Let $\{X_t : t = 0, 1, 2, ..., N - 1\}$ be a set of real(or complex) numbers (sometimes called finite sequence). Define its orthonormal discrete Fourier transform (ODFT) to be the sequence

$$F_k = \frac{1}{\sqrt{N}} \sum_{t=0}^{N-1} X_t e^{-i\frac{2\pi tk}{N}}, \ k = 0, \dots, N-1.$$
(2)

- 1. Suppose $X_t \in \mathbb{R}$ for all $t = 0, 1, 2, \dots, N 1$.
 - (a) Show that F_0 is real-valued.
 - (b) Show that $F_{N-k} = F_k^*$ for $1 \le k < \frac{N}{2}$.
 - (c) If N is even then $F_{\frac{N}{2}}$ is real-valued when N is even.

2. Let \mathcal{F} be the $N \times N$ martix whose (k, t)th element be given by

$$\frac{1}{\sqrt{N}}\exp(-i\frac{2\pi tk}{N}),$$

where $0 \le k, t \le N - 1$. Let **X** be the column vector formed with entries of X and **F** be the the column vector formed with the entries of F.

- (a) Verify that $\mathbf{F} = \mathcal{F}\mathbf{X}$.
- (b) Verify that \mathcal{F} is a unitary matrix. That is

$$\mathcal{F}^H \mathcal{F} = I_N.$$

(c) Conclude that $\mathbf{X} = \mathcal{F}^H \mathbf{F}$

3. Let N = 16. Can you plot the real part of \mathcal{F}_{k*}^H as a function of * ?