1. Let $A \subset \mathbb{R}$. Define:

- (a) What is meant by saying A is a bounded subset of \mathbb{R} ?
- (b) Negate the above statement using logical notation.
- (c) What is meant by saying $\alpha = \sup(A)$ and $\beta = \inf(A)$?
- 2. Find the infimum and supremum of the sets
 - (a) $B = \{2, 3, 4\}$
 - (b) $S = \{\frac{1}{n} : n \in \mathbb{N}\} \cup \{50 + \frac{1}{n} : n \in \mathbb{N}\}$
 - (c) $A = \{1 \frac{(-1)^n}{n} : n \in \mathbb{N}\}$
- 3. Let $A = \{p \in \mathbb{Q} : p^2 < 2\}$. Show that A is bounded above but does not have a least upper bound in \mathbb{Q}
- 4. Let A and B be two subsets of \mathbb{R} , which are both bounded below. Let $u = \inf(A)$ and $v = \inf(B)$. Find $\inf(C)$, in terms of u, v, when
 - (a) $C = \{a + b : a \in A, b \in B\},\$

(b)
$$C = A \cup B$$
,

- (c) $C = A \cup \{10\}.$
- 5. Let $n \ge 1$ and $x_i > 0$. Prove the Bernoulli inequality:

$$\prod_{i=1}^{n} (1+x_i) \ge 1 + \sum_{i=1}^{n} x_i$$

6. If $a \in \mathbb{R}$ such that $0 \le a < \epsilon$ for every $\epsilon > 0$, then show that a = 0.

- 1. Let A and B be two subsets of \mathbb{R} , which are both bounded below. Let $u = \sup(A)$ and $v = \sup(B)$. Find $\sup(C)$, in terms of u, v, when
 - (a) $C = \{a + b : a \in A, b \in B\},\$
 - (b) $C = A \cup B$, (What if $C = A \cap B$?)
 - (c) $C = A \cup \{-10\}.$
- 2. Let A and B be two non-empty subsets of \mathbb{R} . Define what is meant by a function $f : A \to B$ and when is it called one-one and onto. Provide examples of f that are (and are not) one-one and (or) onto when A, B are finite or countable or uncountable.