1. Suppose $\{z_n\}_{n=1}^{\infty}$ is a sequence of real numbers. Decide whether the series $\sum_{n=1}^{\infty} z_n$ converges (and converges absolutely) in each of the following cases:

(a) $z_n = \frac{1}{6n^2 + 7n + 10}$

(b) $z_n = \frac{3^n}{2^n + 8^n}$

(c)
$$z_n = \frac{3}{5\frac{1}{n}+6}$$

(d)
$$z_n = \frac{4}{(-3)^{n-1}} - \frac{3}{3^{n-1}}$$

(e)
$$z_n = \frac{(-1)^{n-1}}{3n+4}$$

(f)
$$z_n = \frac{(-1)^{n-1}n}{3n-2}$$

(g)
$$z_n = \frac{(-1)^n}{3n^2 + 2n + 8}$$

(h)
$$z_n = \frac{n!}{n^n}$$

(i)
$$z_n = \frac{(n!)^2}{n^n}$$