1. In each of the cases below decide if $\{x_n\}_{n=1}^{\infty}$ converges or not:

(a)
$$x_n = \frac{1}{n}$$

(b) $x_n = \sqrt{n^2 - n} - n$
(c) $x_n = \frac{2^n}{n!}$,
(d) $x_n = nb^n$, for $b \in (0, 1)$

- 2. Let a_n be a bounded sequence of real numbers. Let $s = \sup\{a_n : n \ge 1\}$ and $s \notin \{a_n : n \in \mathbb{N}\}$. Show that there is a subsequence of a_n that increases to s.
- 3. Suppose $\{a_n\}_{n\geq 1}$ is a sequence of real numbers such that

$$\lim_{n \to \infty} |a_{n+1} - a_n| = 0.$$

Does this necessarily imply that the sequence is a Cauchy sequence.

- 4. Consider the $\{y_n\}_{n=1}^{\infty}$, such that $y_1 > 1$ and $y_{n+1} := 2 \frac{1}{y_n}$ for $n \ge 2$. Show that y_n converges.
- 5. (Finding Roots of a number) Let a > 0 and choose $s_1 > \sqrt{a}$. Define

$$s_{n+1} := \frac{1}{2}(s_n + \frac{a}{s_n})$$

for $n \in \mathbb{N}$.

- (a) Show that s_n is monotonically decreasing and $\lim_{n\to} s_n = \sqrt{a}$.
- (b) If $z_n = s_n \sqrt{a}$ then show that $z_{n+1} < \frac{z_n^2}{2\sqrt{a}}$.
- (c) Let $f(x) = x^2 a$. Show that $s_n = s_{n-1} \frac{f(s_{n-1})}{f'(s_{n-1})}$.
- (d) Draw graph of f with a = 4 and plot the sequence s_n for a few steps when $s_0 = 5$.

- 1. Decide if $\{x_n\}_{n=1}^{\infty}$ either converges to a real number or diverges to ∞ or diverges to $-\infty$ or none of the above when $x_n = n^{\frac{1}{n^2}}$
- 2. Let $x \in \mathbb{R}$, $\{x_n\}_{n=1}^{\infty}$ be a sequence of real numbers. Show that the following are equivalent:
 - (a) $\forall \epsilon > 0$, there is an $N \in \mathbb{N}$ such that $|x_n x| < \epsilon$ for all $n \ge N$.
 - (b) $\forall \epsilon \in (0,1)$, there is an $N \in \mathbb{N}$ such that $|x_n x| < \epsilon$ for all $n \ge N$.
 - (c) Let C > 0, $\forall \epsilon > 0$, there is an $N \in \mathbb{N}$ such that $|x_n x| \leq C\epsilon$ for all n > N.