1. For $\{x_n\}_{n=1}^{\infty}$ given in each of the following, please compute $\frac{x_{n+1}}{x_n}$

(a)
$$x_n = \frac{1}{n}$$

(b)
$$x_n = \frac{2^n}{n!}$$
,

(c)
$$x_n = nb^n$$
, for $b \in (0, 1)$

(d)
$$x_n = \frac{n!}{n^n}$$

(e)
$$x_n = \frac{n!}{n^n}$$

(f)
$$x_n = \frac{(n!)^2}{n^n}$$

(g)
$$x_n = \frac{2n!}{n^{2n}}$$

(h)
$$x \in \mathbb{R}$$
 and for $n \ge 0$, $x_n = \frac{x^n}{n!}$

By providing a bound on $\frac{x_{n+1}}{x_n}$, can you determine if $\sum_{n=1}^{\infty} x_n$ is a positive real number.

2. For $\{y_n\}_{n=1}^{\infty}$ given in each of the following, please compute $y_n^{\frac{1}{n}}$

(a)
$$y_n = \left(\frac{n}{2n+1}\right)^n$$

(b)
$$y_n = \frac{2^n}{n!}$$

(c)
$$x \in \mathbb{R}$$
 and for $n \ge 0$, $y_n = n^n x^n$

(d)
$$y_n = \begin{cases} \frac{1}{2^k} & \text{if } n = 2k - 1, k \ge \\ \frac{1}{3^k} & \text{if } n = 2k, k \ge 1 \end{cases}$$

(b)
$$y_n = \frac{1}{n!}$$

(c) $x \in \mathbb{R}$ and for $n \ge 0$, $y_n = n^n x^n$
(d) $y_n = \begin{cases} \frac{1}{2^k} & \text{if } n = 2k - 1, k \ge 1\\ \frac{1}{3^k} & \text{if } n = 2k, k \ge 1 \end{cases}$
(e) $y_n = \begin{cases} \frac{1}{2^{2k-1}} & \text{if } n = 2k - 1, k \ge 1\\ \frac{4}{2^{2k}} & \text{if } n = 2k, k \ge 1 \end{cases}$

By providing a bound on $y_n^{\frac{1}{n}}$, can you determine if $\sum_{n=1}^{\infty} y_n$ is a positive real number.

3. For $\{z_n\}_{n=1}^{\infty}$ given in each of the following, decide if you can identify $\lim_{n\to\infty} z_n$.

(a)
$$z_n = \frac{1}{n}$$

(a)
$$z_n = \frac{1}{n}$$

(b) $z_n = \frac{3}{5^{\frac{1}{n}} + 6}$

(c)
$$z_n = \frac{(-1)^{n-1}n}{3n-2}$$

Based on the answer, can you determine if $\sum_{n=1}^{\infty} z_n$ is a real number.

4. Let $x \in \mathbb{R}$. Decide the particular range of x where the series $\sum_{n=0}^{\infty} z_n$ converges in each of the following cases:

(a)
$$z_n = \frac{n!}{n^n} x^n$$

(b)
$$z_n = \frac{(n!)^2}{n^n} x^n$$

(c)
$$z_n = \frac{n!}{n^n} (x-2)^n$$

(d)
$$z_n = \frac{(4x-12)^n}{(-3)^{2+n}(n^2+1)}$$

1. Let $y_1, y_2 \in \mathbb{R}$ be given, and define recursively for $n \geq 1$,

$$y_{n+2} = \frac{1}{3}y_n + \frac{2}{3}y_{n+1}$$

for all $n \in \mathbb{N}$. Show from definition that the sequence is a Cauchy sequence.

- 2. Consider the $\{y_n\}_{n=1}^{\infty}$, such that $y_1 > 1$ and $y_{n+1} := 2 \frac{1}{y_n}$ for $n \ge 2$. Decide whether the sequence y_n converges.
- 3. Let $x \in \mathbb{R}$, $\{x_n\}_{n=1}^{\infty}$ be a sequence of real numbers such that $x_n \to x$ as $n \to \infty$.
 - (a) Let $\{y_n\}_{n=1}^{\infty}$ be another sequence such that $y_n=x_n$ for all $n\geq K$. Does it imply that y_n also converges ?
 - (b) $\forall \epsilon \in (0,1)$, there is an $N \in \mathbb{N}$ such that $|x_n x| < \epsilon$ for all $n \ge N$.
 - (c) Let C > 0 and $\{y_n\}_{n=1}^{\infty}$ be another sequence such that $y_n = Cx_n$ for all $n \ge 1$. Does it imply that y_n also converges?
 - (d) Let $\{y_n\}_{n=1}^{\infty}$ be another sequence such that $y_n = (-1)^n x_n$ for all $n \ge 1$. Does it imply that y_n also converges?
- 4. Let $p \in \mathbb{R}$. Decide whether $\sum_{n=1}^{\infty} (-1)^n \frac{\sqrt{n}}{(n+1)^p}$ converges.
- 5. Let $\{a_n\}_{n=1}^{\infty}$ be a bounded sequence. Then it has a subsequence convergent in \mathbb{R} . Let $\{x_n\}_{n=1}^{\infty}$ be a sequence of real numbers.