- 1. Let $\phi: G \longrightarrow G$ be a homomorphism. Let o(x) = n. What can you say about $o(\phi(x))$?
- 2. Find all the elements of $G = \mathbb{Z}/12\mathbb{Z}$ which generate G as a cyclic group.
- 3. List all subgroups of $\mathbb{Z}/48\mathbb{Z}$.
- 4. Find all cosets of H in S_3 , where $H = \langle (12) \rangle$.
- 5. Prove that \mathbb{Q} , the additive group of rational numbers, is not cyclic.
- 6. Let G be a group of even order. Show that G contains an element of order 2.
- 7. Prove that the center Z(G) of a group G is a normal subgroup.
- 8. Prove that every subgroup of index 2 is normal.
- 9. Prove that a subgroup H of a group G is a normal subgroup if and only if it is the kernel of a homomorphism.
- 10. Let $\psi : \mathbb{R}^{\times} \longrightarrow \mathbb{R}^{\times}$ be the map sending x to the absolute value of x. Prove that ψ is a homomorphism and find the image of ψ . Describe the kernels and the fibres of ψ .
- 11. Define $\phi : \mathbb{C}^{\times} \longrightarrow \mathbb{R}^{\times}$ by $\phi(a + ib) = a^2 + b^2$. Prove that ϕ is a homomorphism and find the image of ϕ . Describe the kernel and the fibres of ϕ geometrically (as subsets of the plane).
- 12. (Practice problem) Consider the additive quotient group Q/Z.
 (a) Show that every coset of Z in Q contains exactly one representative q ∈ Q in the range 0 ≤ q < 1.

(b) Show that every element of \mathbb{Q}/\mathbb{Z} has finite order but that there are elements of arbitrarily large order.

(c) Show that \mathbb{Q}/\mathbb{Z} is the torsion subgroup of \mathbb{R}/\mathbb{Z} .

(d) Prove that \mathbb{Q}/\mathbb{Z} is isomorphic to the multiplicative group of roots of unity in \mathbb{C} .