- 1. Write down the cycle decomposition of all the elements of S_4 . Find their orders.
- 2. Show that S_n is non-abelian for all $n \geq 3$.
- 3. Find the conjugacy classes of Q_8 .
- 4. Show that disjoint cycles commute.
- 5. Show that if σ, τ are elements of the symmetric group S_n and suppose σ has cycle decomposition

$$(a_1a_2\ldots a_{k_1})(b_1b_2\ldots b_{k_2})\ldots$$

then $\tau \sigma \tau^{-1}$ has cycle decomposition

$$(\tau(a_1)\tau(a_2)\ldots\tau(a_{k_1}))(\tau(b_1)\tau(b_2)\ldots\tau(b_{k_2}))\ldots$$

- 6. Suppose that the cycles σ_1, σ_2 in S_n have the same cycle type. Show that they are conjugate elements in S_n .
- 7. Show that there is a bijection between conjugacy classes of S_n and partitions of n.
- 8. Let $\sigma_1 = (1)(35)(89)(2476)$ and let $\sigma_2 = (4)(12)(36)(5789)$. Find a τ such that $\tau \sigma_1 \tau^{-1} = \sigma_2$.