- 1. In each of the cases below, decide (from definition without using any standard series test(s)) whether S_n converges or diverges to $\infty.$
 - (a) Let $0 \le a \le 1$ and for $n \ge 1$, let

(b) Let $p \in \mathbb{R}$ and for $n \ge 1$, let

$$S_n = \sum_{k=1}^n a^k.$$
$$S_n = \sum_{k=1}^n \frac{1}{k^p}$$

2. Suppose $\{z_n\}_{n=1}^{\infty}$ is a sequence of real numbers. Decide whether the series $\sum_{n=1}^{\infty} z_n$ converges in each of the following cases:

(i)
$$z_n = \frac{n^2 - n + 1}{n^3 + 1}$$

(ii) $z_n = \left(\frac{n}{2n+1}\right)^n$

3. Suppose $\{z_n\}_{n\geq 1}$ is a sequence of real numbers given by

$$z_n = \frac{(-1)^n}{\sqrt{n}}.$$

- (a) Decide whether the series ∑_{n=1}[∞] z_n converges absolutely.
 (b) Decide whether the series ∑_{n=1}[∞] z_n converges.
- 4. Let $\{x_n\}_{n=1}^{\infty}$ be a sequence of positive real numbers.
 - (a) Suppose $\lim_{n\to\infty} \frac{x_{n+1}}{x_n} = l$ then show that $\lim_{n\to\infty} (x_n)^{\frac{1}{n}} = l$
 - (b) Is the converse of (a) true ?

- 1. Assume $a_n > 0$ and that $\sum_{n=1}^{\infty} a_n < \infty$. Does it imply that $\sum_{n=1}^{\infty} \sqrt{a_n a_{n+1}} < \infty$?
- 2. Consider $\{x_n\}_{n=1}^{\infty}$, such that $x_n = (1 + \frac{1}{n})^n$, for all $n \in \mathbb{N}$. Show that x_n is a monotonically increasing sequence and it converges to $x \in \mathbb{R}$.
- 3. Let $\{x_n\}_{n=1}^{\infty}$ be a sequence of non-zero real numbers such that

$$\lim_{n \to \infty} n\left(\left| \frac{x_n}{x_{n+1}} \right| - 1 \right) = L.$$

- (a) Suppose L > 1. Show that the series converges absolutely.
- (b) What happens if $L \leq 1$?