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Abstract

Finding similarity between concepts based on semantics has become a new
trend in many applications (e.g. biomedical informatics, natural language
processing). Measuring the Semantic Similarity with higher accuracy is a
challenging task. In this context, Information Content (IC) based Semantic
Similarity (SS) measure has gained popularity over the others. The notion
of IC evolves from the science of information theory. Information theory
has very high potential to characterize the semantics of concepts. Designing
an IC based SS framework comprises (a) an IC calculator, and (b) a SS
calculator. In this paper, we propose a generic intrinsic IC based seman-
tic similarity calculator. We also introduce here a new structural aspect of
an ontology called DCS (Disjoint Common Subsumers) that plays a signifi-
cant role in deciding the similarity between two concepts. We evaluate our
proposed similarity calculator with the existing intrinsic IC based similarity
calculators as well as corpora dependent similarity calculators using several
benchmark datasets. The experimental results show that the proposed simi-
larity calculator produces a high correlation with human evaluation over the
existing state of the art IC based similarity calculators.

Keywords: Semantic similarity; Information theory; Knowledge based mea-
sure; Intrinsic information content based measure; Ontology; Semantic sim-
ilarity benchmark based on WordNet, SNOMED-CT, MeSH.



Introduction

Finding similarity between concepts is a long-standing research issue for many years
both in artificial intelligence and cognitive science. It has a great significance in various
applications like word sense disambiguation, information extraction, ontology merging etc.
(Adhikari, Singh, Mondal, Dutta, & Dutta, 2016).

In the literature, we find several similarity measurement techniques. They are broadly
classified into three (Harispe, Ranwez, Janaqi, & Montmain, 2013): distributional measure,
knowledge based measure and hybrid approach. Distributional measure relies on the corpus
and is mostly applied for measuring the relatedness between concepts. The primary limi-
tation of this approach is the words to be compared must appear in the corpus at least few
times (Harispe et al., 2013). Knowledge based approach relies on the user defined resources
like taxonomies, thesauri, ontology or encyclopedias. Due to the availability of several
knowledge sources in different domains, knowledge based approach gained popularity over
the distributional approach. There are mainly three kinds of knowledge based approaches
observed and these are edge based (Aouicha & Taieb, 2015), feature based (Harispe et al.,
2013), and information theory based (i.e. IC based) (Harispe et al., 2013). Among these,
information theory based approach is the most popular one (Sánchez & Batet, 2012; Seco,
Veale, & Hayes, 2004; Sánchez, Batet, & Isern, 2011; Zhou, Wang, & Gu, 2008; Meng, Gu,
& Zhou, 2012). Hybrid approach combines both the distributional and knowledge-based
strategies (Harispe et al., 2013).

Existing researches (Adhikari, Singh, Dutta, & Dutta, 2015; Sánchez & Batet, 2012)
show that semantic similarity (SS) measures based on IC give better accuracy than the
non-IC based measures. Earlier IC based SS measures rely totally on the corpus. In
those measures, how many number of times a concept or any of its instance appears in a
corpus has become the base for calculating IC of a concept. Such techniques are called
corpus based IC calculation measures. But those measures have data sparsity problem.
Apart from this, to design a tagged corpora, an immense amount of manual efforts are
needed. To overcome such issues, a completely ontology based approach has been evolved
called intrinsic IC calculation approach. Existing researches reveal that corpora based IC
dependent SS measures provide significantly lower correlation values with human evaluation
than its intrinsic counterpart (Sánchez & Batet, 2012; Sánchez et al., 2011). The current
work focuses on designing an intrinsic IC based SS calculator (model).

Information theory based SS finding is a two folded process (Adhikari et al., 2015).
The first step is to calculate Information Content (IC) of each concept. In the second step,
based on those IC values, the similarity between the concepts is calculated. The existing
intrinsic IC based information theoretic similarity calculation models primarily focus on the
various aspects of the underlying ontology for measuring the similarity, for instance, the
distance between two concepts (Jiang & Conrath, 1997), features of the concepts (Pirró
& Euzenat, 2010) and so forth. The core of these existing models is the Least Common
Subsumer (LCS). It plays a significant role in measuring the similarity between the concepts
(Resnik, 1995; Jiang & Conrath, 1997; Lin, 1998; Sánchez & Batet, 2011, 2011; Pirró,
2009). Nonetheless, LCS based similarity models have some limitations. In LCS based
models, some of the common ancestors which contribute different conceptual dimensions to
the underlying concepts ci, cj (where, ci and cj are any two concepts under an ontology)
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are completely ignored (discussed in details in “Proposed Approach”). Thus the underlying
concepts miss the bigger scope to be judged for their similarity. As a solution, we introduce
here a brand new aspect called DCS (Disjoint Common Subsumers). It covers nearing all
the structural aspects of an underlying ontology. It is evident from our experimental result
(see “Experiments”section) that the similarity models based on DCS produce a better result
compared to the LCS based similarity models.

The main contributions of this work are:

• We propose an intrinsic IC based information theoretic SS calculator for measuring
the SS between two concepts of an ontology. To build our similarity model, we use
our proposed Disjoint Common Subsumers (DCS). We also propose an algorithm for
finding the members of DCS. The accuracy of the proposed SS calculator is assessed
thoroughly using a variety of benchmark datasets.

• We also bring three different ontologies, namely, WordNet 1, SNOMED-CT 2 and
MeSH (Hliaoutakis, 2005) from different domains under one umbrella to evaluate our
proposed SS calculation model as well as state of the art models.

The rest of the paper is organized as follows: in the next section, we describe some
notations and definitions that are used throughout this paper. Next, we discuss some of
the previous works in the related domain. Following this, we discuss some limitations of
LCS based SS model. Then, we illustrate the core element of our proposed similarity model
i.e., Disjoint Common Subsumers, followed by an algorithm for finding DCS. Next, we
discuss our proposed SS calculator. Then we describe our experiments which include the
task description, experimental setup, and analysis of results followed by a discussion. We
conclude the paper with some future scopes.

Notations and Definitions

O represents an ontology which is a connected graph G(V, E). V represents set of
concepts (c) and E represents relation R between concepts. It has a special node (i.e. a
concept) designated as “root”. IC(c) | c is a concept, denotes IC of any concept and IC(c)
ranges between 0 and 1. IC(root) in any ontology is considered “0” as it is the most
abstract conceptualization among all other nodes under any ontology. Sim(ci, cj) denotes
the SS calculator for concepts ci and cj . Sim(ci, cj) ∈ [0, 1]. In our framework we consider
relation R between any two concepts of the ontology belongs to either hyponym∨hypernym.

Definitions

Definition 1. subsumers(c) = {b ∈ V, c ∈ V | c � b}∪{c}, c � b signifies that concept c is
a hierarchical specialization of concept b and “�” represents the “subsumed by” relationship.
|subsumers(c)| denotes the number of the members of this set.

Definition 2. hyponyms(c) = {b | b ∈ V ∧∀ b, b � c }, i.e. set of concepts that are descen-
dants of the concept c. For example, according to Figure 1, hyponyms(Disorder of T horax)

1https://wordnet.princeton.edu
2http://www.ihtsdo.org/snomed-ct
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includes concepts like Congestive Heart Failure, Accute Congestive Heart Failure and
Biventricular Congestive Heart Failure. In our paper, we denote the set hyponym as
hypo(c). |hypo(c)| denotes number of the members of this set.

Definition 3. hypernyms(c) = {b | b ∈ V ∧ ∀ b, c � b }, i.e. the
set of concepts that are ancestors of the concept c. For example, accord-
ing to Figure 1, hypernyms(Rheumatoid Arthritis) includes Autoimmune Disease,
Disorder By Body Site, and SNOMEDRT + CT V 3. In this paper, we denote the set
hypernym as hyper(c). |hyper(c)| denotes number of the members of this set.

Definition 4. instance hyponyms(c) = A set of concepts which are the real world entity
of a concept c, e.g. instance hyponym of the “Planet” is “Earth”.

Definition 5. depth(c) = The minimum distance between c and the root node of an ontol-
ogy.

Definition 6. leaves(c) = {l ∈ V, c ∈ V | l ∈ hyponyms(c) Λ l is a leaf}, where, l is a
leaf iff hyponyms(l) = φ Λ instance hyponyms(l) = φ. |leaves(c)| denotes number of the
members of this set.

Definition 7. nmih(c) = A set of subsumers that has direct relationship with the concept c

by hyponym-hypernym relationship, e.g. according to Figure 1 nmih(Pulmonary Edema) =
{Disorder Of Body System, Disorder of T horax, V iscus Structure F inding}.
|nmih(c)| denotes number of the members of this set.

Definition 8. Multiple Inheritance = When a concept c has multiple direct subsumers,
then it has multiple inheritances.

Definition 9. nodemax = It represents maximum number of concepts of an ontology.

Definition 10. maxleaves = It denotes the number of leaf nodes the root node of an ontology
has.

Definition 11. depthmax = It is the maximum value among all the depth(c) for all concepts
c belongs to the ontology.

Related Work

Intrinsic IC calculation

We discuss some of the significant state of the art intrinsic IC calculation techniques
in this section.

Several authors (Sánchez & Batet, 2012; Seco et al., 2004; Sánchez et al., 2011; Zhou
et al., 2008; Meng et al., 2012; Adhikari et al., 2015) have proposed intrinsic IC calculation
measures to overcome the limitations of corpora based IC calculation measures, discussed in
“Introduction” section. According to this technique, it is calculated solely depending on the
ontology itself. Seco et al. (Seco et al., 2004) is the pioneer in intrinsic way of calculating
IC. Their model depends on the number of the hyponyms of the concept whose IC is to be
calculated as shown below:

ICseco(ci) =
log( |hypo(ci)|+1

nodemax
)

log( 1
nodemax

)
(1)
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The main limitation of their model is, concepts that have equal number of hyponyms and
different generality, will have same similarity score. To overcome this issue, Zhou et al.
(Zhou et al., 2008) have introduced the idea of depth(c) with the hyponyms(c) as follows:

ICzhou(ci) = K(1 −
log(|hypo(ci)| + 1)

log(nodemax)
) + (1 − K)

log(depth(ci))

log(depthmax)
(2)

However, in their model, depth(c) has to be empirically tuned. Sánchez et al. (Sánchez
et al., 2011) have overcome this problem and proposed a new intrinsic IC calculator, as
follows:

ICsanchez(ci) = − log(

|leaves(ci)|
|subsumers(ci)|

+ 1

maxleaves + 1
) (3)

Besides the above, there are some other issues involved in the existing approach. For
instance, according to Sánchez et al. (Sánchez et al., 2011) when concepts have the equal
number of subsumers and leaves but different topological orientation of hyponyms with
different number of hyponyms, then the IC calculator produces same IC values. This means
the concepts have the same meaning but in reality, they carry different information. Meng
et al. (Meng et al., 2012) have overcome this issue by considering the depth of the concept
and depth of each hyponym of the concept as follows:

ICmeng(ci) =
log(depth(ci))

log(depthmax)
× (1 −

log((Σa∈hypo(ci)
1

depth(a)) + 1)

log(nodemax)
) (4)

Although, in Meng et al. IC model, there is a possibility that two concepts have same
hyponym structure, stay in the same depth, but have a different number of subsumers. In
that case, their IC model will generate same IC value for both the concepts, which is not
expected as the topological structure of both the concepts in the ontology is different.

Sánchez and Batet (Sánchez & Batet, 2012) have proposed an IC calculation model
determining the commonness of a concept as follows:

ICs&b(ci) = − log(
commonness(ci)

commonness(root)
) (5)

where, commonness(ci) = Σcommonness(l), ∀ l | l is a leaf node Λ l is subsumed by concept
ci and ci is not a leaf node. commonness(l) = 1

|subsumers(l)| . This IC model relies only on
the number of subsumers of leaves of the concept whose IC is going to be calculated. But
it should not be the only criteria to be considered in calculating IC.

To address the above mentioned issues present in ICmeng(ci) and ICs&b(ci) in our
previous work (Adhikari et al., 2015), we have proposed an intrinsic IC calculation model
as follows:

ICadhikari(c) =
log(depth(c) + 1)

log(depthmax + 1)

×(1 − log(

|leaves(c)|×(|nmih(c)|)
maxleaves

|subsumers(c)|
+ 1))

×(1 −
log((

∑
a∈hypo(c)

1
depth(a)) + 1)

log(nodemax)
)

(6)
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Yuan et al. (Yuan, Yu, & Wang, 2013) calculates IC intrinsically using some different
topological factors in the following way:

ICyuan(ci) = fdepth(ci) ∗ (1 − fleaves(ci)) + fhypernyms(ci) (7)

where, fdepth(ci), fleaves(ci), fhypernyms(ci) are defined as follows:

fdepth(ci) =
log(depth(ci))

log(depthmax)
(8)

fleaves(ci) =
log(|leaves(ci)| + 1)

log(maxleaves + 1)
(9)

fhypernyms(ci) =
log(|hyper(ci)| + 1)

log(nodemax)
(10)

where, ci is a concept in an ontology. In this IC model the key factor that makes some
improvement in finding IC of a concept is fhypernyms(ci).

Semantic similarity models based on IC

Though several SS measures (Harispe et al., 2013) grounded in different theoretical
bases exist, we consider only information-theoretic SS measures in this paper. There are
basically IC based three classical SS models available as follows: First IC based SS model
is proposed by Resnik (Resnik, 1995). Resnik defines a function for finding similarity
between two concepts based upon IC of their Least Common Subsumer (LCS) (i.e. the
common subsumer of the two concepts and has maximum IC) (Sánchez & Batet, 2011) in
the following way:

Simres(ci, cj) = IC(LCS(ci, cj)) (11)

Resnik’s model has some limitations like, concept pairs which have the same LCS, posses
same similarity value. To solve this issue, Lin (Lin, 1998), Jiang and Conrath (Jiang &
Conrath, 1997) have proposed their own models. Lin extended Resnik’s similarity formula
by considering ratio with summation of individual IC of each concept:

Simlin(ci, cj) =
2 × Simres(ci, cj)

IC(ci) + IC(cj)
(12)

Jiang and Conrath have proposed a new measure for finding semantic distance between two
concepts in terms of IC as follows:

Distj&c(ci, cj) = IC(ci) + IC(cj) − 2 × Simres(ci, cj) (13)

Apart from these three classical IC based SS models, Pirró and Euzenat (Pirró & Euzenat,
2010), Sánchez and Batet (Sánchez & Batet, 2011) also have proposed IC based SS calcula-
tors. Pirró has presented a framework, which maps the feature-based model of SS into the

Abhijit
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information theoretic domain (Pirró, 2009). Pirró and Euzenat have extended that work
and proposed a new FaITH model (Pirró & Euzenat, 2010) as follows:

SimF aIT H(ci, cj) =
IC(LCS(ci, cj))

IC(ci) + IC(cj) − IC(LCS(ci, cj))
(14)

In this similarity model, Pirró and Euzenat have used the IC model originally designed by
Seco et al. (equation 1). Sánchez and Batet (Sánchez & Batet, 2011) mapped an edge
counting SS measure into an IC based SS model:

Sims&b(ci, cj) =

− log
IC(ci) + IC(cj) − 2 × IC(LCS(ci, cj)) + 1

2 × max_IC

(15)

In this model, Sánchez and Batet have used Sánchez’s IC model (equation 3).

Proposed Approach

Before we introduce our proposed intrinsic IC based SS calculation model, we first
discuss some of the limitations of LCS, the core of the existing state of the art intrinsic IC
based similarity calculation models.

Limitations of LCS based SS model

LCS is a common subsumer of concepts ci and cj and has maximum IC among all the
other common subsumers of ci and cj . The IC value of such common subsumer for any two
concepts ci and cj is unique in a particular ontology. Thus, we ignore some other IC values
of some special common subsumers of ci and cj . It is evident from the related work section
that finding similarity between two concepts in an information theoretic way mainly relies
on IC values. So, we are talking about some special common subsumers whose IC value
matters for deciding similarity but are not considered in LCS based similarity models. Such
set of common subsumers has some special criteria as follows: (i) no one is connected to each
other by any hyponym-hypernym relationship, and (ii) the first member of such common
subsumer set stays at maximum depth among all the common subsumers. To become next
member of such common subsumer set, it has to stay at maximum depth among rest of
the common subsumers and in this way all the members of such special set of common
subsumers are selected provided that no one is in the relationship of hyponym-hypernym
to each other. By the nature of their graphical orientation, those members of subsumer
set become the most specific in their own conceptual dimension as a common subsumers of
concepts ci and cj because the IC value of any node is directly proportional to its depth
and it increases as we proceed towards the leaf nodes (Sánchez et al., 2011) and the more
the IC value is, the more specific concept it becomes. Hence, these common subsumers
introduce distinct dimensions to the concepts ci and cj while deciding similarity. Several
such kind of common subsumers are available in any ontology. For instance, Autoimmune
Disease and Disorder By Body Site are such common subsumers of Rheumatoid Arthritis
and Lupus Erythematosus in SNOMED-CT ontology.

In the following, before we present our proposed SS model, we first illustrate its core
idea DCS(ci, cj) followed by the algorithm for finding DCS(ci, cj).
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What is DCS?

DCS(ci, cj) stands for Disjoint Common Subsumers of ci and cj . It represents a set of
nodes which are subsumers of both ci and cj but no one is in the relationship of hyponym-
hypernym to each other. The first member of this set stays at maximum depth among
all the common subsumers of ci and cj , and rest of the members of the set are selected
by picking every time the deepest common subsumer which preserves the property of not
having hyponym-hypernym relationship to each other. dcs represents the members of the
set DCS(ci, cj).

Each dcs acts as a distinct common subsumer having no relationship to other dcs.
What we mean by the members of the set DCS(ci, cj) stay at their maximum possible
depth is explained as follows: suppose there is another node called dcsx which is a parent
node of dcsj. Let depth of dcsx and dcsj are y and z respectively such that value of z is
greater than value of y. Suppose, dcsx also is a common subsumer of concepts ci and cj and
has no hyponym-hypernym relationship with dcsi and dcsk. But we will consider dcsj over
dcsx as a member of the set DCS(ci, cj) because dcsj stays at maximum depth preserving
the property that no one is connected to each other by hyponym-hypernym relationship.

A real snippet from SNOMED-CT ontology is shown in Figure 1. In this figure all
the circles represent concepts. Root node of SNOMED-CT is SNOMED RT+CTV3. Circle
with bold edge denotes the possible members of set DCS(ci, cj). In this snippet, concepts
Congestive Heart Failure and Pulmonary Edema have three dcs, such as, Disorder Of Body
System, Disorder Of Thorax, and Viscus Structure Finding. Further to note, concepts
Rheumatoid Arthritis and Lupus Erythematosus have two dcs, such as, Autoimmune
Disease and Disorder By Body Site.

Algorithm for finding DCS(ci, cj)

To find out the DCS(ci, cj), earlier we have proposed an algorithm (Adhikari et
al., 2016) as discussed below. The procedure for calculating DCS(ci, cj) is provided in
Algorithm 1. According to this algorithm, in Step 2, we first consider four empty sets:
DCS(ci, cj), DCSsuspect(ci, cj), Si, and Sj. In Step 3, store all the subsumers of concept
ci and cj in Si and Sj respectively. In Step 4, find the intersection of these two sets Si

and Sj and store them in DCSsuspect(ci, cj). In Step 5, perform a sorting operation on
set DCSsuspect (ci, cj) in descending order based on the depth of each element of that set.
In Step 6, pick the largest element as first dcs from the set DCSsuspect(ci, cj) and assign
to DCS(ci, cj) and in Step 7, discard that element from DCSsuspect(ci, cj). In Step 8, do
the following operations until all the elements of DCSsuspect(ci, cj) are checked: pick the
next largest element x from DCSsuspect(ci, cj) and check whether any of the element of
DCS(ci, cj) is hyponym of x. If none of the elements of DCS(ci, cj) are the hyponym
of x then add this x into set DCS(ci, cj) and repeat Step 7. Otherwise discard x from
DCSsuspect(ci, cj) only, and do not add to DCS(ci, cj). Step 9 ends the process.

Proposed IC based Semantic Similarity Model

In designing our similarity calculator, we consider pure information theoretic per-
spective and the structural aspect, i.e. DCS(ci, cj) of the underlying ontology. Besides
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SNOMED
RT+
CTV3

(362965005)
Disorder Of
Body System

(118946009)
Disorder of
Thorax

(406123005)
Viscus

Structure
Finding

(42343007)
Congestive

Heart Failure

(19242006)
Pulmonary
Edema

(49601007)
Disorder Of

Cardiovascular
System

(59282003)
Pulmonary
Embolism

(22298006)
Myocardial
Infarction

(85828009)
Autoimmune

Disease

(123946008)
Disorder
By Body

Site

(69896004)
Rheumatoid
Arthritis

(105969002)
Disorder Of
Connective

Tissue

(10633002)
Accute

Congestive
Heart
Failure

(92506005)
Biventricular
Congestive

Heart
Failure

(200936003)
Lupus

Erythematosus

Directly connected concepts of SNOMED-CT.

Possible branches and intermediate nodes of SNOMED-CT.

Indirectly connected concepts of SNOMED-CT.

Represents concepts of SNOMED-CT

Figure 1 . A snippet from SNOMED-CT ontology with several dcs.
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Algorithm 1 Calculating DCS(ci, cj)

Step 1. Start
Step 2. Initialize set DCS(ci, cj) ← φ, set DCSsuspect(ci, cj) ← φ, set Si ← φ, set Sj ← φ.
Step 3. For concept ci add all subsumers(ci) to set Si and for concept cj add all subsumers(cj) to set Sj .
Step 4. set DCSsuspect(ci, cj) ← Si ∩ Sj .
Step 5. Sort elements of set DCSsuspect(ci, cj) in descending order based on depth of each elements.
Step 6. Assign the largest element of the set DCSsuspect(ci, cj) as first dcs to DCS(ci, cj).
Step 7. set DCSsuspect(ci, cj) ← DCSsuspect(ci, cj) - DCS(ci, cj).
Step 8. for each element x in DCSsuspect(ci, cj)

if any member of DCS(ci, cj) is in the set hyponyms(x)
discard that node x from DCSsuspect(ci, cj)

else add x to DCS(ci, cj) and repeat Step 7.
Step 9. End

DCS(ci, cj), we also consider some ratio factors for formulating our model as follows:

Simour(ci, cj) =
∑m

r=1{ IC(dcsr)
IC(ci)−(IC(dcsr)×k)+1 + IC(dcsr)

IC(cj)−(IC(dcsr)×k)+1}

m

(16)

where, m denotes size of the set DCS(ci, cj) for concepts ci and cj. We focus on on-
tology with hyponym-hypernym (is-a) relationship and in such organization of concepts
in a particular path from the root node, the deepest node (concept) should be the most
specific (is-a type) concept (Sánchez et al., 2011). In our DCS finding algorithm we seg-
regate several distinct paths generated from the root node where the deepest node acts
as the member of the DCS(ci, cj) set. Each member of DCS(ci, cj) set actually holds
the distinct semantics which act as an influencing factor for any two concepts ci and cj

because, no one of the set DCS(ci, cj) is connected to each other by any kind of con-
ceptual relationship. For instance, Congestive Heart Failure is-a type of Disorder Of Body
System, Disorder Of Thorax, and also is-a type of Viscus Structure Finding. Hence Conges-
tive Heart Failure is influenced by three different senses. Another concept like Pulmonary
Edema is also is-a type of Disorder Of Body System, Disorder Of Thorax, and also is-a
type of Viscus Structure Finding. All of the later three concepts are members of the set
DCS(Congestive Heart Failure, Pulmonary Edema) and no one is connected to each
other by any conceptual relationship. So, when two concepts are having more number of
such distinct influencing subsumers in common, the chances for becoming more semanti-
cally similar also increases. Further to note that, the far any concept c is from its dcsr, the
more the IC value it has and becomes a factor for reducing the overall SS by producing a
larger denominator in the summation part of our similarity model. In our similarity model
we subtract IC of each dcsr [for r = 1 to m] from IC of individual concept ci and cj in the
denominator of the summation part. A concept ci or cj can be connected to multiple dcsr

inheriting several unique conceptual dimensions. So, by subtracting IC of each dcsr from
IC of concept ci and cj , we try to extract the amount of influence created by the other
members of the set DCS(ci, cj). Then we find out the degree of influence of such other
members of the set DCS(ci, cj) to each concepts ci and cj with respect to the influence of
each dcsr and summing up them all in the numerator part of our similarity model.

We use a binary parameter (k = 0 or 1) to account the influence of the members of
DCS(ci, cj) in the denominator of the summation part of our similarity measure. The rea-
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son behind considering such parameter is the structural differences (Pirró & Euzenat, 2010)
that exist between different ontologies due to variable perceptions of each ontologists to
fulfill their purposes. Based on our research observation on different ontologies (e.g. Word-
Net, SNOMED-CT, MeSH etc.), we have found some key ontological differences between
the ontologies. These structural differences are the important factors which influence the
designing of a generic similarity model. One of the such differences is the multiple number
of members of the set DCS(ci, cj) for two concepts. In some ontologies, some structural
aspects like multiple number of dcsr present in a larger magnitude, whereas in some ontolo-
gies the presence is negligible or missing. Hence, in the case where such structural aspect
is negligible, the consideration of that aspect as a factor in designing similarity model is
inappropriate. Hence, to account the influence of such structural factor we use a binary
parameter k (where k = 0 or 1) in our SS model. We consider k = 0 when the presence of
the structural aspect in an ontology is negligible. For instance, in case of WordNet there
is no multiple members in the DCS(ci, cj) set (100% singleton DCS(ci, cj) sets for M&C
dataset and 99.9% singleton sets for Wordsim similarity gold standard dataset). So, in this
case, k = 0. Whereas, we have found significant number of non-singleton DCS(ci, cj) sets
in SNOMED-CT (only 79.31% singleton DCS(ci, cj) sets) and MeSH (only 92.30% single-
ton DCS(ci, cj) sets) ontology. Hence we use K = 1 to account the influence of multiple
members of the DCS(ci, cj) set in deciding the accuracy of SS between concepts.

Note that, in some ontologies, for instance WordNet, some words have more than one
senses, i.e. W = {s1, s2, s3, . . . , sn}. Such words are termed as polysemic words (Freihat,
Giunchiglia, & Dutta, 2013). In such cases, we compute SS as follows:

Sim(Wx, Wy) = max{sim∀i,j(sxi
, syj

)} (17)

where, sxi
, syj

are ith and jth senses (i.e. concepts or synsets in the WordNet ontology) of
polysemic words Wx and Wy respectively.

Experiments

This section describes the experimental set-up and the results from a detailed evalu-
ation of our proposed intrinsic IC based information theoretic SS model i.e. Simour(ci, cj)
over the existing state of the art IC based similarity models.

Task Description

For a fair comparison, we implement all the competing intrinsic IC based similarity
models enlisted in Table 1. Our proposed SS calculator has been evaluated pairing up with
several state of the art IC models, such as Seco et al., Zhou et al., Sánchez et al. (Sánchez
et al., 2011), Sánchez et al. (Sánchez & Batet, 2012), Meng et al., Yuan et al. and Adhikari
et al.

It is worth mentioning here that to implement the Jiang and Conrath similarity model,
we use the following transformed similarity function (equation 18) originally proposed by
Seco et al. (Seco et al., 2004).

Sim(ci, cj) = 1 − (
IC(ci) + IC(cj) − 2 × Simres(ci, cj)

2
) (18)
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In our experiment, we consider three different ontologies. WordNet version 3.0 is
chosen as a generic ontology. Beside these two generic ontologies, we also consider another
two domain specific ontologies from the biomedical domain, namely, SNOMED-CT version
May 2016 and MeSH version Rh–mesh 2014.

We use Pearson’s correlation coefficient (CC) (Harispe, Sánchez, Ranwez, Janaqi, &
Montmain, 2014; Pirró & Euzenat, 2010) as the metric to evaluate the accuracy of our
proposed IC based similarity model. Note that, all the CC values are rounded up to two
decimal points.

Table 1
Shows the competing IC based similarity models used in our paper.

Approach

Resnik (Resnik, 1995)
Lin (Lin, 1998)
Jiang and Conrath (Jiang & Conrath, 1997)
Sánchez and Batet (Sánchez & Batet, 2011)
Pirró and Euzenat (Pirró & Euzenat, 2010)

Experimental Setup

Datasets. For general benchmark dataset, we use Miller and Charles’ (Miller &
Charles, 1991) benchmark dataset (M&C dataset) and Wordsim similarity goldstandard
(Sánchez & Batet, 2012) benchmark dataset. Wordsim similarity goldstandard is a subset
of the WordSim353 3 4 dataset. It has a set of 203 word-pairs. But only 201 noun pairs
from that Wordsim dataset are selected for our experiment.

For domain-specific benchmark dataset, we use Pedersen et al. 2007 dataset 5. To
derive a reliable test set, Pedersen et al. create this dataset with the help of three physicians
and 9 medical coders. In original dataset, there are 30 term pairs. The pair “Chronic
obstructive pulmonary disease” and “lung infiltrates” has been excluded from the original
test bed because the term “lung infiltrates” is not found in the SNOMED-CT (Pedersen,
Pakhomov, Patwardhan, & Chute, 2007). Thus, the resulting test set consists of 29 pairs.

For MeSH, we use a subset of Pedersen et al. 2007 dataset. This subset consists
of 26 term pairs. Of them, we remove four-term pairs such as Stomach cramps, Lung
infiltrates, Rectal polyp and Entire Knee meniscus dataset due to their non-availability in
MeSH ontology. It is worth to mention here that MeSH ontology has multiple roots. Even
among the 26 term pairs of Pedersen dataset, there are 18 term pairs which have no root in
common. To resolve this issue, we introduce a hypothetical root which acts as a common
root to all the existing roots of MeSH ontology. Thus we have a single common root to
MeSH ontology.

Ontology parsing libraries. We use python as the implementation language and
several python based ontology parsing libraries. NLTK (Natural Language Toolkit) 6 is

3http://www.cs.technion.ac.il/ gabr/resources/data/wordsim353/
4http://www.semantic-measures-library.org/sml/
5http://www.semantic-measures-library.org/sml/
6http://www.nltk.org/
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used to handle WordNet version 3.0.

For Mesh ontology, we use Pronto 7. It is a Python library designed to work with
ontologies. It can parse obo and owl/xml formats, open ontologies on the local host or from
a network location.

For SNOMED-CT, we use PyMedTermino (Medical Terminologies for Python) 8

which is a Python module for easy access to the main medical terminologies. PyMedTermino
is a product of the LIMICS research lab of Paris 13 University.

Results

We analyze and evaluate our proposed SS model over the existing state of the art
intrinsic IC based SS models. For this evaluation, we implement all the competing methods
enlisted in Table 1. For evaluating our proposed model, we use the above mentioned three
ontologies such as: WordNet, SNOMED-CT, MeSH. Several benchmark datasets are also
considered for comparison between our measure and state of the art measures. The details
of results and evaluation are described as follows.

(i) Experiment on WordNet ontology
For WordNet ontology we choose two datasets to perform our experiment. 30 noun pairs
from M&C dataset and 201 noun pairs from Wordsim similarity goldstandard.

Table 2 shows the results gained by our proposed model when 30 noun pairs of M&C
dataset are selected. Based on the experimental results shown in Table 2 it is evident that
our SS calculator with ICmeng shows significant result than most of the existing IC based
similarity models giving CC of 0.87 with M&C dataset. This CC value is close enough to
the upper limit for 30 noun pairs which is 0.88 (Resnik, 1995). Correlation value obtained
by our SS model based on ICadhikari (correlation=0.86) is also very close to the upper
bound.

It is clear from the Table 2 that our SS calculator embedded with the existing IC cal-
culators can perform efficiently as compared to most of the existing methods when WordNet
ontology and 30 noun pairs of M&C dataset are choosen.

To reaffirm the accuracy of our similarity model in WordNet ontology, we evaluate it
with a bigger dataset. We evaluate our proposed similarity model more precisely using a
recent generic benchmark dataset, namely Wordsim similarity goldstandard consisting of
201 noun pairs from WordNet ontology. Table 3 shows the correlation values for this new
dataset. From Table 3, it is evident that our SS model gives a significant correlation with
human evaluation over the existing SS measures. Our similarity model embedded with
ICyuan and ICadhikari produces very high correlation over the existing similarity models.
It is also noticeable that all the correlation scores generated by our similarity model are
very close to each other.

(iii) Experiment on SNOMED-CT ontology
Based on Pedersen et al. dataset, we find the correlation with physicians, medical coders,
and an average of both of them but we measure the efficiency of our proposed similarity

7http://pronto.readthedocs.io/en/latest/
8http://pythonhosted.org/PyMedTermino/
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Table 2
Shows CC values of different existing intrinsic IC based similarity models and our similarity
model for 30 noun-pairs of M&C dataset.

Similarity models IC model Correlation with M&C

Resnik (ICseco) 0.80
Resnik (ICzhou) 0.83
Resnik (ICsanchez) 0.83
Resnik (ICs&b) 0.81
Resnik (ICmeng) 0.86
Resnik (ICyuan) 0.83
Resnik (ICadhikari) 0.86

Lin (ICseco) 0.84
Lin (ICzhou) 0.82
Lin (ICsanchez) 0.84
Lin (ICs&b) 0.84
Lin (ICmeng) 0.86
Lin (ICyuan) 0.84
Lin (ICadhikari) 0.86

Jiang and Conrath (ICseco) 0.88
Jiang and Conrath (ICzhou) 0.82
Jiang and Conrath (ICsanchez) 0.87
Jiang and Conrath (ICs&b) 0.88
Jiang and Conrath (ICmeng) 0.83
Jiang and Conrath (ICyuan) 0.82
Jiang and Conrath (ICadhikari) 0.84

Sánchez and Batet (ICseco) 0.88
Sánchez and Batet (ICzhou) 0.84
Sánchez and Batet (ICsanchez) 0.86
Sánchez and Batet (ICs&b) 0.85
Sánchez and Batet (ICmeng) 0.85
Sánchez and Batet (ICyuan) 0.84
Sánchez and Batet (ICadhikari) 0.85

Pirró and Euzenat (ICseco) 0.83
Pirró and Euzenat (ICzhou) 0.85
Pirró and Euzenat (ICsanchez) 0.85
Pirró and Euzenat (ICs&b) 0.83
Pirró and Euzenat (ICmeng) 0.86
Pirró and Euzenat (ICyuan) 0.84
Pirró and Euzenat (ICadhikari) 0.86

Our_Sim (ICseco) 0.83
Our_Sim (ICzhou) 0.85
Our_Sim (ICsanchez) 0.84
Our_Sim (ICs&b) 0.84
Our_Sim (ICmeng) 0.87
Our_Sim (ICyuan) 0.84
Our_Sim (ICadhikari) 0.86
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Table 3
Shows CC values of different existing intrinsic SS models and our proposed similarity model
for 201 noun-pairs of Wordsim similarity goldstandard dataset.

Similarity models IC model Correlation with M&C

Resnik (ICseco) 0.66
Resnik (ICzhou) 0.64
Resnik (ICsanchez) 0.66
Resnik (ICs&b) 0.67
Resnik (ICmeng) 0.67
Resnik (ICyuan) 0.68
Resnik (ICadhikari) 0.68

Lin (ICseco) 0.69
Lin (ICzhou) 0.64
Lin (ICsanchez) 0.66
Lin (ICs&b) 0.69
Lin (ICmeng) 0.68
Lin (ICyuan) 0.69
Lin (ICadhikari) 0.68

Jiang and Conrath (ICseco) 0.67
Jiang and Conrath (ICzhou) 0.63
Jiang and Conrath (ICsanchez) 0.66
Jiang and Conrath (ICs&b) 0.67
Jiang and Conrath (ICmeng) 0.66
Jiang and Conrath (ICyuan) 0.65
Jiang and Conrath (ICadhikari) 0.66

Sánchez and Batet (ICseco) 0.69
Sánchez and Batet (ICzhou) 0.66
Sánchez and Batet (ICsanchez) 0.68
Sánchez and Batet (ICs&b) 0.68
Sánchez and Batet (ICmeng) 0.68
Sánchez and Batet (ICyuan) 0.67
Sánchez and Batet (ICadhikari) 0.68

Pirró and Euzenat (ICseco) 0.70
Pirró and Euzenat (ICzhou) 0.68
Pirró and Euzenat (ICsanchez) 0.69
Pirró and Euzenat (ICs&b) 0.70
Pirró and Euzenat (ICmeng) 0.71
Pirró and Euzenat (ICyuan) 0.71
Pirró and Euzenat (ICadhikari) 0.71

Our_Sim (ICseco) 0.68
Our_Sim (ICzhou) 0.65
Our_Sim (ICsanchez) 0.66
Our_Sim (ICs&b) 0.68
Our_Sim (ICmeng) 0.68
Our_Sim (ICyuan) 0.69
Our_Sim (ICadhikari) 0.69
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model based on finding the correlation with average similarity scores of physicians and
medical coders. Table 4 shows the experimental results of our proposed model and
comparison with the existing methodologies respectively when SNOMED-CT is considered
as an ontology. Experimental results presented in Table 4 show our similarity calculator
with ICsanchez surpasses all the existing SS measures. It produces highest correla-
tion (0.76) with human evaluation than any of the state of the art SS models. Even our
similarity model embedded with ICseco and ICs&b surpass state of the art similarity models.

(iv) Experiment on MeSH ontology
Here, we also measure the efficiency of our proposed framework based on finding the cor-
relation with average similarity scores of physicians and medical coders. It is evident from
results shown in Table 5 that our similarity calculator with the existing IC calculators gives
high correlation values with human evaluation. Also, our SS calculator with ICs&b sur-
passes all of the existing SS measures producing maximum correlation value (0.56) with
human evaluation except SimF aIT H(ci, cj) embedded with ICmeng (0.57). Even our simi-
larity model embedded with ICsanchez and ICmeng surpass most of the existing similarity
models.

Discussion

In case of SNOMED-CT ontology, our similarity model gives the highest correlation
0.76, whereas state of the art similarity models produce maximum correlation value 0.69.
The second best correlation score produced by the state of the art measures is 0.67 when we
select SNOMED-CT ontology. It is worth to notice that the difference between these two
correlation scores (i.e. 0.69 and 0.67) produced by the existing measures is 0.02. Whereas
the difference between the best score produced by our model and the maximum score
produced by the state of the art measures (i.e. 0.76 and 0.69) is 0.07 and the correlation
scores, generated for all the ontologies in our experiment, ranges from 0 to 1. Hence, 0.07
improvement over the maximum score (i.e. 0.69) produced by the state of the art measures
signifies the usefulness of our proposed model. We combine our proposed similarity model
with the state of the art IC calculators mentioned in “Related Work” section and among
them, our similarity model with ICseco, ICsanchez, and ICs&b surpass all the existing state
of the art thirty-five combinations of similarity models and IC calculators.

In MeSH ontology, our proposed model produces a very high correlation of 0.56 with
human evaluation and no one among all the existing thirty-five combinations of similar-
ity models and IC calculators surpass our result except SimF aIT H(ci, cj) embedded with
ICmeng. All these results show that our proposed model gives similarity scores which are
highly correlated with human evaluation as compared to the state of the art intrinsic IC
based similarity models. Even our similarity model surpasses most of the (32 out of 35
combinations of similarity models and IC calculators) existing intrinsic IC based similarity
model and IC calculator combinations when WordNet ontology is selected, producing a very
high correlation 0.87.

Further to state that, there is no such fixed combination of state of the art similarity
calculator and IC calculator which gives the best result for any experimental ontology. For
instance, among all the existing methods, the combination of Pirró & Euzenat similarity
model (equation 14) and ICseco gives the best correlation scores when SNOMED-CT ontol-
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Table 4
Shows CC values of different existing intrinsic IC based similarity models and Our similarity
model for SNOMED-CT ontology.

Similarity models IC models Corr. Phy. Corr. M.Co. Corr. Avg.

Resnik (ICseco) 0.56 0.56 0.58
Resnik (ICzhou) 0.49 0.44 0.49
Resnik (ICsanchez) 0.53 0.52 0.55
Resnik (ICs&b) 0.52 0.51 0.53
Resnik (ICmeng) 0.59 0.56 0.60
Resnik (ICyuan) 0.54 0.52 0.55
Resnik (ICadhikari) 0.54 0.52 0.55

Lin (ICseco) 0.60 0.62 0.63
Lin (ICzhou) 0.50 0.46 0.50
Lin (ICsanchez) 0.55 0.56 0.58
Lin (ICs&b) 0.55 0.57 0.58
Lin (ICmeng ) 0.60 0.57 0.61
Lin (ICyuan) 0.56 0.54 0.57
Lin (ICadhikari) 0.56 0.54 0.57

Jiang and Conrath (ICseco) 0.53 0.56 0.56
Jiang and Conrath (ICzhou) 0.47 0.44 0.47
Jiang and Conrath (ICsanchez) 0.53 0.54 0.56
Jiang and Conrath (ICs&b) 0.52 0.58 0.55
Jiang and Conrath (ICmeng) 0.52 0.50 0.53
Jiang and Conrath (ICyuan) 0.50 0.48 0.51
Jiang and Conrath (ICadhikari) 0.50 0.48 0.51

Sánchez and Batet (ICseco) 0.57 0.62 0.62
Sánchez and Batet (ICzhou) 0.52 0.50 0.53
Sánchez and Batet (ICsanchez) 0.63 0.69 0.69
Sánchez and Batet (ICs&b) 0.60 0.67 0.66
Sánchez and Batet (ICmeng) 0.56 0.55 0.57
Sánchez and Batet (ICyuan) 0.55 0.55 0.57
Sánchez and Batet (ICadhikari) 0.55 0.55 0.57

Pirró and Euzenat (ICseco) 0.63 0.69 0.69
Pirró and Euzenat (ICzhou) 0.57 0.55 0.59
Pirró and Euzenat (ICsanchez) 0.62 0.66 0.67
Pirró and Euzenat (ICs&b) 0.60 0.65 0.65
Pirró and Euzenat (ICmeng) 0.64 0.64 0.67
Pirró and Euzenat (ICyuan) 0.62 0.64 0.66
Pirró and Euzenat (ICadhikari) 0.62 0.63 0.66

Our_Sim (ICseco) 0.65 0.70 0.70
Our_Sim (ICzhou) 0.57 0.56 0.59
Our_Sim (ICsanchez) 0.67 0.78 0.76
Our_Sim (ICs&b) 0.66 0.77 0.74
Our_Sim (ICmeng) 0.63 0.65 0.67
Our_Sim (ICyuan) 0.60 0.64 0.64
Our_Sim (ICadhikari) 0.62 0.65 0.66
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Table 5
Shows CC values of different existing intrinsic IC based similarity models and Our similarity
model for MeSH ontology.

Similarity models IC models Corr. Phy. Corr. M.Co. Corr. Avg.

Resnik (ICseco) 0.39 0.39 0.40
Resnik (ICzhou) 0.40 0.41 0.42
Resnik (ICsanchez) 0.38 0.37 0.39
Resnik (ICs&b) 0.38 0.38 0.40
Resnik (ICmeng) 0.47 0.52 0.51
Resnik (ICyuan) 0.45 0.48 0.48
Resnik (ICadhikari) 0.45 0.48 0.48

Lin (ICzhou) 0.41 0.42 0.43
Lin (ICseco) 0.39 0.40 0.41
Lin (ICsanchez) 0.38 0.38 0.39
Lin (ICs&b) 0.40 0.39 0.41
Lin (ICmeng) 0.48 0.53 0.52
Lin (ICyuan) 0.45 0.49 0.49
Lin (ICadhikari) 0.45 0.48 0.48

Jiang and Conrath (ICseco) 0.34 0.33 0.34
Jiang and Conrath (ICzhou) 0.39 0.39 0.40
Jiang and Conrath (ICsanchez) 0.36 0.36 0.37
Jiang and Conrath (ICs&b) 0.44 0.41 0.44
Jiang and Conrath (ICmeng) 0.49 0.52 0.52
Jiang and Conrath (ICyuan) 0.48 0.49 0.50
Jiang and Conrath (ICadhikari) 0.46 0.48 0.49

Sánchez and Batet (ICseco) 0.38 0.39 0.40
Sánchez and Batet (ICzhou) 0.43 0.44 0.45
Sánchez and Batet (ICsanchez) 0.44 0.47 0.47
Sánchez and Batet (ICs&b) 0.49 0.51 0.52
Sánchez and Batet (ICmeng) 0.51 0.56 0.56
Sánchez and Batet (ICyuan) 0.50 0.54 0.54
Sánchez and Batet (ICadhikari) 0.49 0.53 0.53

Pirró and Euzenat (ICseco) 0.44 0.46 0.47
Pirró and Euzenat (ICzhou) 0.46 0.49 0.49
Pirró and Euzenat (ICsanchez) 0.42 0.44 0.45
Pirró and Euzenat (ICs&b) 0.44 0.46 0.47
Pirró and Euzenat (ICmeng) 0.51 0.58 0.57
Pirró and Euzenat (ICyuan) 0.49 0.56 0.55
Pirró and Euzenat (ICadhikari) 0.50 0.56 0.55

Our_Sim (ICseco) 0.43 0.45 0.46
Our_Sim (ICzhou) 0.44 0.46 0.47
Our_Sim (ICsanchez) 0.50 0.56 0.55
Our_Sim (ICs&b) 0.51 0.56 0.56
Our_Sim (ICmeng) 0.49 0.55 0.54
Our_Sim (ICyuan) 0.48 0.53 0.52
Our_Sim (ICadhikari) 0.47 0.51 0.51
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ogy is selected. Whereas the combination of Jiang & Conrath similarity model and ICs&b

gives the best correlation scores when WordNet ontology with M&C dataset is selected
among all the existing methods.

Hence, in spite of the significant accuracy obtained by our proposed similarity model,
the combination of our similarity calculator and an existing IC calculator which gives the
best result also varies from ontology to ontology. For instance, in case of SNOMED-CT
ontology, our similarity calculator produces the best result when embedded with ICsanchez

(Sánchez et al., 2011). On the other hand, in case of MeSH, our similarity calculator
produces the best result when embedded with ICs&b. Figure 2 highlights the accuracy
of our proposed similarity calculator when embedded with different IC calculators for a
particular ontology. From that Figure 2, we can also identify which IC calculator gives the
best result when embedded with our proposed similarity model for a particular ontology.

Further to note that, the accuracy of all the state of the art similarity measures,
reported in their respective papers, are evaluated on a single ontology (Resnik, 1995; Lin,
1998; Jiang & Conrath, 1997; Sánchez & Batet, 2011; Pirró & Euzenat, 2010). The reason
behind this is the structural differences of different ontologies will not allow to design a
generic similarity model without analyzing the key differences between the ontologies and
tune it based on the structure of the ontology. For example, we have found the structure
of DCS(ci, cj) changes from ontology to ontology (e.g. WordNet, SNOMED-CT, MeSH)
significantly as described earlier in “Proposed Approach”. Hence, to produce a generic
similarity measure we consider a binary parameter (k = 0 or 1) to count the influence of
the members of DCS(ci, cj) in such ontology where it actually matters.
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Figure 2 . Shows the accuracy of our similarity calculator embedded with different IC
calculators for different ontologies.

To further illustrate the accuracy of our proposed intrinsic IC based similarity model,
we compare it with the state of the art corpora based IC dependent SS models such as,
Resnik (Resnik, 1995), Lin (Lin, 1998), and J&C (Jiang & Conrath, 1997) similarity model.
The motivation is to show the significance of intrinsic IC based similarity model over the
corpora based measures. Resnik, Lin, and J&C IC calculation techniques are pure corpora
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based. It is not possible to simulate them in our experimental environment. Hence, we
consider results obtained by their original simulations. For a fair comparison, we simulate
our proposed model taking the same number of noun pairs from M&C dataset as they have
considered. Correlation obtained by their methods range from 0.70 to 0.73 which is far
lower than correlation obtained (0.86) by our proposed similarity model. Table 6 shows the
comparison between corpora based measures vs our proposed model. The last column of
the table shows the correlation values with respect to M&C dataset. It is clear from the
Table 6 that intrinsic IC based similarity models give higher correlation compared to the
corpora based IC dependent similarity models.

Table 6
Shows CC values of corpora based similarity models and our proposed similarity model for
28 term pairs.

Similarity models Type No. of Correlation

(with IC models) noun pairs with M&C

Resknik (Resnik IC (Resnik,
1995) )

corpora-based 28 0.72

Lin (Resnik IC (Resnik,
1995))

corpora-based 28 0.70

Jiang and Conrath (Resnik IC
(Resnik, 1995))

corpora-based 28 0.73

Our_Sim
(Adhikari IC (Adhikari et al.,
2015))

intrinsic 28 0.86

Conclusion

In this paper, we propose a domain-independent intrinsic IC based SS model for find-
ing the similarity between concepts within a single ontology. In this work, we introduce
a new structural aspect called DCS(ci, cj). We experiment on three different ontologies
ranging from generic (WordNet) to domain specific (SNOMED-CT, MeSH) ontologies. The
experimental results show that our proposed SS calculation model is compatible enough to
produce significant SS scores when embedded with the state of the art intrinsic IC calcu-
lators. T able 6 shows that the proposed similarity calculation model also surpasses all the
corpora based state of the art methods. Our proposed similarity model produces significant
results when we conduct the experiments on MeSH and WordNet ontologies. Even the
results gained from the experiments performed on ontology like SNOMED-CT show that
our proposed similarity calculator surpasses all the existing state of the art approaches with
a significant margin. The similarity value produced by our model is more accurate and
effective because it achieves a high correlation with human evaluation compared to state of
the art similarity models.

In the future, we aim to achieve the following goals. (i) Finding a combination of SS
and IC calculator that produce the best result for any ontology. (ii) Design a SS calculator to
find similarity between two concepts belonging to two or more than two distinct ontologies.
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