredients.

Mathematical Morphology is one of the better choices to deal
with all these key aspects mentioned.

"Mathematical Morphology is an area of geoscience 

that most people don’t realize will literally change the 

way they look at Earth!“
In Mathematical Morphology, Data (f(x,y)) is investigated with respect to another 

data (B or g, a probing rule with certain characteristic information) to address tasks 

such as retrieval, characterization, reasoning, modeling and simulation, and 

visualization.
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This Lecture

• Digital Elevation Model (DEM) is an important

source data for those who study Earth surface.

• Processing and analysis of the DEMs: Five cases

studied with respect to

– Skeletonization, SKIZ and WSKIZ

– Granulometries

– Geodesic spectrum

– Morphological interpolations

– Morphological distances
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In One Slide
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Overview
I. Digital Elevation Models (DEMs): An Important 

Source Data for Geoscientists

II. Mathematical Morphology: Notations, Equations, and 

Transformations

III. Mathematical Morphology in DEMs
Skeletonization in DEMs and DEM Partitions

Granulometries: Surficial roughness characterization/ quantification

Geodesic Spectrum in Bottom Topography Studies

Morphological Interpolations: Morphing of Source DEM into Target DEM

Ranks for Pairs of Images; DEM Classification

Morphological distances in spatial optimization and interaction modeling 

IV. How the above studies could be integrated to better

understand the surficial process dynamics?
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Terrestrial and Earth-Like planetary DEMs
Synthetic DEMs
ASTER GDEM, 
NASA DEM, 
SRTM DEM, 
Cartosat DEM, 
SPOT Stereo DEM, 
Chandrayaan DEM, 
OHRC DEM, 
Mars DEM, 
Venus DEM, 
LiDar DEM,
NEXTMap, and many more
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Mathematical Morphology in DEMs

Retrieval

Analysis 

Reasoning

Modelling
and 

Visualization
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Digital Elevation Models

11 November 2021

1.Fractal-Hortonian-DEM

2. TOPSAR DEMs

3. Cartosat-DEM

4. SRTM-DEM

5. Bathymetric SF-Bay

6. CartoSat DEM
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Overview
I. Digital Elevation Models (DEMs): An Important 

Source Data for Geoscientists

II. Mathematical Morphology: Notations, Equations, and 

Transformations

III. Mathematical Morphology in DEMs
Skeletonization in DEMs and DEM Partitions

Granulometries: Surficial roughness characterization/ quantification

Geodesic Spectrum in Bottom Topography Studies

Morphological Interpolations: Morphing of Source DEM into Target DEM

Ranks for Pairs of Images; DEM Classification

Morphological distances in spatial optimization and interaction modeling 

IV. How the above studies could be integrated to

better understand the surficial process dynamics?
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FOUNDING  FATHERS OF 

MATHEMATICAL MORPHOLOGY
Georges Matheron Jean Serra

Binary Mathematical Morphology

Grayscale Morphology

Graph Mathematical Morphology

Adaptive Mathematical Morphology

II. Mathematical Morphology
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Basic Notations of Mathematical Morphology

Notation

X, M, B Spatial objects, Sets (e.g.: GMT Quantities)

f(x,y) Spatial elevations over x and y spatial coordinates (e.g.: 

DEM or any other spatial function)

A(f) Area of spatial function is sum of all the values over x,y

B and g Flat structuring element and a non-flat structuring function

ith and jth spatial functions

, , ,  Symbols for dilation, erosion, closing and opening
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Notations Contd…
Notation

Morphological binary erosion, dilation, opening 

and closing of X with respect to B

Multiscale Morphological binary erosion, 

dilation, opening and closing of X w.r.t B

Morphological grayscale erosion, dilation, 

opening and closing of f with respect to B

Multiscale Morphological grayscale erosion, 

dilation, opening and closing of X w.r.t B

nth size B
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Binary and Grayscale Morphological 

Equations
Operation Equation

X  B ((X  B)  B))

(X  B) ((X  B)  B))

(X  nB) (X  B)  B  …  B 

(X  nB) (X  B)  B  …  B

(X  nB) [(XnB)nB)]

(X  nB) [(X  nB) nB)]

(X  nB)  nB Alternative Sequential 

Filter Black

(X  nB)  nB Alternative Sequential 

Filter White

Operation Equation

(f  B) ((f  B)  B))

(f  B) ((f  B)  B))

(f  nB) (f  B)  B  …  B 

(f  nB) (f  B)  B  …  B

(f  nB) [(f  nB)  nB)]

(f  nB) [(f  nB) nB)]

(f  nB)  nB Alternative Sequential Filter 

Black

(f  nB)  nB Alternative Sequential Filter 

White
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Flat and Non-Flat Structuring Elements

18B. S. Daya Sagar11 November 2021



Grayscale Morphological Operations w.r.t 

Non-Flat Structuring Element (g)
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Illustrations w.r.t. B and g
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Graph-Morphological Operations



Mathematical Morphological Operations

The mathematical morphological transformations useful to develop elegant 

algorithms to address the challenges in relation to Image Analysis and Spatial 

Informatics include:
 Morphological Erosion

 Morphological Dilation

 Morphological Opening

 Morphological Closing

 Multiscale Morphological Operations

 Hit-or-Miss Transformation

 Morphological Thinning , Thickening, Pruning

 Geodesic Morphological Operations

 Morphological Skeletonization

 Skeletonization by Zones of Influence

 Weighted Skeletonization by Zones of Influence

 Granulometries and Anti-Granulometries

 Morphological Distances

 Hausdorff  Dilation Distances

 Hausdorff  Erosion Distances

 Morphological Interpolations and Extrapolations

 The implementations of the aforementioned transformations in binary, grayscale, graph and geodesic domains

11 November 2021
B. S. Daya Sagar 22



Binary Skeletonization, Granulometries, Morphological 

Interpolations, Morphological Distances
Operation Equation
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Grayscale Skeletonization, Granulometries, 

Morphological Interpolations, Morphological Distances

Transformation Equation
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Mathematical Morphological Operations: Many 

Application Domains
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Overview
I. Digital Elevation Models (DEMs): An Important 

Source Data for Geoscientists

II. Mathematical Morphology: Notations, Equations, and 

Transformations

III. Mathematical Morphology in DEMs
Skeletonization in DEMs and DEM Partitions

Granulometries: Surficial roughness characterization/ quantification

Geodesic Spectrum in Bottom Topography Studies

Morphological Interpolations: Morphing of Source DEM into Target DEM

Ranks for Pairs of Images; DEM Classification

Morphological distances in spatial optimization and interaction modeling 

IV. How the above studies could be integrated to better

understand the surficial process dynamics?
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Functions (DEMs, Satellite Images, 
Microscopic Images etc)

Sets (Thresholded Elevation regions, 
Binary images decomposed from 

images)

Skeletons (Unique topological networks)

III.I.I. Ridge-Valley Network Extraction from 
DEMs: Skeletonization
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Network Extraction: Binary Morphology-Based
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Decomposed basins and networks

Binary morphology-based 

network extraction is: more 

stable, more accurate, and 

computationally expensive

Grayscale-based network extraction—

may not be accurate like binary-

morphology based—generates network 

that yields disconnections some times, 

but computationally not expensive.
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Networks : Binary Vs Grayscale 

Binary Morphology

Binary morphology-based 

network extraction is:

 more stable, 

 more accurate, and 

 computationally expensive

Gray-scale Morphology

Grayscale-based network 

extraction—

 may not be accurate like 

binary-morphology based—

 generates network that yields 

disconnections some times, 

but 

 computationally not 

expensive.
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III.I.II. Synthetic Fractal DEM and Unique Topological 

Networks: Reconstruction from Skeleton

11 November 2021 B. S. Daya Sagar 31
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Five main steps involved in the simulation are:

i. Successive erosion frontlines are generated via (XBn) by increasing the size of 
structuring element. Erosions are performed iteratively to generate erosion 
frontlines within a binary fractal basin.

ii. Smoothening of the erosion frontlines is achieved via (XBn)B]   B. Here, the 
dilation combines the eroded version of the eroded binary basin achieved at step 
(i) and S.

iii. Various orders of network subset ranging from n=0 to N are isolated from each 
erosion frontline by subtracting the resultant information achieved in step (ii) 
from step (i).

iv. TPRs are generated by dilating the resultant information, which is achieved at step 
(iii) by Bn. This is an iterative procedure till the whole basin is converted into 
TPRs. Each TPR is assigned a specific value assuming that the spatially 
distributed TPRs are akin to spatially distributed elevation regions, and

v. Various orders of coded TPRs are combined to produce the simualted DEM. By 
employing these sequential steps, a self-affine fractal DEM is generated. 



III.I.II. Synthetic Landscapes: Simulated DEM
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Overview
I. Digital Elevation Models (DEMs): An Important 

Source Data for Geoscientists

II. Mathematical Morphology: Notations, Equations, and 

Transformations

III. Mathematical Morphology in DEMs
Skeletonization in DEMs and DEM Partitions

Granulometries: Surficial roughness characterization/ quantification

Geodesic Spectrum in Bottom Topography Studies

Morphological Interpolations: Morphing of Source DEM into Target DEM

Ranks for Pairs of Images; DEM Classification

Morphological distances in spatial optimization and interaction modeling 

IV. How the above studies could be integrated to better

understand the surficial process dynamics?
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III.II. Mathematical Morphology in Quantitative Analysis
I. Scale invariant but shape-dependent (Morphological Shape Decomposition)

II. Roughness characterization (Granulometries)

Scale Invariant but Shape-Dependent Measures
B. S. Daya Sagar and L. Chockalingam, 2004, Fractal dimension of non-network space of a catchment basin Geophysical Research Letters, v.31, no.12, 
L12502. 

L. Chockalingam and B. S. Daya Sagar, 2005, Morphometry of networks and non-network spaces, Journal of Geophysical Research-Solid Earth, v. 
110, B08203, doi:10.1029/2005JB003641.

Roughness Characterization
Lea Tien Tay, B. S. Daya Sagar and Hean Teik Chuah, 2007, Granulometric analysis of basin-wise DEMs: a comparative study, International Journal 
of Remote Sensing, 28, 15. 

K. Nagajothi and B. S. Daya Sagar, Classification of Geophysical Basins Derived From SRTM and Cartosat DEMs via Directional Granulometries, 
IEEE Journal on Selected Topics on Applied Earth Observation and Remote Sensing, v. 12, no. 12, p. 5259-5267, 2019.
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III.II.I. Scale Invariant but Shape-Dependent Measures 
(Morphological Shape Decomposition)

To propose morphology based method via fragmentation rules to compute scale
invariant but shape-dependent measures of non-network space of a basin.

To make comparisons between morphometry based parameters / dimensions and 
dimensions derived for non-network space.

Topologically Invariant networks with variant geometric organization
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Proposed Technique

Step1: Channel network is traced from topographic map.

Step2: Channel network is dilated and eroded iteratively until the entire basin is
filled up with white space. This step is to generate catchment boundary
automatically. Dilation followed by erosion is called structural closing, which will
smoothen the image.

Step3: Generate the basin with channel network and non-network space with
boundary by subtracting the channel network from the catchment boundary
achieved in Step2.

Step4: Structural opening (erosion followed by dilation) is performed recursively
in basin achieved in Step3 to fill the entire basin of non-network space with
varying size of octagons.

Step5: Assign unique color for each size of octagons.

Step6: Compute morphometry for the basin.

Step7: Compute shape dependent dimension. 36B. S. Daya Sagar11 November 2021



Algorithm Implementation:

Step 3: Non-network space of basin 
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Decomposition of Non-network 
space in to non-overlapping disks of 

octagon shape of several sizes for 
basin 1 

Non-Network Spaces Packed with Non-
Overlapping Disks of basins 2 to 8

(a) Appollonian Space, and (b) after decomposition by 
means of octagon.
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Dimensions derived from 
morphometry of network 
and non network space

Basi

n #

Network

FD

Log Rs/

Log RN

R vs

A

R vs

N

A vs

N

1 1.83 1.93 1.34 2.06 1.50

2 0.86 1.63 1.33 1.23 1.59

3 0.98 1.41 1.02 1.87 1.80

4 2.07 2.01 1.43 2.17 1.52

5 1.73 1.90 1.34 1.94 1.43

6 1.84 2.04 1.13 1.87 1.63

7 1.33 1.61 1.23 2.08 1.70

8 1.65 2.06 1.61 2.38 1.49

Morphometric parameter 
computations achieved through 
decomposition of non-network 

space
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III.II.II. Roughness Characterization 
(Granulometries)

Morphological multiscaling transformations are shown to be a potential tool in
deriving meaningful terrain roughness indexes.

Consider two different basins of two different physiographic setups (fluvial

and tidal) that possess similar topological quantities, i.e., their networks
may be topologically similar to each other. But the processes involved
therein may be highly contrasting due to their different physiographic
origins. Under such circumstances, the results that exhibit similarities in
terms of topological quantities and scaling exponents would be insufficient
to make an appropriate relationship with involved processes.

Therefore, granulometric approach is proposed to derive shape-size
complexity measures of basins. This approach is based on probability
distribution functions computed for both protrusions and intrusions (in other
words supremums and infimums) of various degrees of sub-basins.

This granulometry-based technique is tested on sub-basins with various sizes
and shapes decomposed from DEMs of two distinct geomorphic regions.
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Granulometric Analysis 

• Multi-scale opening till completely black

• Multi-scale closing till completely white

• Subtraction

• Probability function

• Average size

• Average roughness
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Anti(Granulometric) Analysis

Average size and Average roughness 

– 14 sub-basins
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Terrestrial Global and Directional 

Roughness: Cartosat DEM
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Terrestrial Surface
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Lower-Indus basin shown in Fig. 1(a) after 

multiscale opening by (a) 10 cycles, (b) 

100 cycles, (c) 1000 cycles, and (d) 10000 

cycles.

Lower-Indus subbasin subject to 

multiscale openings by (a) B1, (b) B2, 

(c) B3, and (d) B4 after 100 cycles of 

morphological opening.
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Evolution of watershed-19 under recursive 

opening cycles with respect to B, B1, B2, B3

and B4

Behaviors of watersheds from Carto-1 DEM 

under multiscale opening of (a) f31 by B1, (b) f7

by B2, (c) f4 by B3, and (d) f18 by B4, at the 

cycles 0,50,100,150 & 200.
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Normalized Granulometric Indices Carto-1 DEM. Categories : (1) 0-0.25, (2) 0.26-5.0, (3) 

0.51-0.75, (4) 0.76-1.0. 

Low directional granulometric index values of 31 watersheds derived from Cartosat-1 DEM
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Granulometric Analysis : Basin wise analysis

The number of iterations required to make each sub-basin either become darker or brighter
depends on the size, shape, origin, orientation of considered primitive template used to perform
multiscale openings or closings, and also on the size of the basin and its physiographic
composition. More opening/closing cycles are needed when structuring element rhombus is used,
and it is followed by octagon and square.

Mean roughness indicates the shape-content of the basins. If the shape of SE is geometrically
similar to basin regions, the average roughness result possesses lower analytical values. If the
topography of basin is very different from the shape of SE, high roughness value is produced,
which indicates that the basin is rough relative to that SE. In general, all basins are rougher
relative to square shape as highest roughness indices are derived when square is used as SE.

A clear distinction is obvious between the Cameron and Petaling basins. Generally, roughness
values of Cameron basins are significantly higher than that of Petaling basins.

The terrain complexity measures derived granulometrically are scale-independent, but strictly
shape-dependent. The shape dependent complexity measures are sensitive to record the variations
in basin shape, topology, and geometric organisation of hillslopes.

Granulometric analysis of basin-wise DEMs is a helpful tool for defining roughness parameters
and other morphological/topological quantities.
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Overview
I. Digital Elevation Models (DEMs): An Important 

Source Data for Geoscientists

II. Mathematical Morphology: Notations, Equations, and 

Transformations

III. Mathematical Morphology in DEMs
Skeletonization in DEMs and DEM Partitions

Granulometries: Surficial roughness characterization/ quantification

Geodesic Spectrum in Bottom Topography Studies

Morphological Interpolations: Morphing of Source DEM into Target DEM

Ranks for Pairs of Images; DEM Classification

Morphological distances in spatial optimization and interaction modeling 

IV. How the above studies could be integrated to better

understand the surficial process dynamics?
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Fig 1.5 Tidal basins with different assumptions: (a) flat tidal basin, (b) tidal basin with a channelized and 

nonchannelized zones (multiple sets of topological significance), and (c) tidal basin with multiple sets, sets indexed 

with even and odd indexes, respectively, refer to channelized and nonchannelized zones. (d)–(f) 3D mesh 

representation of three synthetic tidal basin shown in (a)-(c).

III.III. Geodesic Spectrum in Bottom Topography Studies



Fig 5.4 Decomposition of synthetic tidal basin shown in Fig 1.5c into sets, that consists of 

channelized and nonchannelized regions. (a)-(i) sets representing channelized and 

nonchannelized regions of which the mean elevations increase from S1 to S9. The sets 

designated with even- and odd-numbered indexes, represent the zones occupied by 

channelized and nonchannelized regions respectively.
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Fig 5.5 (a) Flow fields with isotropic propagation, (b) isotropic flow fields, and orthogonality between the flow fields of 

channelized and nonchannelized zones is obvious, and (c) flow fields within the tidal basin.

(a) (b) (c)
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Fig 5.5 Result of simulation at different time instances for Case 3.
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(a) (b) (c)

Fig (a) 3D view of remote sensing data of Central San Francisco Bay, (b) bathymetry of Central San Francisco Bay, (c) 

bathymetry of inset of (b).

54
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Fig (a) 3D view of Santa Cruz, and (b) Digital elevation map of Santa Cruz.

(a) (b)
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Fig (a) Flow field simulated on Santa Cruz DEM by using octagon structuring element, (b) flow field simulated on San Francisco 

Bay bathymetry by using octagon structuring element, and (c) flow field simulated on San Francisco Bay without considering 

bathymetry.

(a) (b) (c)
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Figure Probability of estimated area flooded/propagated at each discrete time step. 
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Overview

I. Digital Elevation Models (DEMs): An Important 

Source Data for Geoscientists

II. Mathematical Morphology: Notations, Equations, and 

Transformations

III. Mathematical Morphology in DEMs
Skeletonization in DEMs and DEM Partitions

Granulometries: Surficial roughness characterization/ quantification

Geodesic Spectrum in Bottom Topography Studies

Morphological Interpolations: Morphing of Source DEM into Target DEM

Ranks for Pairs of Images; DEM Classification

Morphological distances in spatial optimization and interaction modeling 

IV. How the above studies could be integrated to better

understand the surficial process dynamics?

11 November 2021
B. S. Daya Sagar 57



58B. S. Daya Sagar11 November 2021

III.IV. Mathematical Morphological Interpolations: 
Different Scenarios

B. S. Daya Sagar, 2010, Visualization of spatiotemporal behavior of discrete maps via generation of recursive median 
elements, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 32, no. 2, p. 378-384.

B. S. Daya Sagar, and Lim, S. L.: Morphing of grayscale DEMs via morphological interpolations, IEEE Journal on Selected 
Topics on Applied Earth Observation and Remote Sensing, 8, 11, 5190-5198, 2015.

B. S. Daya Sagar, and Lim, S. L.: Ranks for pairs of spatial fields via metric based on grayscale morphological distances, 
IEEE Transactions on Image Processing, 24, 3, 908-918, 2015.

Aditya Challa, Sravan Danda, B. S. Daya Sagar, and Laurent Najman, Some Properties of Interpolations Using Mathematical 
Morphology, IEEE Transactions on Image Processing, 27, 4, 2038-2048, 2018.

Watersheds, SKIZ & WSKIZ

B. S. Daya Sagar, Universal scaling laws in surface water bodies and their zones of influence, Water Resources Research, v. 43, 
no. 2, W02416, 2007.

K. Nagajothi, H. M. Rajashekara, and B. S. Daya Sagar, 2021, Universal Fractal Scaling Laws for Surface Water Bodies and 
Their Zones of Influence, IEEE Geoscience and Remote Sensing Letters, (In Press), 10.1109/LGRS.2020.2988119

Rajashekara, H. M., Vardhan, P., and B. S. Daya Sagar, Generation of zonal map from point data via weighted skeletonization
by influence zone, IEEE Geoscience and Remote Sensing Letters, 9, 3, 403-407, 2012.

B. S. Daya Sagar, Cartograms via mathematical morphology, Information Visualization, 13, 1, 42-48, 2014.



Grayscale Morphological Interpolations
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Morphological Interpolations via Numerical Illustrations
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Morphological Interpolation: Earth 

Surface Transformation

Hierarchical Morphological 

Interpolation between landscape 

functions, say, f1 and f256.

1 256
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64 192
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f
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Source and Target DEMs MORPHOLOGICAL MEDIANS

Morphing via Flat and a Non-Flat 

Structuring Elements
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Morphing: Flat Vs Non-Flat
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Watersheds (Zones of Influence) and Powerlaws
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Point-to-Polygon Conversion
http://www.isibang.ac.in/~bsdsagar/AnimationOfPointPolygonConversion.wmv
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States as Basins, MSPs, SKIZ, WSKIZ & Cartograms

66B. S. Daya Sagar11 November 2021



Overview
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Source Data for Geoscientists

II. Mathematical Morphology: Notations, Equations, and 

Transformations

III. Mathematical Morphology in DEMs
Skeletonization in DEMs and DEM Partitions

Granulometries: Surficial roughness characterization/ quantification

Geodesic Spectrum in Bottom Topography Studies

Morphological Interpolations: Morphing of Source DEM into Target DEM

Ranks for Pairs of Images; DEM Classification

Morphological distances in spatial optimization and interaction modeling 

IV. How the above studies could be integrated to better

understand the surficial process dynamics?
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III.V. Mathematical Morphology in Classification
I.  Morphology in classification

II. Grouping of remotely sensed satellite data via rankings for pairs

Morphology in Classification

Jón Atli Benediktsson, Jón Aevar Palmason, and Johannes R. Sveinsson, Classification of Hyperspectral Data From Urban 
Areas Based on Extended Morphological Profiles, IEEE Transaction on Geoscience and Remote Sensing, v. 43, no. 3, p. 48-
491, 2005.

Aditya Challa, Sravan Danda, B. S. Daya Sagar, and Laurent Najman, 2021, Triplet-Watershed for Hyperspectral Image 
Classification, IEEE Transactions on Geoscience and Remote Sensing, (In Press). DOI: 10.1109/TGRS.2021.3113721

Grouping of Remotely Sensed Satellite Data via Rankings for Pairs

B. S. Daya Sagar and Lim Sin Liang, 2015, Ranks for pairs of spatial fields via metric based on grayscale morphological 
distances, IEEE Transactions on Image Processing, v. 24, no. 3, p. 908-918, (DOI:10.1109/TIP.2015.2390135).
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EQUATIONS
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EQUATIONS

III.V.I. Ranks for Pairs of Images: DEM 
Classification
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PROPERTIES
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Histogram Equalized Spatial Fields

USGS SRTM Data

SRTM F11 F12 F13 F14

F11 1 0.442 0.493 0.419

F12 0.442 1 0.329 0.150

F13 0.493 0.329 1 0.468

F14 0.419 0.150 0.468 1

Segmentation into 4 equal halves
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DIGITAL ELEVATION 

MODELS
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BEST-PAIRS OF DEMs
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II. Mathematical Morphology: Notations, Equations, and 
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Skeletonization in DEMs and DEM Partitions
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Ranks for Pairs of Images; DEM Classification

Morphological distances in spatial optimization and interaction modeling
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understand the surficial process dynamics?
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• Spatial Entities (e.g.: water bodies, zones of
influence, geomorphic basins, and urban
features of the specific thematic maps) can
be well identified/ mapped from Digital
Elevation Models generated from high
resolution remotely sensed data.

• Understanding the organization of these
spatial entities is an important aspect from
the point of ‘Spatial Reasoning’.

Strategic Set Identification

III.VI. Quantitative Spatial Resoning
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Spatially Significant Zones

• Spatially Significant Zone (SSZ) can be defined
as “a zone from which it is easy to reach all
of its neighbouring zones”.

• Cluster of spatial entities (zones) can be
treated as a ‘Spatial System’ (e.g.:
Geomorphological basin (cluster of sub-
basins) consists of sub-basins (zones), and
sub-basins consist of still minor sub-basins,
and so on).
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For a geometric basin (Ai), if A1 is
considered as an origin zone,
then all the other zones (A2-A10)
are treated as destination zones.

Spatial System - SSZ

Fig: A 2-D representation of a  

spatial system with 10 zones.

I

II

III
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Iterative Dilation Distances

 The distance from Ai to Aj
represented by:

 The distance between Aj and
Ai represented by:

Let non-empty, disjoint compact zones Ai and Aj
be the original and destination zones. (Ai < Aj)

The following conditions will be satisfied, iff both
‘Ai’ & ‘Aj’ possess identical size, shape & orientation.

79B. S. Daya Sagar11 November 2021



SSI & NSSI of a Zone
• Normalized Spatial Significance Index (NSSI)

that ranges between 0 and 1 takes form of:

• If the zones of a cluster are identical, then:

=

• If the zones of a cluster are dissimilar, then:

≠

• When all the zones in a cluster are similar both
in terms of size & shape, the following
relationship holds good.
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SSI-Cluster of Zones of Water Body Influence

a. LISS-III input image, b. 66 extracted 
water bodies from RS data, c. 
Corresponding Zones of influence, water 
bodies.  d. Water bodies and zones with 
labeling.
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Dilation-Distance Based Directional Spatial 

Relationship and Orientation Detection: Animation
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EQUATIONS: SPATIAL INTERACTION

Spatial Interactions
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BEST PAIRS: FORCE OF 

INTERACTIONS
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Variable-Specific Classification of Zones, Pairs of Zones, and 

Clusters of a Spatial System via Modified Gravity Model

B. S. Daya Sagar, Variable-Specific classification of zones, pairs of zones, and clusters of a spatial 

system via modified gravity model, IEEE Transactions on Emerging Topics in Computing, v.7, no. 

2, p. 230-241, 2019.
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Mathematical Morphology: A 

Robust Mathematical Theory That 

Needs More Attention By Geoscience 

and Remote Sensing Communities

"Mathematical Morphology is an area of 

geoscience that most people don’t realize will 

literally change the way they look at Earth!"

Digital Elevation Model (DEM) is an Engineering 

Marvel: An important source of data for geoscientists
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Some Special Issue of Journals and/or Books
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My Lectures on YouTube

1. MM in Spatial Geodata Sciences

2. Binary Morphology

3. Binary and Grayscale Morphology

4. Grayscale MM, SKIZ, Interpolations

5. Interpolation and Cartogarms

6. Binary Granulometries

7. Directional and Grayscale Granulometries

8. Fractals and MSD

9. Morphological Distances

10. Morphing and Morphological Interpolations

11. Grayscale Morphological Interpolations
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Call for Papers
http://www.grss-ieee.org/wp-content/uploads/2019/11/Call_for_Paper_MMRSG.pdf
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A Quick Recap…

• Essential ingredients to develop any model that

leads to behavioral predictions are:

– Retrieval of information

– Quantitative information analysis

– Quantitative information reasoning

– Simulation and modeling of spatio-temporal 

behavior (attractor construction!)
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What is the use of these studies?

• With all these algorithms developed and/or

developed to derive geometrically and

topologically relevant information, can we make

use of this information gathered across time

instances to better understand (i) spatiotemporal

behavior of terrestrial phenomena and (ii)

dynamical behavior of terrestrial processes? This

would be an Open challenge.
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Attractors in Predictions
• Data and Information retrieved corresponding to systems with

simple behaviors can be represented in the form of simple

attractors

• Data and Information retrieved corresponding to systems with

strange behaviors can be represented in the form of strange

attractors

• Simple Attractors possess low dimensionality, whereas Strange

Attractors possess high dimensionality

• The predicting predictability of the systems with low

dimensional attractors is rather straightforward.

• The predicting predictability of the systems with high

dimensional attractors is complex.
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BIG Question(s)

• Do we have information thus retrieved precisely from

DATA (whether Small or Big) that leads to construction of

system-specific attractor?

• How big is the data that we require to construct such an

attractor? An ad hoc answer is another question: What is

the system that we are targeting?

• Can we categorize the systems as ‘soft’ and ‘hard’.

• Soft – simple attractor – prediction possible

• Hard – strange attractor – prediction (locally) is 

possible
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Examples of Attractors: Toy Models
Numerical Data

Attractors

Behavior of Lakes
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Behavior of Sand Dunes
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But too many questions on 

DATA…
• What is the noise sensitivity on the final results?

• Noise the component that does not contribute anything to the process of accurate 

predictions

• Noise misleads the accurate prediction process.

• How to detect the noise?

• How to make the data noise-free?

• A crude definition of ‘noise’ is the component that does not have any relationship 

with the main components. How to make the distinction between the noise-

component and the main-component?

• Scalability of data—’Small is Beautiful”

• How to scale the data to the smallest possible such that it does not affect the 

results?

• More and more data is getting aded. What is its impact on the final predictions?

• How stable are the predictions made across spatial and/or temporal scales?
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Open Challenge

• Can we construct system-specific

attractor(s) with all these ingredients?

• Addressing such a challenge may provide

rich clues and insights in our strides and

struggle to make precise predictions!

• “At the end this is not a job of one person.

A great team work with excellent

coordination is required”.
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I am grateful to the IEEE Geoscience 

and Remote Sensing Society (GRSS) 

for the Distinguished Lectureship (DL) 

opportunity and to the IEEE GRSS 

Brazil Chapter for hosting.
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Q&A
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