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ABSTRACT 

Semantic Annotator for knowledge Graph Exploration, abbreviated as SAGE is a “Thing” annotation system. Here, 

“Thing” refers to any concept, named individuals (aka entities), entity relations, and attributes. The system is primarily 

built based on the idea of “string to thing” where the “string” is any given text (e.g., abstract of an article) as input by 

the user. For annotation, the system utilises the knowledge graph(s). SAGE can be used by anyone for annotating 

Things and for their exploitation on the Web. The annotation of things is done through exact and partial matches. For 

the exact matches, the system makes explicit the name of the knowledge graphs it is sourced from. It also shows the 

type hierarchies for the matched named entities. In the current work, we describe the SAGE annotation system, designed 

on pattern-based NLP techniques, along with its features and various usage, and the experimental results.  
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1. INTRODUCTION 

A knowledge graph (KG) refers to a representation of an intelligent web of data that is informed by an 

ontology [1]. It forms a knowledge base storing the interlinked data descriptions of entities (aka objects, 

both abstract and physical) and concepts (aka entity types) following the graph-structured data model. KGs 

can be viewed as data that can be queried, as a graph that can be analyzed, and as a knowledge base from 

which new facts can be derived [2, 21]. There have been many KGs built across different domains both in 

academia and industry, for instance, CODO KG [3], DTO [4], BAO [5], DRON [6], the Google Knowledge 

Graph [7], DBpedia KG [8], Wikidata [9]. KG is used in information search and retrieval, recommendation, 

chatbot, knowledge management, intelligent system design, data governance, etc. Several real-world 

applications are built centering KGs. For instance, question-answer systems [10], like WolframAlpha [11], 

semantic search and retrieval (e.g., Google search engine’s results ‘infobox’ that appears next to the search 

results), information integration (Gupta et al., 2012), data visualisation and exploration (e.g., CovidGraph 

[13]), and automatic annotation (e.g., DBpedia Spotlight).  

 

The current work focuses on automatic annotation. It designs and develops an automated semantic 

annotation system, namely SAGE, a Semantic Annotator for Exploration of “things” in a Knowledge 

Graph(s). The “things” refers to entities, entity relationships, attributes, and entity types (aka concepts). 

Here, annotation refers to a process of spotting, linking, and extracting information about the “things” in 

the input text from the KG. This work is primarily inspired by DBpedia Spotlight [14] and other general-

purpose text annotation systems, such as BRAT [15], Doccano [16], etc. DBpedia Spotlight is a tool used 

for semantic annotation based on DBpedia KG. It is limited to named entity recognition and does not 

annotate concepts, entity relations, or attributes. FICLONE is another tool that improves upon DBpedia 

Spotlight, but its performance and accuracy are dependent on the annotations from DBpedia Spotlight [17]. 

The other most recent annotation systems are, for example, MTab4D [18] and LinkingPark [19]. These 

studies are limited to the annotation of tabular data. MTab4D is a semantic annotation system for tabular 

data matching table elements with KGs, such as DBpedia KG. It combines multiple matching signals from 

table elements, such as table columns to entity types, columns to properties, and cells to entities. The study 

addresses schema heterogeneity, data ambiguity, and noisiness. LinkingPark is an automatic semantic table 

interpretation system. It matches tabular elements to KGs. LinkingPark is a stand-alone system designed as 

a modular framework with the following modules: an entity linking module, a property linking module, a 

type inference module, and a knowledge graph module.  
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SAGE is a standalone desktop application for semantic annotation. It follows the idea of "strings to things." 

The system annotates the KG things that exist in the input text as strings. In other words, it identifies and 

labels strings in an input text with things (the elements that are defined with URIs) found in the KG. In a 

KG, each thing has a URI. SAGE binds the URIs of the things in the KG to the phrases present in the text. 

So, the thing from the user-given text is annotated, linked, negotiated, and explored on the Web. The 

advantage of SAGE over the other existing annotations systems are many. They are: it is not restricted to 

any specific KG, users can choose their KG as per the domain needs and annotation tasks; the annotation 

is supported for entities, relations, attributes, and concepts; allows the annotation based on multiple KGs at 

a time; provides user-friendly GUI to add input text and to upload/ delete KGs for the annotation tasks; 

support the upload of input text in multiple formats, such as .txt, .doc, .pdf, .rtf; supports the information 

retrieval about annotated things from the KG without writing a query; annotations are made following the 

exact match and partial match approach; spots the missing terms (including the entities) from the KG but 

available in the input text. Hence, SAGE can be referred to as a single platform for the exploration of KG 

in multiple ways.  

SAGE has a wide range of uses. For instance: (1) it can be utilized as a library tool to enhance the users’ 

reading experiences. For instance, it can be plugged into digital library systems, abstracting databases, etc. 

This will enable readers to unearth things and their related facts in the text from the KG while reading the 

documents; (2) in a similar fashion, for example, the doctors and laboratory assistants can run their notes 

and transcription through SAGE to explore things (e.g., medical terms, diseases, drugs, viruses) that they 

are not familiar with; (3) the ontologists can use SAGE as a platform to identify the gaps in their ontology 

against the domain literature; (4) can be utilized for comparing the coverage of multiple KGs.  

The current work is built using pattern-based NLP techniques. Pattern-based NLP, a subfield of NLP 

(Natural Language Processing), approaches are based on linguistic or lexicographic knowledge, as well as 

existing human knowledge regarding the contents of the text that is to be processed. The knowledge is 

mined by using predefined or discovered patterns [20]. The process involves using various techniques such 

as regular expression and string manipulations to identify specific patterns in the text data. The extracted 

patterns can then be used for various NLP tasks, such as text classification, named entity recognition, 

sentiment analysis, and more. The goal of pattern-based NLP is to automate the extraction of useful 

information from unstructured text data and make it easier to analyze and understand. The evaluation of 

SAGE reveals impressive results.  

The main contributions of this work are: (1) discusses the design and development of a desktop application 

called SAGE for "thing" annotation from KGs; (2) the application provides GUI for uploading knowledge 

graphs, input text for annotation, and exploration of things from the KGs with ease; (3) the application 

reduces the technological complexity of exploration of KGs which usually demand the user’s technological 

expertise.  

The rest of the paper is organized as follows: section 2 discusses the SAGE features followed by the SAGE 

architecture in section 3 and SAGE design approaches in section 4. Section 5 describes the results and 

evaluation of the system. Section 6 concludes the paper by mentioning the limitations and future directions 

of the current work. 

 

2. SAGE FEATURES  

We briefly discuss here the following primary features of the SAGE semantic annotation system: (1) 

exploration of KGs without running a query (2) identification of missing things in a KG (3) estimation of 

coverage of KGs (4) KG statistics. The SAGE features are detailed in [21].  
 
Exploration of KG 

SAGE enables its users (e.g., an ontologist, a domain expert, a KG explorer, a reader) to search and analyze 

KGs in relation to literature (e.g., scholarly literature). By simply copying and pasting a text excerpt, or by 

uploading a text document from the user’s field of interest, the tool will annotate any term in the text 
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associated with a thing in the KG and link it to its URI, allowing the user to easily explore them from their 

web source. With SAGE, users don't need to have any prior knowledge of query building or coding, making 

it accessible to anyone. Additionally, SAGE provides a user-friendly interface for uploading one's own KG 

in RDF/XML format, enabling users to search the graph of their choice. Multiple KGs can also be selected 

for the exploration of literature. As mentioned above, SAGE supports two kinds of annotations based on 

the level of matching. These are based on the exact matches and partial matches as described below.  

 

a) Exact match- SAGE identifies and annotates the exact matching terms in a text excerpt, linking them to 

their URIs. Upon being clicked the description of the term on the Web will open up. For example, terms 

such as pneumonia and diseases found in a paper [22] were annotated against CODO [27], a COVID-19 

ontology. The exact matches are presented in two ways (in-text annotation and annotated list of terms) to 

provide a comprehensive view of the annotations as described below- 

1. The text may not have enough space to display the source vocabularies (aka ontology) for the IRIs that 

the terms are annotated with. So, all terms with exact matches in the selected vocabularies by the user are 

presented in an annotated list with the source vocabularies indicated next to them in circular parenthesis 

“()”, as seen in Figure 1. 

2. It is not possible to show all the exact matches within the text itself. Multiword terms, such as "Covid-

19 diagnosis," are given priority in the in-text annotations, while single words are listed in the annotated 

list of exact matches. For example, "Covid-19 diagnosis" would be annotated within the text, while "covid-

19" and "diagnosis" would appear in the annotated list as seen in Figure 1. 

3. When a term has multiple exact matches in various KGs (when more than one KG is selected for 

annotation), it becomes complex to annotate the term within the text using multiple IRIs. To overcome this, 

one of the IRIs is annotated in the text while both of them can be found in the annotated list of terms. This 

allows for a clear distinction of multiple matches for the same term from different KGs. If a term, like 

"covid-19", is found in two Covid-19 related KGs, only one IRI will be annotated in the text, and then both 

will be listed in the annotated terms list.  

 

 

 

Figure 1. Main window, with exact matches        Figure 2. Partial matches  

 

b) Partial match- SAGE also presents a list of partially matched terms, offering users contextually relevant 

resources. These terms do not exist independently in a KG, but as parts of other terms. For example, we 

can see words like ‘transmission’, ‘released’, etc. in Figure 1, which are not being highlighted or annotated.  

Upon asking SAGE to show the Partial Matches found from CODO ontology, Figure 2 opens up. In the 

figure, the words ‘transmission’ and ‘released’ extracts the things like ‘coronavirus infection’ and ‘released 

on’ respectively, which are annotated. This shows that the words like ‘transmission’ and ‘released’ exist as 

a part of the words mentioned above. It can be noticed that the word ‘transmission’ does not exist in 

‘coronavirus infection’, and neither does the word ‘released’ occur in ‘date of discharge’. This is because 
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‘infection’ is a synonym for ‘transmission’ and ‘discharge’ is a synonym for ‘released’. The approach is 

elaborated in section 4, algorithm 4.  

Identification of missing things in a KG  

As can be seen from Figure 1, the things like epidemic, etiology remain unannotated. This means that the 

terms "epidemic" and "etiology" were not found in CODO KG. These terms may still be relevant to the 

subject and could be valuable additions to the KG/ ontology. SAGE spots such missing terms and lists them 

along with their parts of speech (POS). This feature is useful for maintaining ontologies/ KGs and ensuring 

that all relevant terms are included in them. For implementing this feature in SAGE, the Stanford POS 

tagger is used from the NLTK library of Python. Originally, Stanford POS tagger categorised the terms in 

the given string into 36 POS categories, for example, CC, VBG, VBZ, NNP, NNPS, TO, etc. [23]. However, 

SAGE drops some of the categories, especially those that are not useful from the KG perspective, for 

example, DT, TO, WRB, and CC. It further analyses and reorganizes the rest of the categories (e.g., NN, 

NNP, VBG, JJ, RB, etc.) into six: Nouns, Proper Nouns, Verbs, Adjectives, Gerunds, and Adverbs. For 

example, NN (Noun, singular or mass) and NNS (Noun, plural) are categorised as Noun, NNP (Proper 

Noun, singular) and, NNPS (Proper Noun, plural) are categorised as Proper Noun, and so forth. SAGE 

displays the results as a dictionary structure where the POS is the key, and the words exhibiting the 

mentioned POS are listed as the value of the key as shown in Figure 3.  

 
Figure 3. Depicts unmatched terms with their POS  

 

Tree view of entity types  

SAGE shows the type information for the exactly matched entities in a tree structure from the KGs. For 

example, COVID-19 is an entity (a named entity) that was found in the exact match from CODO as shown 

in Figure 1. Figure 4(a) shows the type information of “COVID-19” in the hierarchy indicating that it is a 

type of "Coronavirus infection", which falls under the supper class “Disease” in CODO. Similarly, Figure 

4(b) shows the type information of “COVID-19” and the class hierarchy when the CIDO is considered.  

This feature of SAGE lets the user explore more about the entities found in the input text, such as their class 

type and their entire hierarchy in an ontology/ KG. This also helps in comparing and analysing the 

granularity and specificity of ontologies at their hierarchy level.  

 

  

Figure 4a. Exact matched entity types in CODO   Figure 4b. Exact matched entity types in CIDO 

 

Predefined query  
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SPARQL SELECT queries are run on exact matches, which returns all the tuples with the exact matched 

things. The query syntax is programmed and gets executed upon clicking the matched terms. The user does 

not have to write the query. Figure 5 shows the query results from the KG against an exactly matched thing 

“COVID-19.” As can be seen from the figure, the system retrieves its related data (as triples) available in 

CODO, e.g., its type information, location information, name, etc.  

 
Figure 5. The list of exact matches and a snippet of the query results  

Estimation of coverage of KG 

The coverage calculation formula in SAGE is used to determine the percentage of exact matches found in 

the uploaded text against a selected KG. This feature enables ontology engineers to visualize and compare 

the coverage of multiple ontologies, KGs, etc. within a domain. The coverage of each KG is represented in 

terms of the exact matches found from the text after dropping stopwords. For example, as indicated in 

Figure 6, the exact match things found from the text in Figure 1, against CODO is 2.57% and CIDO is 

0.12%. Equation 1 provides the coverage calculation formula.  

 
 

 
Figure 6. Coverages of two KGs against a piece of text, with 220 words after excluding stopwords  

 

KG statistics   

As mentioned above, the user can upload the KG of their choice using the GUI provided by SAGE. The 

interface allows the user to choose the most relevant KGs for their annotation needs. The KGs uploaded 

are displayed in the right-hand panel of the main window in SAGE (see Figure 1). This panel shows the 

names of the uploaded KGs along with the number of things in each KG. This information helps the user 

to check the overall coverage of various KGs and compare them, which is important in evaluating the 

usefulness of the KGs for a particular task. For example, as depicted in Figure 1, CIDO [24] and CODO 

ontologies consist of 11598 and 856 things, respectively.  

 

3. SAGE ARCHITECTURE  

We describe the architecture of SAGE annotation system and its various features.  

SAGE is designed following a 3-layer architecture as shown in Figure 7. As can be seen from the figure, 

the system takes two types of inputs: (1) text to be annotated and (2) KGs to be explored. The input text is 

a string from which the things will be identified and annotated based on the input KGs. Data Layer holds 

the knowledge base(s) in JSON format that is by extracting things and related information from the input 

KGs given in RDF/XML format. The business logic layer is responsible for receiving, processing, and 

responding to annotation tasks and other service requests (e.g., facts query, entity type, and type hierarchy, 

KG coverage). It finds exactly-matched things in the input text with things in the KG, retrieves URIs and 
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type information, and runs SELECT SPARQL queries on them. It also handles partial matches (the 

contextual search [25]) and categorizes unmatched terms according to their parts of speech (POS). The 

system allows users to learn more about things by linking them to their URIs and descriptions on the Web. 

The presentation layer provides GUI to send information service requests and receive responses. It displays 

the results of text annotation, query results, and type information to the user. The SAGE software is freely 

available to download and use from https://tinyurl.com/yc8p5nm3. Note: SAGE is an open-source project, 

the source code will soon be released through the GitHub platform https://github.com/.  

 
Figure 7. Software Architecture of SAGE 

 

4. SAGE DESIGN APPROACH  

We describe the primary algorithms that have been designed and developed to build the core functions of 

SAGE, such as exact match, partial match, and the creation of the class hierarchy described above. To 

explore a KG, SAGE first creates a knowledge base (KB) from the user-provided KG. The approach to KB 

creation is detailed below. We define a function called string_found, a string-matching function that is used 

throughout the SAGE pipeline is also described.  

Algorithm 1: Knowledge Base creation  

SAGE presently accepts the KGs in RDF/XML. SAGE’s GUI allows users to upload or delete KGs directly 

from the interface (as depicted in Figure 1). Once the user uploads a KG, the system produces the KB as a 

JSON dictionary. For KB creation, we define a function called create_dictionary for base creation (see 

Algorithm 1). The KB is structured and formed with the following elements: words, types, subclassof, 

subpropertyof, inverseof, comment, domain, and range. Here, Words is a set consisting of synonymous 

terms used to describe a thing in a KG. The field types is used to contain the class of which an individual 

is an instance. Subclassof contains the parent class of classes in the KG. Subpropertyof contains the parent 

property of an object property or data property. Inverseof contains the inverse of a property described in 

the KG. Comment provides a description of the thing. Domain and Range are applicable for properties in 

the KG. A property links subject and object. The subjects and objects linked by a property are members of 

classes (named-entities). The class(es) in which the subject values of the property falls is the Domain 

class(es) and the class(es) in which the object values of the property falls is the Range class(es) [26]. 

The KB is created by extracting the data from a KG against each of the above-mentioned elements. The 

element words captures the data from various fields of a KG. Presently, SAGE supports the following data 

fields of a KG: rdfs:label, skos:altlabel, skos:prefLabel, skos:hiddenLabel NDF-RT:Synonym, 

(http://radlex.org/RID/) RID:Synonym, RID:Preferred_name, NDF-RT:MeSH_Name, NDF-

RT:Display_Name (S8 of Algorithm 1). Here, “rdfs:,” “skos:”, “NDF-RT:” etc. represents the namespace 

https://tinyurl.com/yc8p5nm3
http://radlex.org/RID/
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prefixes for the URIs, “http://www.w3.org/2000/01/rdf-schema#”, 

“http://www.w3.org/2004/02/skos/core#”, and “http://radlex.org/RID/”, respectively. The element 

“subClassOf” stores the data from rdfs:subClassOf a KG (S9 of Algorithm 1). The same is followed for 

capturing and storing data for other elements of a KB, as shown in S10-S15 of Algorithm 1. Figure 8 

provides a glimpse of a KB. As can be seen from figure 8, in the KB, each thing is stored with its URI as 

its key. For example, in the figure, “https://w3id.org/codo#bedShortage” is a thing and it is stored as a key.  

 
Figure 8. Part of a JSON file created from a knowledge graph 

 

 

Algorithm 1 

Require: A knowledge graph in RDF/XML 

Ensure: A JSON file containing the data in the knowledge graph 

S1: DEFINE FUNCTION create_dictionary(base_name): 

S2:       parse the file into 'xml' 

S3:       SET Prefixes= [Predefined Prefixes listed on the top] 

S4:       SET template= {“words”:[], “types”=[] "subclassof": [], "subpropertyof": [], 

           "inverseof": [], "comment": [], "domain":[], “range”:[]} 

S5:   SET Things=[Make a set of all ‘things’ through tags (these tags contain ‘ObjectProperty’, 

‘DatatypeProperty’, ‘Class’,  ‘NamedIndividual’, ‘Description’ )] 

S6:      SET base={} 

S7:      For things in Things do 

S8:        find rdfs: label, skos: altlabel, NDF-RT:Synonym, NDF-RT MeSH_Name, NDF-RT: 

Display_Name, RID:Synonym, RID:Preferred_name, skos:PrefLabel, skos:hiddenLabel and store the 

values in template[‘words’] 

S9:  find rdfs: subClassOf and store the values in template[‘subclassof’] 

S10:  find rdfs: subPropertyOf and store the values in template[‘subpropertyof’] 

S11:  find owl: inverseOf and store the values in template[‘inverseof’] 

S12:        find rdfs: comment or skos:definition  and store the values in  template[‘comment’] 

S13:        find rdfs: domain and store the values in template[‘domain’] 

S14:        find rdfs: range and store the values in template[‘range’] 

S15:        find rdfs: type and store the values in template[‘type’] 

S16:        base[Thing URI]= template 

http://radlex.org/RID/
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S17:        make template empty 

S18:    base[“PREFIXES”]=Prefixes 

S19:    Save base as JSON file  

 

Algorithm 2: string_found function  

The string_found function is created for the use of string matching throughout the SAGE pipeline. In the 

string_found function (algorithm 2), we take 2 input strings, namely string1 and, string2. string1 consists 

of the text we need to find in string2. This algorithm checks if the singular or plural version of the text in 

string1 is present in string2 (see steps S6 and S8). If the function finds the singular or plural version of the 

text in string1 present in string2, it returns the singular or plural of the text in string1 as the output, 

respectively. This can be seen in S7 and S9. If the function fails to find any match, it returns False as seen 

in S10.  

 

Algorithm 2 string_found 

Require: string1 and string2 

Ensure: matched version of string1 in string2 or False 

S1: DEFINE string_found(string1, string2) 

S2:      if string1.lower() in string2.lower() then 

S3:           l=string2.lower().index(string1.lower()) 

S4:           token=string2[l: l+len(string1)] 

S5:           return token 

S6:      else if plural(string1.lower()) in string2.lower() then 

S7:           return plural(string1) 

S8:      else if singular(string1.lower()) in string2.lower() then 

S9:          return singular(string1) 

S10:    return False  

 

Algorithm 3: Exact match   

Algorithm 3 describes the process of finding exact matches against a text corpus. For this, we match the 

terms in the set of words for each thing in the KB against the text corpus using the string_found function 

defined in Algorithm 2. Once a match is found, we retrieve the URI of the thing from the KB and bind it 

with the matched term in the input text. As mentioned above (section 2), in SAGE two types of annotations 

happen: in-text and as a list of annotated things. The things used for both are stored separately in two 

dictionaries with their related necessary information. This function also returns the remaining strings from 

the input text after stripping off the terms which found an exact match in the KB.  

 

Algorithm 3 exact_matches 

Require: input_string and base (json file(s)) 

Ensure: 2 dictionaries for matches Annotation_Matches, All_matches, and unmatched part of the 

input_string 

S1: DEFINE exact_matches(string, base) 

S2:  Vector=After dropping punctuation and stopwords from the string  

S3:  SET Annotation_Matches={} 

S4:  for j in base.keys() do 

S5:           SET terms=base[j][1] 

S6:           SET types=base[j][0] 
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S7:          for term in terms do 

S8:   if STRING FOUND(term, Vector) then 

S9:    SET key=STRING FOUND(term, Vector) 

S10:    Annotation_Matches[key]=(types,j) 

S11:   SET All_Matches={} 

S12:   for i, j in Annotation_Matches.keys() do 

S13:         if i!=j then 

S14:             if STRING FOUND(i,j) then 

S15:                  SET All_Matches[i]=Annotation_Matches[i] 

S16:            if keys in Annotation_Matches.keys() and All_Matches.keys() then 

S17:   DELETE Annotation_Matches[i] 

S18.  for keys in All_Matches.keys() do 

S19:   if keys in Vector then 

S20:    Vector.drop(keys) 

S21.  return Annotation_Matches, All_Matches, Vector  

 

It is worth noting that our search process goes in the following way- terms in the KG(s) are searched for in 

the text. Searching could have been done from the other direction as well, i.e., terms in input text are 

searched in KG. We have opted for the former one, i.e., terms in the KG are searched for in the text because 

the terms in the ontology often happen to be several words in length (phrases). So, to proceed with the 

search from text to ontology, one has to create phrases of varying lengths and then perform the search. This 

increases the complexity of the program as explained below.   

Say, there are n things in the given KG, and an m words-long text corpus is given to be annotated. Let us 

assume that these things do not have synonyms.  

 

When we go from KG to text the search is executed 

n x m times.   Now, when we go from the text to KG, first we create phrases. So, if there are m words, then 

we have (m-1) 2-word phrases, (m-2) 3-word phrases, (m-3) 4-word phrases, (m-4) 5-word phrases, (m-5) 

6-word phrases, till we have 1 m-word phrase. Therefore, the number of terms will be,   

  
Hence, the search will be conducted n x m! times.  

 
Thereby, to achieve a reduced complexity we perform the search from the KG(s) to the text corpus.   

 If the things in the KG(s) had x number of synonyms on average, the equation (1) would change to, 

 
Even in this case, the complexity is lesser if we go from KG to text for searching.  

 

Algorithm 4: Partial match  

Algorithm 4 describes the process of finding partial matches. Here, we find the existence of unmatched 

terms as part of ‘things’ in the knowledge base. The algorithm takes the Vector (a string of terms that do 

not find any exact match from the knowledge base) returned from Algorithm 3, as the input. We first split 

the input string into a list of words. For each word in the unmatched part of the input string, we extract its 

synonyms from WordNet [28] and create a list of terms to be matched against the KB (see S6 of Algorithm 

4). We use synonyms of the unmatched words, along with the existing unmatched words, to increase the 

recall of the system. Sometimes, knowledge resources fail to accommodate all the terms associated with a 

‘thing’, and the system misses out on spotting contextually relevant ‘things’. Adapting this approach of 

creating a list of synonyms for an unmatched term, has significantly increased the recall, as can be seen in 

Evaluation section 3. We reuse the string_found function in the partial_matches function too (see step S11).  
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Algorithm 4 partial_matches 

Require: unmatched string and base (json file(s)) 

Ensure: Partial in the form of a dictionary 

S1: DEFINE partial_matches(Vector, base)                         *Vector from Algorithm 3 

S2: SET Partial ={} 

S3:  Vector=drop stopwords and punctuations 

S4: Vector= Vector.split() 

S5:  for i in Vector do 

S6:        list_of_synonyms=get_synonyms_from wordnet(i) 

S7:        for k in list_of_synonyms: 

S8:          for j IN base.keys() do 

S9:    SET terms=base[j][1] 

S10:    for term in terms do 

S11:     if STRING FOUND(i, term) then 

S12:      if i in Partial.keys() then 

S13:      Partial [i].append([term, j]) 

S14:      else 

S15:       Partial [i]=[[term, j]] 

S16:     break 

S17:  return Partial  

 

Algorithm 5: Entity tree view  

For the named-entities found in the text from the KB, SAGE presents its type information. The system 

expands the class hierarchy tree of the type of the named-entity as can be seen in Figure 4. The Treeview 

widget of Tkinter is used for this purpose. Algorithm 5 describes the basic algorithm required to extract the 

hierarchy tree for a particular class. The defined function create_hierarchy, a recursive in nature (see step 

S3). The function is called again within itself in step S8 of algorithm 5. The function looks for the type 

information of the named-entity, which gives the URI of a class. The URI of the class is used to fetch its 

parent class’s URI (listed under ‘subclassof’ in the KB). The function then again calls itself to fetch the 

parent class’s URI of the previously obtained class. The dictionary hierarchy stores the classes and their 

various levels, where “1” is the named-entity, “2” type of named-entity (which is a class), “3” parent class 

of the class found in level 2, “3” parent class of the class found in level 3, and henceforth.  The recursion 

continues till the ‘subclassof’ field of the class found in the previous step is found to be empty.  

 

Algorithm 5 Create Hierarchy 

Require: knowledge_base (JSON file), URI of the named_entity type whose class hierarchy is to be 

found 

Ensure: hierarchy in the form of a dictionary which looks like this {1: named_entity 2: Type class 3: 

Parent of type class ……} 
 
S1: hierarchy={1:named_entity, 2: named_entity_type} 

S2: num=3 

S3: DEFINE create_hierarchy(knowledge_base, named_entity_type_URI, num): 

S4: while knowledge_base[named_entity_type_URI][subclassof]!=[]: 

S5:             parent_class_URI=knowledge_base[named_entity_type_URI][subclassof] 
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S6:                          hierarchy[num]=knowledge_base[parent_class_URI][words][0] 

S7:  num=num+1 

S8:  create_hierarchy(knowledge_base, parent_class_URI, num) 

S9: return hierarchy  

 

Predefined query  
 

The best way to explore a KG is through a SPARQL query. SAGE provides the user the facility to run 

SELECT queries on the exact matches found in the text. This feature is independent of the user’s ability to 

write SPARQL queries and lets the non-experts explore the KG as well. The RDFLIB library of Python is 

used to write and run a query on the given graphs. When the exact matches are found, the system 

automatically retrieves the results, whether the “thing” is a class, property, or instance along with the 

information about the source KG. Table 1 provides the pre-defined query syntax that the system runs. Here, 

s stands for the subject, p for the predicate, and o for the object. When a class is found, the query in row 1 

column 3 of table 1 is run, substituting the URI of the class in the given position. Properties (Data and 

Object) and instances also follow similarly, as shown in rows 2 and 3 of Table 1, respectively.   

 

Sl. No. Thing Category Query Built 

1 Class SELECT DISTINCT ?s ?p WHERE {?s ?p <URI of thing>} 

2 Property SELECT DISTINCT ?s ?o WHERE {?s  <URI of thing> ?o} 

3 Instance SELECT DISTINCT ?p ?o WHERE  {<URI of thing> ?p ?o} 

Table 1: Query syntax for things search  

 

5. RESULTS AND EVALUATION 

Here, we discuss the experimental results and the system evaluation.  

 A. Precision and Recall of Partial Matches: SAGE has compared the 

precision and recall of things found in partial matches with and without 

using WordNet as a resource. In figures 9 and 10, CODO ontology is used 

as the knowledge base and the text is taken from a COVID-19-related 

webpage of WHO.  In Figure 9, SAGE found the things in bold as partial 

matches for the terms in the column on the left. 5 things were found; hence 

the recall is 5. When checked manually, all 5 of them were deemed  

contextually relevant. Therefore, the precision is calculated to be 100%. In 

Fig. 10, the recall rose to 29, with 24 contextually relevant recalls. Hence, 

the precision became 82.76%.  

Figure 9. Partial Match results without using Wordnet  
 

 
Figure 10. Partial Match results after using WordNet 
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After trying this experiment with multiple text samples on the same KB, we found the average precision of 

SAGE’s partial match (after using WordNet as an additional resource) is 83.18%, whereas the recall has 

increased significantly in all cases (more than double).  

 

B. Feature comparison: Table 2 compares the features of DBpedia Spotlight with SAGE, and highlights 

the advantages of SAGE over DBpedia Spotlight. It shows that SAGE is more customizable and domain-

friendly compared to DBpedia Spotlight, which is more of a general-purpose annotator. The KB in SAGE 

can be customized, making it more suitable for domain-specific applications. SAGE also supports a wider 

range of features, such as the categorization of retrieved entities as object Properties and datatype 

Properties, which are not supported by DBpedia Spotlight. Additionally, SAGE enables ontology 

maintenance by suggesting possible missing terms, which is not possible with DBpedia Spotlight.  

 

Features DBpedia Spotlight SAGE  

Annotation (of exact things)    
Retrieval (of similar ‘things’, not complete matches)  X  
Things Retrieved 

Object Properties  X  
Datatype Properties  X   
Classes    
Named Individuals    
Other Features 

Type information   
Spotting Missing Terms X  
Upload Text Corpus   
Customized KB supported X  
Predefined Query  X  
Coverage of KB X  

Table 2: Comparison of features of DBpedia Spotlight with SAGE 

 

C. Response Time for primary annotation: Table 3 displays the results of testing SAGE's performance with 

text excerpts of various lengths and KGs of various lengths. The results show that the response time of 

SAGE for exact match search and retrieval is directly proportional to the length of the text input. As the 

length of the text increases, the response time also increases. For example, in Table 3, we see this 

relationship demonstrated using the CIDO ontology and different lengths of text excerpts. 

 

Ontology Name Total Things Length of text before removing 

stopwords 

Annotation Time (seconds) 

COVID-19 

(CIDO) 
11598 

200 10.448144674301147 

500 17.92897057533264 

1000 29.03405261039734 

2000 51.816343784332275 

Table 3.  Relationship between the time taken and length of input text taken from [29]  
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6. CONCLUSION 

SAGE has been designed and developed to utilise KG for “thing” annotation. It is capable of annotating 

text with KG resources and its user-friendly GUI makes exploring things in KGs easy. The tool allows the 

addition of multiple user-selected KGs to its KB. SAGE not only annotates named entities, but also 

concepts, entity relations, and attributes. The tool offers two types of annotations: complete match and 

partial match. A partial match is useful as it annotates contextually relevant resources. The tool also 

identifies entities mentioned in the text but not defined as a resource in its knowledge base and displays 

them through parsing with a POS system, which is helpful for further enriching the KG. The tool's 

unmatched terms pane lists missing resources in the KG and in the future, a GUI will be developed to 

enable knowledge engineers to add missing things to the KG directly from the SAGE's unmatched terms 

result interface. At present, SAGE supports only the English language. We aim to support other languages 

including Indic languages like Hindi and Bengali. Currently, SAGE is a standalone desktop software and, 

in the future, we plan on providing SAGE as a web-based service.  
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