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Introduction: Logic

• Logic is the branch of philosophy. 

• Logic is not the study of truth, but of the relationship between the truth of 

one statement and that of another. 

• Logic is the study of how to make formal correct deductions and inferences. 

• Logic is concerned with the use and study of valid reasoning. 

• Logic is to -> enable automation. 

• The study of logic features prominently in mathematics and computer 

science. 
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Why Logic?

Used for Advantages Disadvantages

Formal specification

Automation

Well-understood with 

formal syntax and formal 

semantics: we can better 

specify and prove 

correctness

Pragmatically efficient for 

automation exploiting the 

explicitly codified semantics: 

reasoning services

It cannot be used to 

interact with users

An exponential grow in 

cost (computational,  

man power)



Logics, formal syntax and formal semantic

• A logic is a representation language with

• a formal syntax

• a formal semantics

• Any language can have these characteristics 

• eg., using mathematical notation, textual, graphical, …

• As formal languages, logics are suitable for:

• representing (specification)

• reasoning (automation) about data and knowledge.



Logics for Specification

• Logic as a formal language

• is good for the specification (representation) of knowledge

• Logic as a formal semantics

• is good for specification of declarative data and knowledge (as 
different from programs)

• The meaning of sentences is declaratively defined, i.e. with logic we 
describe what holds without caring about how it can be computed.



Logics for Reasoning 

• Logics provides a notion of deduction

• axioms, deductive machinery, theorem

• Deduction can be used to implement reasoners

• Reasoners allow inferring conclusions from a given knowledge base 

(i.e, a set of “premises”, premises can be axioms or theorems).

• From implicit knowledge to explicit knowledge

• Model: A model is an abstraction of a part of the world

• Theory: A set of statements which describe the (part of the) world as abstracted in the 

(mental) model. 
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Specification / Representation

Informal 

Semantics:

“If the monkey is low 

and the banana is high 

in position, then the 

monkey cannot get the 

banana. “

Formal Semantics:

I(MonkeyLow) = T

I(BananaHigh) = T 

I(MonkeyClimbBox) = F

I(MonkeyGetBanana) = F

MODEL#1

L = {MonkeyLow, BananaHigh, MonkeyClimbBox, MonkeyGetBanana, , , }

T = { (MonkeyLow  BananaHigh  MonkeyGetBanana)

 (MonkeyLow  MonkeyClimbBox)

 ( MonkeyLow   BananaHigh  MonkeyGetBanana)}



Reasoning / Automation

MODEL#1

Given that: 

MonkeyLow = T

BananaHigh = T

We derive that:

MonkeyGetBanana = F

L = {MonkeyLow, BananaHigh, MonkeyClimbBox, MonkeyGetBanana, , , }

T = { (MonkeyLow  BananaHigh  MonkeyGetBanana)

 (MonkeyLow  MonkeyClimbBox)

 ( MonkeyLow   BananaHigh  MonkeyGetBanana)}



- Syllogistic Logic
As defined by Aristotle, from the combination of a general statement (the major 
premise) and a specific statement (the minor premise), a conclusion is deduced. For 
example, knowing that all men are mortal (major premise) and that Socrates is a man 
(minor premise), we may validly conclude that Socrates is mortal. 

- Propositional logic (propositional calculus) 
A propositional calculus or logic (also a sentential calculus) is a formal system in which 
formulae representing propositions can be formed by combining atomic propositions
using logical connectives, and in which a system of formal proof rules establishes 
certain formulae as "theorems". Propositional logic is the foundation of first-order logic 
and higher-order logic. For example: Premise 1: If it's raining then it's cloudy. Premise 
2: It's raining. Conclusion: It's cloudy.

- Predicate logic (predicate calculus) 
In mathematical logic, predicate logic is the generic term for symbolic formal systems 
like first-order logic, second-order logic, many-sorted logic, or infinitary logic. This 
formal system is distinguished from other systems in that its formulae contain variables 
which can be quantified. Two common quantifiers are the existential ∃ ("there exists") 
and universal ∀ ("for all") quantifiers. The variables could be elements in the universe 
under discussion, or perhaps relations or functions over that universe. 

In informal usage, the term "predicate logic" occasionally refers to first-order 
logic. 

Types of Logic 



- Modal Logic 

- Information Logic 

- Mathematical Logic 
Mathematical logic really refers to two distinct areas of research: the first is the 
application of the techniques of formal logic to mathematics and mathematical 
reasoning, and the second, in the other direction, the application of 
mathematical techniques to the representation and analysis of formal logic. 

- Philosophical Logic

- Conputational Logic 
Logic cut to the heart of computer science as it emerged as a discipline: Alan 
Turing's work on the Entscheidungs problem followed from Kurt Gödel's work on 
the incompleteness theorems. The notion of the general purpose computer that 
came from this work was of fundamental importance to the designers of the 
computer machinery in the 1940s. 
… 

Types of Logic 



• It is also known as first-order predicate calculus, the lower predicate

calculus, quantification theory, and predicate logic.

First order predicate logic (FOL) is an `extension' of propositional logic,

which enables us to represent more knowledge in more detail.

• First-order logic is a collection of formal systems used in mathematics,

philosophy, linguistics, and computer science.

• First-order logic uses quantified variables over (non-logical) objects. It

allows the use of sentences that contain variables, so that rather than

propositions such as Socrates is a man one can have expressions in the

form X is a man where X is a variable.

• This distinguishes it from propositional logic, which does not use

quantifiers.

First Order Logic (FOL) 



• FOL is highly expressive

• It is too bulky for modelling

• It is not appropriate to find consensus in modelling

• Its proof theoretically is very complex (semi-decidable)

• It is not a Markup Language for the Web

Why FOL is not considered as a SW Language 

Source: https://www.youtube.com/watch?v=9Yu7poe30pQ



• A DL is a structured fragment of FOL.

• Compromise of expressivity and scalability

• A DL models concepts, roles and individuals and their relationships.

• Any (basic) Description Logic language is a subset of L3, i.e., the function-

free FOL using only at most three variable names, and its representation is

at the predicate level: no variables are present in the formalism.

• DLs provide a logical reconstruction and (claimed to be a) unifying

formalism for other knowledge representation languages, such as frames-

based systems, object-oriented modelling, Semantic data models, etc.

• They provide the language to formulate theories and systems declaratively

expressing structured information and for accessing and reasoning with it,

and they are used for, among others, terminologies and ontologies, formal

conceptual data modelling, and information integration.

Description Logics (DL) 



What Are Description Logics?

•A family of logic based Knowledge Representation formalisms 
- More expressive than Predicate logic 
- Has efficient decision power 

--(DL is a decidable fragments of first order logic)

- DL Logics are equipped with a formal semantics 
-- Formal semantics of DL  allows humans and computer systems to exchange DL 

ontologies without ambiguity as to their intended meaning, and also makes it possible to 

use logical deduction to infer additional information from the facts stated explicitly in 

an ontology (this is an important feature that distinguishes DLs from other modelling 

languages such as UML) 

•DL describes 
–domain in terms of concepts (classes), roles (properties, relationships) and 
individuals
–Operators allow for composition of complex concepts
–Names can be given to complex concepts (E.g., Happy parents) 

•Axiom, the fundamental modeling concept of a DL, is a logical statement 

relating roles and/or concepts. 

•Example for a DL: W3C Standard OWL 2 DL is based on description logics 
SROIQ(D)



Basic Building Blocks of DL Ontologies 
• DLs provide means to model the relationships between entities in a domain of interest. 

• In DLs, there are three kinds of entities: Concepts, Roles and Individual names. 

• Concepts names denote sets of individuals and are equivalent to unary predicates. 

• In general, equivalent to formulae with one free variable (unary predicates / formulae with one 

free variable), E.g., Person, Female

• Roles names denote binary relations between the individuals and are equivalent to binary 

predicates. 

• In general, equivalent to formulae with two free variables (binary predicates /formulae with two 

free variables), E.g., hasChild

• Individuals names denote single individuals in the domain and are equivalent to constants, 

E.g., Mary, John

• Constructors

– Union    ⊔ :     Man ⊔ Woman

– Intersection  ⊓ :     Doctor ⊓ Mother

– Exists restriction  ∃ :   ∃hasChild.Doctor

– Value restriction  ∀ :     ∀hasChild.Doctor

– Complement /negation    ¬    :    Man ⊑¬Mother 

– Number restriction    ≥n,    ≤n

• Axioms : Subsumption ⊑ :     Mother ⊑ Parent 



• Unlike a database, a DL ontology does not fully describe a particular
situation or “state of the world.“

• DL, rather, consists of a set of statements, called axioms, each of which
must be true in the situation described. These axioms typically capture
only partial knowledge about the situation that the ontology is
describing, and there may be many different states of the world that
are consistent with the ontology.

• Although, from the point of view of logic, there is no principal
difference between different types of axioms, it is customary to
separate them into three groups:

• Assertional (ABox) axioms (e.g., Mother(Mary))
• Terminological (TBox) axioms (e.g., Mother ⊑ Parent)
• Relational (RBox) axioms (RBox axioms refer to properties of roles. As for concepts, DLs support role

inclusion (e.g., parentOf ⊑ ancestorOf) and role equivalence axioms.)
• Note: In role inclusion axioms, role composition can be used to describe roles such as uncleOf. Intuitively, if

Bob is a brother of Mary and Mary is a parent of John, then Bob is an uncle of John. This kind of
relationship between the roles brotherOf, parentOf and uncleOf is captured by the complex role inclusion
axiom: brotherOf o parentOf ⊑ uncleOf .

• In DLs we can write disjoint roles as follows: Disjoint(parentOf; childOf).
• RBox axioms include role characteristics such as reflexivity, symmetry and transitivity of roles.

Basic Building Blocks of DL Ontologies 



Knowledge Base

Tbox (schema)

Abox (data)
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T Knowledge about concepts of a domain

Man  Human ⊓ Male 

Writer  Person ⊓ ∃author.Book

Happy-Father  Man ⊓ ∃hasChild.Female ⊓
∃hasChild.Male ⊓ ∀hasChild.(Rich ⊔ Happy) 

A knowledge about individuals/ entities 

writer(Ranganathan)

author(Ranganathan, Prolegomena…)

Happy-Father(John)

hasChild(John, Mary)

DL System Architecture/ DL Knowledge Base  

RBox Role-centric Knowledge 
R  Knowledge about roles interdependencies 

illustrator ⊑ contributor 



Description Logics: some concerns 

• The capability of inferring additional knowledge increases the
modelling power of DLs but it also requires

• some understanding on the side of the modeller; and

• good tool support for computing the conclusions.

• The computation of inferences is called reasoning.

• An important goal of DL language design has been to ensure
that reasoning algorithms of good performance are available.

• This is one of the reasons why there is not just a single description logic.

• The best balance between expressivity of the language and complexity of reasoning
depends on the intended application.



Notation
 C and D be concepts
 a and b be individuals
 R be a role



DL Family

• Smallest deductively complete DL is ALC 
(Attribute Language with Complement)

– Concepts constructed using the following class 
constructors: disjunction, conjunction and 
complement 

• ⊔, ⊓, ¬ 

– plus restricted quantifiers ∃,∀

– Quantifiers restricts the domain and range of roles which helps in 
maintaining the decidability 



Description Logic (DL) Family

 OWL 2 provides the expressiveness of SROIQ (D)

 OWL DL closely corresponds to SHOIN(D) 

 OWL Lite closely corresponds to SHIF(D)

There are many varieties of DL and there is an informal naming convention, roughly describing the
operators allowed.
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Nominals (singleton 

concepts), e.g., {India}



Wff and atomic formula

• Formula / well formed formula / wff

– is a word (i.e. a finite sequence  of symbols from a given alphabet) which 
is part of a formal language

– A formula is a syntactic formal object that can be informally given a 
semantic meaning

• Atomic formula

– An atomic formula is a formula that contains no logical connectives 
nor quantifiers, or equivalently a formula that has no strict sub 
formulas. 

– The precise form of atomic formulas depends on the formal system 
under consideration for propositional logic, 

– E.g., the atomic formulas are the propositional variables. 

– For predicate logic, the atoms are predicate symbols together with 
their arguments, each argument being a term



AL (Attributive language) Logical Symbols 
 Formation rules:

<Atomic> ::= A | B | ... | P | Q | ... | ⊥ | ⊤

<wff> ::= <Atomic> | ¬<Atomic> | <wff> ⊓ <wff> | ∀R.C | ∃R.⊤

NOTE: no ⊔, ∃R.⊤ = limited existential quantifier, ¬ on atomic only

 Person ⊓ Female

“persons that are female”

 Person ⊓ ∀hasChild.⊤ 

“(all those) persons that have a child” 

 Person ⊓ ∀hasChild.⊥

“(all those) persons without a child” 

 Person ⊓ ∀hasChild.Female 

“persons all of whose children are female”



ALU (AL with disjunction)
 Formation rules:

<Atomic> ::= A | B | ... | P | Q | ... | ⊥ | ⊤

<wff> ::= <Atomic> | ¬<Atomic> | <wff> ⊓ <wff> | ∀R.C | ∃R.⊤ | 

<wff> ⊔ <wff>

 Father ⊔ Mother

“the notion of parent”



ALE (AL with extended 

existential)
 Formation rules:

<Atomic> ::= A | B | ... | P | Q | ... | ⊥ | ⊤

<wff> ::= <Atomic> | ¬<Atomic> | <wff> ⊓ <wff> | ∀R.C | ∃R.⊤ | 

∃R | ∃R.C

 ∃R (there exists an arbitrary role) 

 ∃R.C (full existential quantification) 

 Parent ⊓ ∃hasChild.Female

“parents having at least a daughter”
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ALN (AL with number 

restriction)
 Formation rules:

<Atomic> ::= A | B | ... | P | Q | ... | ⊥ | ⊤

<wff> ::= <Atomic> | ¬<Atomic> | <wff> ⊓ <wff> | ∀R.C | ∃R.⊤ | 

≥nR | ≤nR

 ≥nR (at-least number restriction)

 ≤nR (at-most number restriction)

 Parent ⊓ ≥2 hasChild 

“parents having at least two children”
26



ALC (AL with full concept 

negation)
 Formation rules:

<Atomic> ::= A | B | ... | P | Q | ... | ⊥ | ⊤

<wff> ::= <Atomic> | ¬ <wff> | <wff> ⊓ <wff> | ∀R.C | ∃R.⊤

  (Mother ⊓ Father) 

“it cannot be both a mother and father”
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The DL language ALC (Attributive Language with Concept negation) contains 
the following elements: 

- Concepts denoting entity types/classes/unary predicates/universals, 
including top ⊤ and bottom ⊥; 

- Roles denoting relationships/associations/n-ary predicates/properties;

- Constructors: and ⊔, or ⊓, and not  ; quantiers forall ∀ and exists ∃

- Complex concepts using constructors: Let C and D be concept names, R a 
role name, then 

  C, C ⊓ D, and C ⊔ D are concepts 

- ∀R.C and ∃R.C are concepts 

- - Individuals

ALC (AL with full concept 

negation)



Examples in ALC

Some examples that can be represented in ALC are: 

- Concepts (primitive, atomic): Book, Course 

- Roles: Enrolled, Reads  

- Complex concepts: 

- Student ⊑ ∃Enrolled.(Course ⊔ DegreeProgramme) 

- Mother ⊑ Woman ⊓ ∃parentOf.Person

- Parent  (Male ⊔ Female) ⊓ ∃parentOf.Mammal ⊓ ∃caresFor.Mammal

- Individuals in the ABox: Student(Bob), Mother(Mary), Student(John), 
ENROLLED(Bob; COMP101) 



DL Semantics 

• The semantics of description logics are defined by 
interpreting concepts as sets of individuals and roles 
as sets of ordered pairs of individuals. 

• Those individuals are typically assumed from a given 
domain. 

• The semantics of non-atomic concepts and roles is 
then defined in terms of atomic concepts and roles. 

• This is done by using a recursive definition similar to the syntax.



DL Semantics: Interpretation 
function (I)

• Intuitively, a model is a situation

• A situation is a semantic entity, providing us with a certain amount of 
things we can talk about. 

• A model for a given vocabulary gives us two pieces of information:

– tells us what kind of collection of entities (usually called the 
domain) we can talk about

– for each symbol in the vocabulary, it gives us an appropriate 
semantic entity, built from the items in

– this task being carried out by a function (interpretation function) 
which, for each symbol in the vocabulary, specifies an appropriate 
semantic value



DL Semantics
• Semantics given by standard FO model theory

• The vocabulary is the set of names (consist of concepts and roles )

– we use in our model of (part of) the world 

– E.g., {Tree, Cow, Dog, Animal, Person, Car, University, ...}

• A Terminological interpretation I is a tuple (ΔI, .I) over a signature (NC, NR and 
NO) consists of 

– Domain Δ is a non-empty set of objects 
– Interpretation: .I is the interpretation function, domain ΔI 

– .I  maps every concept name C (names of unary predicates 
(classes/concepts)) to a subset CI ΔI 

– .I  maps every role name R (names of a binary predicate 
(properties/roles)) to a subsets of RI ΔI ×ΔI 

– .I maps every individual a to elements of ΔI : aI ∈ ΔI

– Note: ⊤I = ΔI and ⊥I = 



(Union means disjunction) 

DL Semantics (ALC) 

(Intersection means conjunction) 

(Complement means negation) 

Based on the above, we can specify the notion of satisfaction: (read in I holds) 

Using the typical notation where C and D are concepts, R a role, and a and b are individuals, then they have the 
following meaning, with on the left-hand side of the “=“ the syntax of ALC under an interpretation and on the 
right-hand side its semantics: 

*MODEL: a model is an abstraction of a state of the world that satisfies all axioms in the ontology. An ontology is consistent if it has at 

least one model. 



DL Semantics 

• Well defined (model theoretic) semantics



AL’s extensions and sub-languages
 The basic Description Language is AL

 By extending AL with any subsets of the above constructors 

yields a particular DL language.

 Each language is denoted by a string of the form AL[U][E][N][C], 

where a letter in the name stands for the presence of the 

corresponding constructor.

 ALC is considered the most important for many reasons.

NOTE: ALU ⊆ ALC and ALE ⊆ ALC

 By eliminating some of the syntactical symbols and rules, we get 

some sub-languages of AL

 The most important sub-language obtained by elimination in the AL family is ClassL

 We also have FL
-

and FL0 (where FL = frame language)



Summary: AL and extensions 

Complext Results of Description Logics. W. Gong, D. Zhang and J. Zhao. In High Performance Networking,

Computing, and Communication Systems (Communications in Computer and Information Science (CCIS), Springer,

2011)



AL’s Contractions: FL- and FL0

 FL- a sub-language of FL, which is obtained by disallowing role restriction. 

 This is equivalent to AL without atomic negation

 FL0 is a sub-language of FL-, which is obtained by disallowing limited existential quantification

 FL- is AL with the elimination of ⊤, ⊥ and 

 Formation rules:

<Atomic> ::= A | B | ... | P | Q | ... 

<wff> ::= <Atomic> | <wff> ⊓ <wff> | ∀R.C | ∃R.⊤

 FL0 is FL- with the elimination of ∃R.⊤

 Formation rules:

<Atomic> ::= A | B | ... | P | Q | ... 

<wff> ::= <Atomic> | <wff> ⊓ <wff> | ∀R.C



Limitation of DL 

Being a fragment of first order predicate logic, the DL cannot

express the following:

•Fuzzy expressions - “It often rains in autumn.”

•Non-monotonicity - “Birds fly, penguin is a bird, but penguin does

not fly.”

•Propositional attitudes - “Eve thinks that 2 is not a prime

number.” (It is true that she thinks it, but what she thinks is not

true.)

Source: OWL 2 and SWRL Tutorial. https://dior.ics.muni.cz/~makub/owl/


