- 1. Let A be a non-empty set of real numbers which is bounded below. Let $-A := \{x \in \mathbb{R} : -x \in A\}$. Show that $\inf(A) = -\sup(-A)$.
- 2. If $z, w, z_i \in \mathbb{C}$ for i = 1, 2, ..., n then show that

$$|z_1 + z_2 + \dots + z_n| \le |z_1| + |z_2| + \dots + |z_n|$$

and

$$||z| - |w|| \le |z - w|$$

- 3. Let A and B be bounded nonempty subsets of \mathbb{R} , and let $A + B := \{a + b : a \in A, b \in B\}$. Prove that $\sup(A + B) = \sup(A) + \sup(B)$.
- 4. In each of the cases below decide if $\{x_n\}_{n=1}^{\infty}$ either converges to a real number or diverges to ∞ or diverges to $-\infty$ or none of the above.

(a)
$$x_n = \frac{2n^2 + 1}{3n^2 - 1}$$

(b) $x_n = n^{(-1)^n}$
(c) $x_n = \frac{n!}{n^n}$

- 1. Decide if $\{x_n\}_{n=1}^{\infty}$ either converges to a real number or diverges to ∞ or diverges to $-\infty$ or none of the above when $x_n = (a_1^n + a_2^n + a_3^n)^{\frac{1}{n}}$, with $a_1, a_2, a_3 > 0$
- 2. Let $\{a_n\}_{n=1}^{\infty}$ be a bounded sequence. Then it has a subsequence convergent in \mathbb{R} . Let $\{x_n\}_{n=1}^{\infty}$ be a sequence of real numbers.
- 3. Let $\{x_n\}_{n=1}^{\infty}$ be a sequence of real numbers \mathbb{R} and suppose that $x_n \to x$.
 - (a) Let $m, n \in \mathbb{N}$, show that $x_{m+n} \to x$ as $m \to \infty$.
 - (b) Let $m, l \in \mathbb{N}, p : \mathbb{R} \to \mathbb{R}$ such that $p(x) = \sum_{k=0}^{l} p_k x^k$, and $q : \mathbb{R} \to \mathbb{R} \setminus \{0\}, q(x) = \sum_{k=0}^{m} q_k x^k$, with $p_k \in \mathbb{R}, q_k \in \mathbb{R}$ for k = 1, 2, ..., n. Show that if $r : \mathbb{R} \to \mathbb{R}$ defined by $r(x) = \frac{p(x)}{q(x)}$ then $r(x_n) \to r(x)$.
 - (c) Show that $\{|x_n|\}_{n=1}^{\infty}$ also converges