- 1. Let V be the space of all 6×6 real matrices. Find the dimension of the subspace of V consisting of all symmetric matrices.
- 2. Let $T : \mathbb{R}^3 \longrightarrow \mathbb{R}^2$ be the linear transformation defined by T(x, y, z) = (x + 2y, x z). Let n(T) be the null space of T and $W = \{v \in \mathbb{R}^3 | v \cdot u = 0, \forall u \in n(T)\}$. Find a linear transformation $S : \mathbb{R}^2 \longrightarrow W$ such that TS = I, where I is the identity transformation of \mathbb{R}^2 .
- 3. Let A be a real square matrix of odd order such that $A + A^T = 0$. Prove that A is singular.
- 4. Let A be an $n \times n$ matrix such that $A^n = 0$ and $A^{n-1} \neq 0$. Show that there exists a vector $v \in \mathbb{R}^n$ such that $\{v, Av, \dots, A^{n-1}v\}$ forms a basis for \mathbb{R}^n .
- 5. Let $T : \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ be a linear transformation such that T((1,2)) = (2,3) and T((0,1)) = (1,4). Find the value of T((5,6)).
- 6. Let $T : \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ be the linear transformation whose matrix with respect to the unit vectors e_1, e_2, e_3 is

$$A = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$

Then, which of the following is (are) true:

- (a) T maps the subspace spanned by e_1 and e_2 into itself.
- (b) T has distinct eigenvalues.
- (c) T has eigenvectors that span \mathbb{R}^3 .
- (d) T has a non-zero null=space.
- 7. (a) Give an example of a linear transformation $T : \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ such that $T^2(v) = -v$ for all $v \in \mathbb{R}^2$.

(b) Let V be a real n dimensional vector space and let $T : V \longrightarrow V$ be a linear transformation satisfying $T^2(v) = -v$ for all $v \in V$. Show that n is even.

- 8. Let T : Rⁿ → Rⁿ be a linear transformation, where n ≥ 2. For k ≠ n let E = {v₁, v₂,..., v_k} ⊆ Rⁿ and let F = {Tv₁, Tv₂,..., Tv_k}. Then which of the following is (are) true:
 (A) If E is linearly independent, then F is linearly independent.
 (B) If F is linearly independent, then E is linearly independent.
 (C) If E is linearly independent, then F is linearly dependent.
 (D) If F is linearly independent, then E is linearly dependent.
- 9. For $n \neq m$, let $T_1 : \mathbb{R}^n \longrightarrow \mathbb{R}^m$ and $T_2 : \mathbb{R}^m \longrightarrow \mathbb{R}^n$ be linear transformations such that T_1T_2 is bijective, Then, which of the following is (are) true:

- (i) $\operatorname{rank}(T_1) = n$ and $\operatorname{rank}(T_2) = m$. (ii) $\operatorname{rank}(T_1) = m$ and $\operatorname{rank}(T_2) = n$. (iii) $\operatorname{rank}(T_1) = n$ and $\operatorname{rank}(T_2) = n$. (iv) $\operatorname{rank}(T_1) = m$ and $\operatorname{rank}(T_2) = m$.
- 10. Let $\{v_1, v_2, v_3\}$ be a basis of a vector space V over \mathbb{R} . Let $T: V \longrightarrow V$ be the linear transformation determined by: $T(v_1) = v_1$, $T(v_2) = v_2 v_3$ and $T(v_3) = v_2 + 2v_3$. Find the matrix of the transformation T with $\{v_1 + v_2, v_1 v_2, v_3\}$ as a basis of both the domain and the co-domain of T
- 11. Consider the subspace $W = \{(x_1, x_2, \dots, x_{10}) \in \mathbb{R}^{10} : x_n = x_{n-1} + x_{n-2} \text{ for } 2 \leq n \leq 10\}$ of the vector space \mathbb{R}^{10} . Find the dimension of W.
- 12. Let $B_1 = \{(1,2), (2,-1)\}$ and $B_2 = \{(1,0), (0,1)\}$ be ordered bases of \mathbb{R}^2 . If $T : \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ is a linear transformation such that $[T]_{B_1,B_2}$, the matrix of T with respect to B_1 and B_2 , is

$$\begin{bmatrix} 4 & 3 \\ 2 & -4 \end{bmatrix}$$

then T(5,5) is equal to

(A) (-9,8) (B) (9,8) (C) (-15,-2) (D) (15,2).