
Dutta, Biswanath. and Das, Puranjani. (2023). Semantic Annotator for Knowledge Graph Exploration: Pattern-
Based NLP Technique. Journal of Information and Knowledge (Formerly SRELS Journal of Information
Management) (accepted)

1

Semantic Annotator for knowledge Graph Exploration: pattern-

based NLP technique

ABSTRACT

Semantic Annotator for knowledge Graph Exploration, abbreviated as SAGE is a “Thing” annotation system. Here,

“Thing” refers to any concept, named individuals (aka entities), entity relations, and attributes. The system is primarily

built based on the idea of “string to thing” where the “string” is any given text (e.g., abstract of an article) as input by

the user. For annotation, the system utilises the knowledge graph(s). SAGE can be used by anyone for annotating

Things and for their exploitation on the Web. The annotation of things is done through exact and partial matches. For

the exact matches, the system makes explicit the name of the knowledge graphs it is sourced from. It also shows the

type hierarchies for the matched named entities. In the current work, we describe the SAGE annotation system, designed

on pattern-based NLP techniques, along with its features and various usage, and the experimental results.

KEYWORDS

Semantic annotation, thing annotation, entity annotation, knowledge graph exploration, thing spotting,

NLP, semantic annotation platform, automated annotation, application

1. INTRODUCTION

A knowledge graph (KG) refers to a representation of an intelligent web of data that is informed by an

ontology [1]. It forms a knowledge base storing the interlinked data descriptions of entities (aka objects,

both abstract and physical) and concepts (aka entity types) following the graph-structured data model. KGs

can be viewed as data that can be queried, as a graph that can be analyzed, and as a knowledge base from

which new facts can be derived [2, 21]. There have been many KGs built across different domains both in

academia and industry, for instance, CODO KG [3], DTO [4], BAO [5], DRON [6], the Google Knowledge

Graph [7], DBpedia KG [8], Wikidata [9]. KG is used in information search and retrieval, recommendation,

chatbot, knowledge management, intelligent system design, data governance, etc. Several real-world

applications are built centering KGs. For instance, question-answer systems [10], like WolframAlpha [11],

semantic search and retrieval (e.g., Google search engine’s results ‘infobox’ that appears next to the search

results), information integration (Gupta et al., 2012), data visualisation and exploration (e.g., CovidGraph

[13]), and automatic annotation (e.g., DBpedia Spotlight).

The current work focuses on automatic annotation. It designs and develops an automated semantic

annotation system, namely SAGE, a Semantic Annotator for Exploration of “things” in a Knowledge

Graph(s). The “things” refers to entities, entity relationships, attributes, and entity types (aka concepts).

Here, annotation refers to a process of spotting, linking, and extracting information about the “things” in

the input text from the KG. This work is primarily inspired by DBpedia Spotlight [14] and other general-

purpose text annotation systems, such as BRAT [15], Doccano [16], etc. DBpedia Spotlight is a tool used

for semantic annotation based on DBpedia KG. It is limited to named entity recognition and does not

annotate concepts, entity relations, or attributes. FICLONE is another tool that improves upon DBpedia

Spotlight, but its performance and accuracy are dependent on the annotations from DBpedia Spotlight [17].

The other most recent annotation systems are, for example, MTab4D [18] and LinkingPark [19]. These

studies are limited to the annotation of tabular data. MTab4D is a semantic annotation system for tabular

data matching table elements with KGs, such as DBpedia KG. It combines multiple matching signals from

table elements, such as table columns to entity types, columns to properties, and cells to entities. The study

addresses schema heterogeneity, data ambiguity, and noisiness. LinkingPark is an automatic semantic table

interpretation system. It matches tabular elements to KGs. LinkingPark is a stand-alone system designed as

a modular framework with the following modules: an entity linking module, a property linking module, a

type inference module, and a knowledge graph module.

Dutta, Biswanath. and Das, Puranjani. (2023). Semantic Annotator for Knowledge Graph Exploration: Pattern-
Based NLP Technique. Journal of Information and Knowledge (Formerly SRELS Journal of Information
Management) (accepted)

2

SAGE is a standalone desktop application for semantic annotation. It follows the idea of "strings to things."

The system annotates the KG things that exist in the input text as strings. In other words, it identifies and

labels strings in an input text with things (the elements that are defined with URIs) found in the KG. In a

KG, each thing has a URI. SAGE binds the URIs of the things in the KG to the phrases present in the text.

So, the thing from the user-given text is annotated, linked, negotiated, and explored on the Web. The

advantage of SAGE over the other existing annotations systems are many. They are: it is not restricted to

any specific KG, users can choose their KG as per the domain needs and annotation tasks; the annotation

is supported for entities, relations, attributes, and concepts; allows the annotation based on multiple KGs at

a time; provides user-friendly GUI to add input text and to upload/ delete KGs for the annotation tasks;

support the upload of input text in multiple formats, such as .txt, .doc, .pdf, .rtf; supports the information

retrieval about annotated things from the KG without writing a query; annotations are made following the

exact match and partial match approach; spots the missing terms (including the entities) from the KG but

available in the input text. Hence, SAGE can be referred to as a single platform for the exploration of KG

in multiple ways.

SAGE has a wide range of uses. For instance: (1) it can be utilized as a library tool to enhance the users’

reading experiences. For instance, it can be plugged into digital library systems, abstracting databases, etc.

This will enable readers to unearth things and their related facts in the text from the KG while reading the

documents; (2) in a similar fashion, for example, the doctors and laboratory assistants can run their notes

and transcription through SAGE to explore things (e.g., medical terms, diseases, drugs, viruses) that they

are not familiar with; (3) the ontologists can use SAGE as a platform to identify the gaps in their ontology

against the domain literature; (4) can be utilized for comparing the coverage of multiple KGs.

The current work is built using pattern-based NLP techniques. Pattern-based NLP, a subfield of NLP

(Natural Language Processing), approaches are based on linguistic or lexicographic knowledge, as well as

existing human knowledge regarding the contents of the text that is to be processed. The knowledge is

mined by using predefined or discovered patterns [20]. The process involves using various techniques such

as regular expression and string manipulations to identify specific patterns in the text data. The extracted

patterns can then be used for various NLP tasks, such as text classification, named entity recognition,

sentiment analysis, and more. The goal of pattern-based NLP is to automate the extraction of useful

information from unstructured text data and make it easier to analyze and understand. The evaluation of

SAGE reveals impressive results.

The main contributions of this work are: (1) discusses the design and development of a desktop application

called SAGE for "thing" annotation from KGs; (2) the application provides GUI for uploading knowledge

graphs, input text for annotation, and exploration of things from the KGs with ease; (3) the application

reduces the technological complexity of exploration of KGs which usually demand the user’s technological

expertise.

The rest of the paper is organized as follows: section 2 discusses the SAGE features followed by the SAGE

architecture in section 3 and SAGE design approaches in section 4. Section 5 describes the results and

evaluation of the system. Section 6 concludes the paper by mentioning the limitations and future directions

of the current work.

2. SAGE FEATURES

We briefly discuss here the following primary features of the SAGE semantic annotation system: (1)

exploration of KGs without running a query (2) identification of missing things in a KG (3) estimation of

coverage of KGs (4) KG statistics. The SAGE features are detailed in [21].

Exploration of KG

SAGE enables its users (e.g., an ontologist, a domain expert, a KG explorer, a reader) to search and analyze

KGs in relation to literature (e.g., scholarly literature). By simply copying and pasting a text excerpt, or by

uploading a text document from the user’s field of interest, the tool will annotate any term in the text

Dutta, Biswanath. and Das, Puranjani. (2023). Semantic Annotator for Knowledge Graph Exploration: Pattern-
Based NLP Technique. Journal of Information and Knowledge (Formerly SRELS Journal of Information
Management) (accepted)

3

associated with a thing in the KG and link it to its URI, allowing the user to easily explore them from their

web source. With SAGE, users don't need to have any prior knowledge of query building or coding, making

it accessible to anyone. Additionally, SAGE provides a user-friendly interface for uploading one's own KG

in RDF/XML format, enabling users to search the graph of their choice. Multiple KGs can also be selected

for the exploration of literature. As mentioned above, SAGE supports two kinds of annotations based on

the level of matching. These are based on the exact matches and partial matches as described below.

a) Exact match- SAGE identifies and annotates the exact matching terms in a text excerpt, linking them to

their URIs. Upon being clicked the description of the term on the Web will open up. For example, terms

such as pneumonia and diseases found in a paper [22] were annotated against CODO [27], a COVID-19

ontology. The exact matches are presented in two ways (in-text annotation and annotated list of terms) to

provide a comprehensive view of the annotations as described below-

1. The text may not have enough space to display the source vocabularies (aka ontology) for the IRIs that

the terms are annotated with. So, all terms with exact matches in the selected vocabularies by the user are

presented in an annotated list with the source vocabularies indicated next to them in circular parenthesis

“()”, as seen in Figure 1.

2. It is not possible to show all the exact matches within the text itself. Multiword terms, such as "Covid-

19 diagnosis," are given priority in the in-text annotations, while single words are listed in the annotated

list of exact matches. For example, "Covid-19 diagnosis" would be annotated within the text, while "covid-

19" and "diagnosis" would appear in the annotated list as seen in Figure 1.

3. When a term has multiple exact matches in various KGs (when more than one KG is selected for

annotation), it becomes complex to annotate the term within the text using multiple IRIs. To overcome this,

one of the IRIs is annotated in the text while both of them can be found in the annotated list of terms. This

allows for a clear distinction of multiple matches for the same term from different KGs. If a term, like

"covid-19", is found in two Covid-19 related KGs, only one IRI will be annotated in the text, and then both

will be listed in the annotated terms list.

Figure 1. Main window, with exact matches Figure 2. Partial matches

b) Partial match- SAGE also presents a list of partially matched terms, offering users contextually relevant

resources. These terms do not exist independently in a KG, but as parts of other terms. For example, we

can see words like ‘transmission’, ‘released’, etc. in Figure 1, which are not being highlighted or annotated.

Upon asking SAGE to show the Partial Matches found from CODO ontology, Figure 2 opens up. In the

figure, the words ‘transmission’ and ‘released’ extracts the things like ‘coronavirus infection’ and ‘released

on’ respectively, which are annotated. This shows that the words like ‘transmission’ and ‘released’ exist as

a part of the words mentioned above. It can be noticed that the word ‘transmission’ does not exist in

‘coronavirus infection’, and neither does the word ‘released’ occur in ‘date of discharge’. This is because

Dutta, Biswanath. and Das, Puranjani. (2023). Semantic Annotator for Knowledge Graph Exploration: Pattern-
Based NLP Technique. Journal of Information and Knowledge (Formerly SRELS Journal of Information
Management) (accepted)

4

‘infection’ is a synonym for ‘transmission’ and ‘discharge’ is a synonym for ‘released’. The approach is

elaborated in section 4, algorithm 4.

Identification of missing things in a KG

As can be seen from Figure 1, the things like epidemic, etiology remain unannotated. This means that the

terms "epidemic" and "etiology" were not found in CODO KG. These terms may still be relevant to the

subject and could be valuable additions to the KG/ ontology. SAGE spots such missing terms and lists them

along with their parts of speech (POS). This feature is useful for maintaining ontologies/ KGs and ensuring

that all relevant terms are included in them. For implementing this feature in SAGE, the Stanford POS

tagger is used from the NLTK library of Python. Originally, Stanford POS tagger categorised the terms in

the given string into 36 POS categories, for example, CC, VBG, VBZ, NNP, NNPS, TO, etc. [23]. However,

SAGE drops some of the categories, especially those that are not useful from the KG perspective, for

example, DT, TO, WRB, and CC. It further analyses and reorganizes the rest of the categories (e.g., NN,

NNP, VBG, JJ, RB, etc.) into six: Nouns, Proper Nouns, Verbs, Adjectives, Gerunds, and Adverbs. For

example, NN (Noun, singular or mass) and NNS (Noun, plural) are categorised as Noun, NNP (Proper

Noun, singular) and, NNPS (Proper Noun, plural) are categorised as Proper Noun, and so forth. SAGE

displays the results as a dictionary structure where the POS is the key, and the words exhibiting the

mentioned POS are listed as the value of the key as shown in Figure 3.

Figure 3. Depicts unmatched terms with their POS

Tree view of entity types

SAGE shows the type information for the exactly matched entities in a tree structure from the KGs. For

example, COVID-19 is an entity (a named entity) that was found in the exact match from CODO as shown

in Figure 1. Figure 4(a) shows the type information of “COVID-19” in the hierarchy indicating that it is a

type of "Coronavirus infection", which falls under the supper class “Disease” in CODO. Similarly, Figure

4(b) shows the type information of “COVID-19” and the class hierarchy when the CIDO is considered.

This feature of SAGE lets the user explore more about the entities found in the input text, such as their class

type and their entire hierarchy in an ontology/ KG. This also helps in comparing and analysing the

granularity and specificity of ontologies at their hierarchy level.

Figure 4a. Exact matched entity types in CODO Figure 4b. Exact matched entity types in CIDO

Predefined query

Dutta, Biswanath. and Das, Puranjani. (2023). Semantic Annotator for Knowledge Graph Exploration: Pattern-
Based NLP Technique. Journal of Information and Knowledge (Formerly SRELS Journal of Information
Management) (accepted)

5

SPARQL SELECT queries are run on exact matches, which returns all the tuples with the exact matched

things. The query syntax is programmed and gets executed upon clicking the matched terms. The user does

not have to write the query. Figure 5 shows the query results from the KG against an exactly matched thing

“COVID-19.” As can be seen from the figure, the system retrieves its related data (as triples) available in

CODO, e.g., its type information, location information, name, etc.

Figure 5. The list of exact matches and a snippet of the query results

Estimation of coverage of KG

The coverage calculation formula in SAGE is used to determine the percentage of exact matches found in

the uploaded text against a selected KG. This feature enables ontology engineers to visualize and compare

the coverage of multiple ontologies, KGs, etc. within a domain. The coverage of each KG is represented in

terms of the exact matches found from the text after dropping stopwords. For example, as indicated in

Figure 6, the exact match things found from the text in Figure 1, against CODO is 2.57% and CIDO is

0.12%. Equation 1 provides the coverage calculation formula.

Figure 6. Coverages of two KGs against a piece of text, with 220 words after excluding stopwords

KG statistics

As mentioned above, the user can upload the KG of their choice using the GUI provided by SAGE. The

interface allows the user to choose the most relevant KGs for their annotation needs. The KGs uploaded

are displayed in the right-hand panel of the main window in SAGE (see Figure 1). This panel shows the

names of the uploaded KGs along with the number of things in each KG. This information helps the user

to check the overall coverage of various KGs and compare them, which is important in evaluating the

usefulness of the KGs for a particular task. For example, as depicted in Figure 1, CIDO [24] and CODO

ontologies consist of 11598 and 856 things, respectively.

3. SAGE ARCHITECTURE

We describe the architecture of SAGE annotation system and its various features.

SAGE is designed following a 3-layer architecture as shown in Figure 7. As can be seen from the figure,

the system takes two types of inputs: (1) text to be annotated and (2) KGs to be explored. The input text is

a string from which the things will be identified and annotated based on the input KGs. Data Layer holds

the knowledge base(s) in JSON format that is by extracting things and related information from the input

KGs given in RDF/XML format. The business logic layer is responsible for receiving, processing, and

responding to annotation tasks and other service requests (e.g., facts query, entity type, and type hierarchy,

KG coverage). It finds exactly-matched things in the input text with things in the KG, retrieves URIs and

Dutta, Biswanath. and Das, Puranjani. (2023). Semantic Annotator for Knowledge Graph Exploration: Pattern-
Based NLP Technique. Journal of Information and Knowledge (Formerly SRELS Journal of Information
Management) (accepted)

6

type information, and runs SELECT SPARQL queries on them. It also handles partial matches (the

contextual search [25]) and categorizes unmatched terms according to their parts of speech (POS). The

system allows users to learn more about things by linking them to their URIs and descriptions on the Web.

The presentation layer provides GUI to send information service requests and receive responses. It displays

the results of text annotation, query results, and type information to the user. The SAGE software is freely

available to download and use from https://tinyurl.com/yc8p5nm3. Note: SAGE is an open-source project,

the source code will soon be released through the GitHub platform https://github.com/.

Figure 7. Software Architecture of SAGE

4. SAGE DESIGN APPROACH

We describe the primary algorithms that have been designed and developed to build the core functions of

SAGE, such as exact match, partial match, and the creation of the class hierarchy described above. To

explore a KG, SAGE first creates a knowledge base (KB) from the user-provided KG. The approach to KB

creation is detailed below. We define a function called string_found, a string-matching function that is used

throughout the SAGE pipeline is also described.

Algorithm 1: Knowledge Base creation

SAGE presently accepts the KGs in RDF/XML. SAGE’s GUI allows users to upload or delete KGs directly

from the interface (as depicted in Figure 1). Once the user uploads a KG, the system produces the KB as a

JSON dictionary. For KB creation, we define a function called create_dictionary for base creation (see

Algorithm 1). The KB is structured and formed with the following elements: words, types, subclassof,

subpropertyof, inverseof, comment, domain, and range. Here, Words is a set consisting of synonymous

terms used to describe a thing in a KG. The field types is used to contain the class of which an individual

is an instance. Subclassof contains the parent class of classes in the KG. Subpropertyof contains the parent

property of an object property or data property. Inverseof contains the inverse of a property described in

the KG. Comment provides a description of the thing. Domain and Range are applicable for properties in

the KG. A property links subject and object. The subjects and objects linked by a property are members of

classes (named-entities). The class(es) in which the subject values of the property falls is the Domain

class(es) and the class(es) in which the object values of the property falls is the Range class(es) [26].

The KB is created by extracting the data from a KG against each of the above-mentioned elements. The

element words captures the data from various fields of a KG. Presently, SAGE supports the following data

fields of a KG: rdfs:label, skos:altlabel, skos:prefLabel, skos:hiddenLabel NDF-RT:Synonym,

(http://radlex.org/RID/) RID:Synonym, RID:Preferred_name, NDF-RT:MeSH_Name, NDF-

RT:Display_Name (S8 of Algorithm 1). Here, “rdfs:,” “skos:”, “NDF-RT:” etc. represents the namespace

https://tinyurl.com/yc8p5nm3
http://radlex.org/RID/

Dutta, Biswanath. and Das, Puranjani. (2023). Semantic Annotator for Knowledge Graph Exploration: Pattern-
Based NLP Technique. Journal of Information and Knowledge (Formerly SRELS Journal of Information
Management) (accepted)

7

prefixes for the URIs, “http://www.w3.org/2000/01/rdf-schema#”,

“http://www.w3.org/2004/02/skos/core#”, and “http://radlex.org/RID/”, respectively. The element

“subClassOf” stores the data from rdfs:subClassOf a KG (S9 of Algorithm 1). The same is followed for

capturing and storing data for other elements of a KB, as shown in S10-S15 of Algorithm 1. Figure 8

provides a glimpse of a KB. As can be seen from figure 8, in the KB, each thing is stored with its URI as

its key. For example, in the figure, “https://w3id.org/codo#bedShortage” is a thing and it is stored as a key.

Figure 8. Part of a JSON file created from a knowledge graph

Algorithm 1

Require: A knowledge graph in RDF/XML

Ensure: A JSON file containing the data in the knowledge graph

S1: DEFINE FUNCTION create_dictionary(base_name):

S2: parse the file into 'xml'

S3: SET Prefixes= [Predefined Prefixes listed on the top]

S4: SET template= {“words”:[], “types”=[] "subclassof": [], "subpropertyof": [],

 "inverseof": [], "comment": [], "domain":[], “range”:[]}

S5: SET Things=[Make a set of all ‘things’ through tags (these tags contain ‘ObjectProperty’,

‘DatatypeProperty’, ‘Class’, ‘NamedIndividual’, ‘Description’)]

S6: SET base={}

S7: For things in Things do

S8: find rdfs: label, skos: altlabel, NDF-RT:Synonym, NDF-RT MeSH_Name, NDF-RT:

Display_Name, RID:Synonym, RID:Preferred_name, skos:PrefLabel, skos:hiddenLabel and store the

values in template[‘words’]

S9: find rdfs: subClassOf and store the values in template[‘subclassof’]

S10: find rdfs: subPropertyOf and store the values in template[‘subpropertyof’]

S11: find owl: inverseOf and store the values in template[‘inverseof’]

S12: find rdfs: comment or skos:definition and store the values in template[‘comment’]

S13: find rdfs: domain and store the values in template[‘domain’]

S14: find rdfs: range and store the values in template[‘range’]

S15: find rdfs: type and store the values in template[‘type’]

S16: base[Thing URI]= template

http://radlex.org/RID/

Dutta, Biswanath. and Das, Puranjani. (2023). Semantic Annotator for Knowledge Graph Exploration: Pattern-
Based NLP Technique. Journal of Information and Knowledge (Formerly SRELS Journal of Information
Management) (accepted)

8

S17: make template empty

S18: base[“PREFIXES”]=Prefixes

S19: Save base as JSON file

Algorithm 2: string_found function

The string_found function is created for the use of string matching throughout the SAGE pipeline. In the

string_found function (algorithm 2), we take 2 input strings, namely string1 and, string2. string1 consists

of the text we need to find in string2. This algorithm checks if the singular or plural version of the text in

string1 is present in string2 (see steps S6 and S8). If the function finds the singular or plural version of the

text in string1 present in string2, it returns the singular or plural of the text in string1 as the output,

respectively. This can be seen in S7 and S9. If the function fails to find any match, it returns False as seen

in S10.

Algorithm 2 string_found

Require: string1 and string2

Ensure: matched version of string1 in string2 or False

S1: DEFINE string_found(string1, string2)

S2: if string1.lower() in string2.lower() then

S3: l=string2.lower().index(string1.lower())

S4: token=string2[l: l+len(string1)]

S5: return token

S6: else if plural(string1.lower()) in string2.lower() then

S7: return plural(string1)

S8: else if singular(string1.lower()) in string2.lower() then

S9: return singular(string1)

S10: return False

Algorithm 3: Exact match

Algorithm 3 describes the process of finding exact matches against a text corpus. For this, we match the

terms in the set of words for each thing in the KB against the text corpus using the string_found function

defined in Algorithm 2. Once a match is found, we retrieve the URI of the thing from the KB and bind it

with the matched term in the input text. As mentioned above (section 2), in SAGE two types of annotations

happen: in-text and as a list of annotated things. The things used for both are stored separately in two

dictionaries with their related necessary information. This function also returns the remaining strings from

the input text after stripping off the terms which found an exact match in the KB.

Algorithm 3 exact_matches

Require: input_string and base (json file(s))

Ensure: 2 dictionaries for matches Annotation_Matches, All_matches, and unmatched part of the

input_string

S1: DEFINE exact_matches(string, base)

S2: Vector=After dropping punctuation and stopwords from the string

S3: SET Annotation_Matches={}

S4: for j in base.keys() do

S5: SET terms=base[j][1]

S6: SET types=base[j][0]

Dutta, Biswanath. and Das, Puranjani. (2023). Semantic Annotator for Knowledge Graph Exploration: Pattern-
Based NLP Technique. Journal of Information and Knowledge (Formerly SRELS Journal of Information
Management) (accepted)

9

S7: for term in terms do

S8: if STRING FOUND(term, Vector) then

S9: SET key=STRING FOUND(term, Vector)

S10: Annotation_Matches[key]=(types,j)

S11: SET All_Matches={}

S12: for i, j in Annotation_Matches.keys() do

S13: if i!=j then

S14: if STRING FOUND(i,j) then

S15: SET All_Matches[i]=Annotation_Matches[i]

S16: if keys in Annotation_Matches.keys() and All_Matches.keys() then

S17: DELETE Annotation_Matches[i]

S18. for keys in All_Matches.keys() do

S19: if keys in Vector then

S20: Vector.drop(keys)

S21. return Annotation_Matches, All_Matches, Vector

It is worth noting that our search process goes in the following way- terms in the KG(s) are searched for in

the text. Searching could have been done from the other direction as well, i.e., terms in input text are

searched in KG. We have opted for the former one, i.e., terms in the KG are searched for in the text because

the terms in the ontology often happen to be several words in length (phrases). So, to proceed with the

search from text to ontology, one has to create phrases of varying lengths and then perform the search. This

increases the complexity of the program as explained below.

Say, there are n things in the given KG, and an m words-long text corpus is given to be annotated. Let us

assume that these things do not have synonyms.

When we go from KG to text the search is executed

n x m times. Now, when we go from the text to KG, first we create phrases. So, if there are m words, then

we have (m-1) 2-word phrases, (m-2) 3-word phrases, (m-3) 4-word phrases, (m-4) 5-word phrases, (m-5)

6-word phrases, till we have 1 m-word phrase. Therefore, the number of terms will be,

Hence, the search will be conducted n x m! times.

Thereby, to achieve a reduced complexity we perform the search from the KG(s) to the text corpus.

 If the things in the KG(s) had x number of synonyms on average, the equation (1) would change to,

Even in this case, the complexity is lesser if we go from KG to text for searching.

Algorithm 4: Partial match

Algorithm 4 describes the process of finding partial matches. Here, we find the existence of unmatched

terms as part of ‘things’ in the knowledge base. The algorithm takes the Vector (a string of terms that do

not find any exact match from the knowledge base) returned from Algorithm 3, as the input. We first split

the input string into a list of words. For each word in the unmatched part of the input string, we extract its

synonyms from WordNet [28] and create a list of terms to be matched against the KB (see S6 of Algorithm

4). We use synonyms of the unmatched words, along with the existing unmatched words, to increase the

recall of the system. Sometimes, knowledge resources fail to accommodate all the terms associated with a

‘thing’, and the system misses out on spotting contextually relevant ‘things’. Adapting this approach of

creating a list of synonyms for an unmatched term, has significantly increased the recall, as can be seen in

Evaluation section 3. We reuse the string_found function in the partial_matches function too (see step S11).

Dutta, Biswanath. and Das, Puranjani. (2023). Semantic Annotator for Knowledge Graph Exploration: Pattern-
Based NLP Technique. Journal of Information and Knowledge (Formerly SRELS Journal of Information
Management) (accepted)

10

Algorithm 4 partial_matches

Require: unmatched string and base (json file(s))

Ensure: Partial in the form of a dictionary

S1: DEFINE partial_matches(Vector, base) *Vector from Algorithm 3

S2: SET Partial ={}

S3: Vector=drop stopwords and punctuations

S4: Vector= Vector.split()

S5: for i in Vector do

S6: list_of_synonyms=get_synonyms_from wordnet(i)

S7: for k in list_of_synonyms:

S8: for j IN base.keys() do

S9: SET terms=base[j][1]

S10: for term in terms do

S11: if STRING FOUND(i, term) then

S12: if i in Partial.keys() then

S13: Partial [i].append([term, j])

S14: else

S15: Partial [i]=[[term, j]]

S16: break

S17: return Partial

Algorithm 5: Entity tree view

For the named-entities found in the text from the KB, SAGE presents its type information. The system

expands the class hierarchy tree of the type of the named-entity as can be seen in Figure 4. The Treeview

widget of Tkinter is used for this purpose. Algorithm 5 describes the basic algorithm required to extract the

hierarchy tree for a particular class. The defined function create_hierarchy, a recursive in nature (see step

S3). The function is called again within itself in step S8 of algorithm 5. The function looks for the type

information of the named-entity, which gives the URI of a class. The URI of the class is used to fetch its

parent class’s URI (listed under ‘subclassof’ in the KB). The function then again calls itself to fetch the

parent class’s URI of the previously obtained class. The dictionary hierarchy stores the classes and their

various levels, where “1” is the named-entity, “2” type of named-entity (which is a class), “3” parent class

of the class found in level 2, “3” parent class of the class found in level 3, and henceforth. The recursion

continues till the ‘subclassof’ field of the class found in the previous step is found to be empty.

Algorithm 5 Create Hierarchy

Require: knowledge_base (JSON file), URI of the named_entity type whose class hierarchy is to be

found

Ensure: hierarchy in the form of a dictionary which looks like this {1: named_entity 2: Type class 3:

Parent of type class ……}

S1: hierarchy={1:named_entity, 2: named_entity_type}

S2: num=3

S3: DEFINE create_hierarchy(knowledge_base, named_entity_type_URI, num):

S4: while knowledge_base[named_entity_type_URI][subclassof]!=[]:

S5: parent_class_URI=knowledge_base[named_entity_type_URI][subclassof]

Dutta, Biswanath. and Das, Puranjani. (2023). Semantic Annotator for Knowledge Graph Exploration: Pattern-
Based NLP Technique. Journal of Information and Knowledge (Formerly SRELS Journal of Information
Management) (accepted)

11

S6: hierarchy[num]=knowledge_base[parent_class_URI][words][0]

S7: num=num+1

S8: create_hierarchy(knowledge_base, parent_class_URI, num)

S9: return hierarchy

Predefined query

The best way to explore a KG is through a SPARQL query. SAGE provides the user the facility to run

SELECT queries on the exact matches found in the text. This feature is independent of the user’s ability to

write SPARQL queries and lets the non-experts explore the KG as well. The RDFLIB library of Python is

used to write and run a query on the given graphs. When the exact matches are found, the system

automatically retrieves the results, whether the “thing” is a class, property, or instance along with the

information about the source KG. Table 1 provides the pre-defined query syntax that the system runs. Here,

s stands for the subject, p for the predicate, and o for the object. When a class is found, the query in row 1

column 3 of table 1 is run, substituting the URI of the class in the given position. Properties (Data and

Object) and instances also follow similarly, as shown in rows 2 and 3 of Table 1, respectively.

Sl. No. Thing Category Query Built

1 Class SELECT DISTINCT ?s ?p WHERE {?s ?p <URI of thing>}

2 Property SELECT DISTINCT ?s ?o WHERE {?s <URI of thing> ?o}

3 Instance SELECT DISTINCT ?p ?o WHERE {<URI of thing> ?p ?o}

Table 1: Query syntax for things search

5. RESULTS AND EVALUATION

Here, we discuss the experimental results and the system evaluation.

 A. Precision and Recall of Partial Matches: SAGE has compared the

precision and recall of things found in partial matches with and without

using WordNet as a resource. In figures 9 and 10, CODO ontology is used

as the knowledge base and the text is taken from a COVID-19-related

webpage of WHO. In Figure 9, SAGE found the things in bold as partial

matches for the terms in the column on the left. 5 things were found; hence

the recall is 5. When checked manually, all 5 of them were deemed

contextually relevant. Therefore, the precision is calculated to be 100%. In

Fig. 10, the recall rose to 29, with 24 contextually relevant recalls. Hence,

the precision became 82.76%.

Figure 9. Partial Match results without using Wordnet

Figure 10. Partial Match results after using WordNet

Dutta, Biswanath. and Das, Puranjani. (2023). Semantic Annotator for Knowledge Graph Exploration: Pattern-
Based NLP Technique. Journal of Information and Knowledge (Formerly SRELS Journal of Information
Management) (accepted)

12

After trying this experiment with multiple text samples on the same KB, we found the average precision of

SAGE’s partial match (after using WordNet as an additional resource) is 83.18%, whereas the recall has

increased significantly in all cases (more than double).

B. Feature comparison: Table 2 compares the features of DBpedia Spotlight with SAGE, and highlights

the advantages of SAGE over DBpedia Spotlight. It shows that SAGE is more customizable and domain-

friendly compared to DBpedia Spotlight, which is more of a general-purpose annotator. The KB in SAGE

can be customized, making it more suitable for domain-specific applications. SAGE also supports a wider

range of features, such as the categorization of retrieved entities as object Properties and datatype

Properties, which are not supported by DBpedia Spotlight. Additionally, SAGE enables ontology

maintenance by suggesting possible missing terms, which is not possible with DBpedia Spotlight.

Features DBpedia Spotlight SAGE

Annotation (of exact things)
Retrieval (of similar ‘things’, not complete matches) X
Things Retrieved

Object Properties X
Datatype Properties X
Classes
Named Individuals
Other Features

Type information
Spotting Missing Terms X
Upload Text Corpus
Customized KB supported X
Predefined Query X
Coverage of KB X

Table 2: Comparison of features of DBpedia Spotlight with SAGE

C. Response Time for primary annotation: Table 3 displays the results of testing SAGE's performance with

text excerpts of various lengths and KGs of various lengths. The results show that the response time of

SAGE for exact match search and retrieval is directly proportional to the length of the text input. As the

length of the text increases, the response time also increases. For example, in Table 3, we see this

relationship demonstrated using the CIDO ontology and different lengths of text excerpts.

Ontology Name Total Things Length of text before removing

stopwords

Annotation Time (seconds)

COVID-19

(CIDO)
11598

200 10.448144674301147

500 17.92897057533264

1000 29.03405261039734

2000 51.816343784332275

Table 3. Relationship between the time taken and length of input text taken from [29]

Dutta, Biswanath. and Das, Puranjani. (2023). Semantic Annotator for Knowledge Graph Exploration: Pattern-
Based NLP Technique. Journal of Information and Knowledge (Formerly SRELS Journal of Information
Management) (accepted)

13

6. CONCLUSION

SAGE has been designed and developed to utilise KG for “thing” annotation. It is capable of annotating

text with KG resources and its user-friendly GUI makes exploring things in KGs easy. The tool allows the

addition of multiple user-selected KGs to its KB. SAGE not only annotates named entities, but also

concepts, entity relations, and attributes. The tool offers two types of annotations: complete match and

partial match. A partial match is useful as it annotates contextually relevant resources. The tool also

identifies entities mentioned in the text but not defined as a resource in its knowledge base and displays

them through parsing with a POS system, which is helpful for further enriching the KG. The tool's

unmatched terms pane lists missing resources in the KG and in the future, a GUI will be developed to

enable knowledge engineers to add missing things to the KG directly from the SAGE's unmatched terms

result interface. At present, SAGE supports only the English language. We aim to support other languages

including Indic languages like Hindi and Bengali. Currently, SAGE is a standalone desktop software and,

in the future, we plan on providing SAGE as a web-based service.

ACKNOWLEDGMENT

This work is executed under the research project entitled "Integrated and Unified Data Model for

Publication and Sharing of prolonged pandemic data as FAIR Semantic Data: COVID-19 as a case study",

funded by Indian Statistical Institute Kolkata.

REFERENCES

1. Idehen, K.U. (2020). Linked Data, Ontologies, and Knowledge Graphs. Retrieved December 13, 2022,

from https://www.linkedin.com/pulse/linked-data-ontologies-knowledge-graphs-kingsley-uyi-idehen

2. Blumaumer, A., & Kiryakov, A. (n.d.). Knowledge Graphs: 5 Use Cases and 10 Steps to Get There -

Ontotext. Retrieved December 13, 2022, from

https://www.ontotext.com/knowledgehub/webinars/knowledge-graphs-5-use-cases-and-10-steps-to-

get-there/

3. DeBellis, M., & Dutta, B. (2021). The Covid-19 CODO Development Process: an Agile Approach to

Knowledge Graph Development. Communications in Computer and Information Science, 1459

CCIS:153–168. https://doi.org/10.1007/978-3-030-91305-2_12/COVER

4. Lin, Y., Mehta, S., Küçük-McGinty, H., Turner, J. P., Vidovic, D., Forlin, M., Koleti, A., Nguyen, D.

T., Jensen, L. J., Guha, R., Mathias, S. L., Ursu, O., Stathias, V., Duan, J., Nabizadeh, N., Chung, C.,

Mader, C., Visser, U., Yang, J. J., … Schürer, S. C. (2017). Drug target ontology to classify and

integrate drug discovery data. Journal of Biomedical Semantics, 8(1). https://doi.org/10.1186/S13326-

017-0161-X

5. BioAssay Ontology. (n.d.). Retrieved December 13, 2022, from

https://bioportal.bioontology.org/ontologies/BAO

6. Hogan, W. R., Hanna, J., Hicks, A., Amirova, S., Bramblett, B., Diller, M., Enderez, R., Modzelewski,

T., Vasconcelos, M., & Delcher, C. (2017). Therapeutic indications and other use-case-driven updates

in the drug ontology: Anti-malarials, anti-hypertensives, opioid analgesics, and a large term request.

Journal of Biomedical Semantics, 8(1). https://doi.org/10.1186/S13326-017-0121-5

7. Google Knowledge Graph. (n.d.). Retrieved December 13, 2022, from

https://developers.google.com/knowledge-graph

8. Lehmann, J., Isele, R., Jakob, M., Jentzsch, A., Kontokostas, D., Mendes, P. N., ... & Bizer, C. (2015).

Dbpedia–a large-scale, multilingual knowledge base extracted from wikipedia. Semantic web, 6(2):

167-195.

9. Vrandečić, D., & Krötzsch, M. (2014). Wikidata: a free collaborative knowledgebase.

Communications of the ACM, 57(10) : 78-85.

https://www.ontotext.com/knowledgehub/webinars/knowledge-graphs-5-use-cases-and-10-steps-to-get-there/
https://www.ontotext.com/knowledgehub/webinars/knowledge-graphs-5-use-cases-and-10-steps-to-get-there/
https://doi.org/10.1007/978-3-030-91305-2_12/COVER
https://bioportal.bioontology.org/ontologies/BAO

Dutta, Biswanath. and Das, Puranjani. (2023). Semantic Annotator for Knowledge Graph Exploration: Pattern-
Based NLP Technique. Journal of Information and Knowledge (Formerly SRELS Journal of Information
Management) (accepted)

14

10. Huang, X., Zhang, J., Xu, Z. & Ou, L (2021). A knowledge graph-based question-answering method

for medical domain. PeerJ Computer Science, 7. https://peerj.com/articles/cs-667/

11. Wolfram|Alpha. (n.d.). Retrieved December 13, 2022, from https://www.wolframalpha.com/

12. Gupta S., Szekely P., Knoblock C.A., Goel A., Taheriyan M. & Muslea M. Karma (2012). A system

for mapping structured sources into the Semantic Web. In Extended Semantic Web Conference,

Springer, 2012, pp. 430-434.

13. CovidGraph. (n.d.). Retrieved December 13, 2022, from https://healthecco.org/covidgraph/

14. Daiber, J., Jakob, M., Hokamp, C., & Mendes, P.N. : Improving efficiency and accuracy in multilingual

entity extraction. In Proceedings of the 9th International Conference on Semantic Systems (I-

SEMANTICS '13). Association for Computing Machinery, New York, NY, USA, 2013, pp.121–124.

https://doi.org/10.1145/2506182.2506198

15. brat rapid annotation tool. (n.d.). Retrieved December 13, 2022, from https://brat.nlplab.org/

16. doccano, GitHub. (n.d.). Retrieved December 13, 2022, from https://github.com/doccano

17. Chabchoub, M., Gagnon, M. & Web, A. Z (2018). FICLONE: improving DBpedia spotlight using

named entity recognition and collective disambiguation. Open Journal Semantic Web, 5(1): 12–28.

18. Nguyen, P., Kertkeidkachorn,N., Ichise, R., & Takeda, H. (2022) MTab4D: Semantic Annotation of

Tabular Data with DBpedia. Semantic Web.

19. Shuang Chen, Alperen Karaoglu, Carina Negreanu, Tingting Ma, Jin-Ge Yao, Jack Williams, Feng

Jiang, Andy Gordon, Chin-Yew Lin, (2022). LinkingPark: An automatic semantic table interpretation

system. Journal of Web Semantics, 74. https://doi.org/10.1016/j.websem.2022.100733.

20. Hogenboom, F., Frasincar, F., & Kaymak, U. (2010). An overview of approaches to extract

information from natural language corpora. Information Foraging Lab 69.

21. Dutta, B. & Das, P. SAGE: A Semantic Annotator for knowledge Graph Exploration. In ASIS&T

Mid-Year Conference “Expanding Horizons of Information Science and Technology and Beyond”,

April 11-13, 2023, virtual, https://doi.org/10.5281/zenodo.7597207

22. Lotfi, M., Hamblin, M. & Acta, N. R. (2020). COVID-19: Transmission, prevention, and potential

therapeutic opportunities. Clinica Chimica Acta, 508: 254–266.

https://doi.org/10.1016/j.cca.2020.05.044.

23. Penn part-of-speech tags (n.d.) Retrieved December 13, 2022, from

https://cs.nyu.edu/~grishman/jet/guide/PennPOS.html

24. He, Y., Yu, H., Ong, E., Wang, Y. & Liu, Y (2020). CIDO, a community-based ontology for

coronavirus disease knowledge and data integration, sharing, and analysis. Scientific Data, 7(181).

https://doi.org/10.1038/s41597-020-0523-6

25. Giunchiglia, F., Maltese, V., & Dutta, B. (2012). Domains and context: first steps towards managing

diversity in knowledge. Journal of Web Semantics: science, Services and Agents on the World Wide

Web, 12-13, 53-63. http://dx.doi.org/10.1016/j.websem.2011.11.007

26. Object Property Description, Protégé 5 Documentation, GitHub (n.d.). Retrieved December 13, 2022,

from http://protegeproject.github.io/protege/views/object-property-description/

27. Dutta, B., & DeBellis, M. (2020). CODO: An Ontology for Collection and Analysis of Covid-19 Data.

In D. Aveiro, J. Dietz, & J. Filipe (Eds.), Proc. of the 12th International Joint Conference on Knowledge

Discovery, Knowledge Engineering and Knowledge Management - KEOD (pp. 76-85). SciTePress.

http://dx.doi.org/10.5220/0010112500760085

28. George A. Miller (1995). WordNet: a lexical database for English. Communications of ACM 38(11):

39–41. https://doi.org/10.1145/219717.219748
29. Marco Ciotti, Massimo Ciccozzi, Alessandro Terrinoni, Wen-Can Jiang, Cheng-Bin Wang & Sergio

Bernardini (2020). The COVID-19 pandemic. Critical Reviews in Clinical Laboratory Sciences, 57(6):

365-388. https://doi.org/10.1080/10408363.2020.1783198

https://healthecco.org/covidgraph/
https://brat.nlplab.org/
https://doi.org/10.5281/zenodo.7597207
https://cs.nyu.edu/~grishman/jet/guide/PennPOS.html#:~:text=Penn%20Part%20of%20Speech%20Tags%201%201.%20CC,Adjective%208%208.%20JJR%20Adjective%2C%20comparative%20More%20items
https://doi.org/10.1038/s41597-020-0523-6
https://www.google.com/url?q=https%3A%2F%2Fcore.ac.uk%2Fdownload%2Fpdf%2F11830375.pdf&sa=D&sntz=1&usg=AOvVaw2eoXfAgszTEz4q3bEV_m59
https://www.google.com/url?q=https%3A%2F%2Fcore.ac.uk%2Fdownload%2Fpdf%2F11830375.pdf&sa=D&sntz=1&usg=AOvVaw2eoXfAgszTEz4q3bEV_m59
http://dx.doi.org/10.1016/j.websem.2011.11.007
http://protegeproject.github.io/protege/views/object-property-description/
http://dx.doi.org/10.5220/0010112500760085
https://doi.org/10.1145/219717.219748
https://doi.org/10.1080/10408363.2020.1783198

