1. Consider the following two matrices in $GL_2(\mathbb{R})$:

$$a = \begin{bmatrix} 0 & 1 \\ -1 & -1 \end{bmatrix}$$

and

$$b = \begin{bmatrix} 0 & -1 \\ 1 & 0. \end{bmatrix}$$

Show that a has order 3 and b has order 4. What is the order of ab?

- 2. Give examples of the following:
 - (1) An infinite group G with a subgroup $H \neq G$ and |G:H| finite.
 - (2) An infinite group G with a subgroup $H \neq \{e\}$ and o(H) finite.
- 3. Show that the only finite group with 2 conjugacy classes is \mathbb{Z}_2 .
- 4. Find the number of subgroups of the group $\mathbb{Z}/60\mathbb{Z}$.
- 5. Prove or disprove that if G is a finite abelian group of order n, and k is a positive integer which divides n, then G has atmost one subgroup of order k.
- 6. Find the number of elements of S_5 which are their own inverses.
- 7. Find the number of 2×2 matrices over \mathbb{Z}_3 with determinant 1.
- 8. For a ∈ G, let φ_a : G → G be the automorphism where φ_a(g) = aga⁻¹, ∀g ∈ G. Let Inn(G) = {φ_a|a ∈ G}. Show that
 (i) Inn(G) is a normal subgroup of Aut(G).
 (ii) Aut(G)/Inn(G) ≅ Z(G).
- 9. Prove that a group of order p^2 is abelian, where p is a prime.
- 10. Find the order of the element $\frac{2}{3} + \mathbb{Z}$ in \mathbb{Q}/\mathbb{Z} .
- 11. Let p be a prime number. Let G be the group of all 2×2 matrices over \mathbb{Z}_p , with determinant 1. Find the order of G.
- 12. Let G be a finite group and ϕ be an automorphism of G such that $\phi(x) = x$ if and only if x = e. Prove that every $g \in G$ can be represented as $g = x^{-1}\phi(x)$ for some $x \in G$. Moreover if $\phi(\phi(x)) = x$ for every $x \in G$, then show that G is abelian.
- 13. Let G be a group of order 24. Find the number of automorphisms of G onto G.
- 14. Let S_n denote the group of permutations on the set $\{1, 2, ..., n\}$ under the composition of functions. For n > 2, let H be the smallest subgroup of S_n containing (1, 2) and the *n*-cycle (1, 2, ..., n). Then show that $H = S_n$.

- 15. Which of the following conditions on the group G implies that G is abelian.
 - (i) Order of G is p^3 for some prime p.
 - (ii) Every proper subgroup of G is cyclic.
 - (iii) Every subgroup of ${\cal G}$ is normal.
 - (iv) The function $f: G \longrightarrow G$ defined by $f(x) = x^{-1}, \forall x \in G$ is a homomorphism.