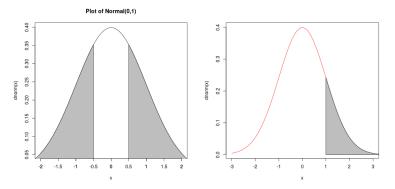
1. **Perform the following Experiment A**: Roll the die 5 times.

- (a) Repeat Experiment A 10 times
- (b) Fill in the following Table

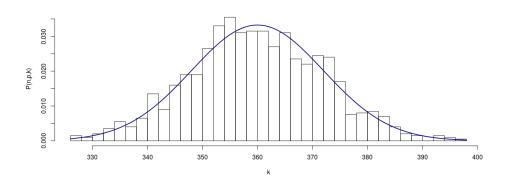
Trial	Outcome of Roll 1	Outcome of Roll 2	Outcome of Roll 3	Outcome of Roll 4	Outcome of Roll 5	Sum of the Rolls
1						
2						
3						
4						
5						
6						
7						
8						
9						
10						

(c) Approach the board and draw the dot plot for Y = Sum of the Rolls


- 2. We toss a coin n times and note down the number of heads obtained. Suppose the Probability of getting a head in one toss is p, then find
 - (a) P(n, p, k) = P(getting k heads in n tosses).
 - (b) Let n = 8, then for each p = 0, 1/2, 1 calculate numerical value of P(n, p, k) for every $k = 0, 1, \dots, 8$; construct relative frequency table; and plot the histogram.
 - (c) Decide if any of them resemble the Normal Probability density curve $f : \mathbb{R} \to \mathbb{R}$ is given by

$$f(x) = \frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}$$

3. The Normal Probability density function curve $f : \mathbb{R} \to \mathbb{R}$ is given by


$$f(x) = \frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}$$

(a) Find the area in the shaded region

- (b) Find the area under the normal curve:
 - (a) to the right of 1.25.
 - (b) to the left of -0.40.
 - (c) to the left of 0.80.
 - (d) between -0.30 and 0.90.
 - (e) outside -1.5 and 1.5.
- (c) Fill in the blanks:
 - (a) The area between \pm _____ under the normal curve equals 68%.

 - (b) The area between ± _____ under the normal curve equals 75%.
 (c) The area between ± _____ under the normal curve equals 90%.
 - (d) The area to the left of _____ under the normal curve equals 90%.
- 4. Suppose an airline checks in 600 pieces of luggage and the probability that a bag will arrive at its destination is 0.6. Find the probability that at least 330 bags arrive.
 - (a) Can you provide an exact numerical value of the same ?
 - (b) Following is the histogram of P(n, p, k) for n = 600, and p = 0.6

The curve drawn is the density of Normal (360, 144). Using the normal probability table, can you approximate the probability in previous problem ?