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The Theory of Equations and the Birth of 
Modern Group Theory 
An Introduction to Galois Theory 

B Sury 

A mathematician whose collected works run to a 
mere sixty pages, one who did not live to be 21 
and yet truly revolutionised modern mathematics 
through his pioneering discoveries - this uniquely 
defines Evariste Galois! 

A Glimpse into his Life and Work 

Galois's work was in what was then known as the theory 
of equations. The principal problem here can be easily de­
scribed. In school, we learn how to solve quadratic equations 
ao + alx + a2x2 = O. The solutions are simple expressions 
in the coefficients and involve only the operations of addi­
tion, subtraction, multiplication, division and extraction of 
square roots. This was discovered in Mesopotamia between 
1800 and 1600 Be. For the ,cubic and the degree four equa­
tions, Scipione del Ferro and Ferrari gave solutions in the 
beginning of the 16th century in terms of the coefficients as 
expressions involving the above operations and, in addition, 
the extraction of higher roots. What about the equations of 
degree five? For more than 300 years, mathematicians tried 
in vain to find such a 'formula' for the general equation of 
fifth degree. Here, one means by a formula for the roots of 
a polynomial equation, expressions in the coefficients which 
involve only the operations of addition, subtraction, multi­
plication, division and the extraction of various roots. It 
was Ruffini who first realised that such a formula may not 
exist and Abel followed up Ruffini's ideas to prove this. By 
this, one should understand that no matter how great the 
mathematician or how sophisticated the method, one can­
not get a 'formula' in the above sense. What is more, one 
can prove that a formula cannot exist! Such non-existence 
statements occur throughout mathematics and are usually 
considerably harder to prove than the existence statements. 

B Sury is now with 

Indian Statistical 

Institute in Bangalore 

after spending about 18 

years at the Tata 

Institute of Fundamental 

Research in Mumbai. 

Nonsense writing 

(present article not 

included!) and math­

ematical satire are the 

principal interests he 

banks on. 

-R-ES-O-N--A-N-C-E--I-O-c-to-b-e-r-1-9-9-9------------~~-------------------------------4-7 



Box 1. 

A solvable group G is 

one for which there is a 

finite chain of subgroups 

{e}=Gr ~ ••• Gl~GO=G 

where each G j is normal 

in Gj _ 1 
with the quotient 

G j _ 1 /G j being abelian. 

This easily implies that 

one has a finite chain in 

which each Gj is normal 

in the whole of G rather 

thanjust in the next group 

G j _ 1
• For instance, one can 

define recursively Do = G, 

D j +1= the smallest sub­

group of D j containing 

the commutators aba-1 b-1 

with a, beDj . It can be 

checked inductively that 

D j ~ G j and the D j giye a 

chain as asserted. 
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In other words, it is a 'no go' situation in modern parlance. 
However, this still does not preclude the possibility of a for­
mula valid for an infinite class of equations. For instance, the 
great mathematician Gauss proved in 1801 that the roots of 
the cyclotomic equation Xn-1 = 0 can be expressed by such 
a formula - the cyclotomic equations will be the subject of 
another article in a later issue of Resonance. Galois's path­
breaking work completely nailed down the whole problem 
by giving a criterion which is necessary as well as sufficient 
for a given equation of any degree to yield such a formula. 
This and more are part of what is known as Galois theory. 

Galois's study of a polynomial p(x) was based on the idea 
that the group of permutations of the roots of p(x) retains 
all the information on p(x). The theory of groups is such a 
central part of present-day mathematics that it seems diffi­
cult to believe that during Galois's time, group theory, per 
se, was nonexistent. Indeed, it is a tribute to Galois's genius 
that group theory has the central place that it has today. If 
a subgroup of a group has the property that its left cosets 
and right cosets are the same, Galois recognised quite bril­
liantly that the subgroup must be distinguished. This paved 
the way towards. his formulation of the theory known now as 
Galois theory; the fundamental theme here is that to each 
polynomial one can associate a certain group (called its Ga­
lois group) in a bijective fashion so that the theory of equa­
tions gets replaced by group theory. It turns out that for 
the existence of a form,ula to find the roots of a polynomial 
in term,s of radicals (i.e. various roots) of the coefficients, 
it is necessary and sufficient that the corresponding Galois 
group have the special property that the procedure of writing 
'com,mutators' aba -lb-1, and commutators of commutators 
etc. leads after a finite number of repetitions to the identity 
element. For this reason, such groups are nowadays called 
solvable (see Box 1). The general equation ofn-th degree has 
for its Galois group, the full permutation group Sn. As the 
symmetric group Sn is not solvable when n is greater than or 
equal to 5, Abel-Ruffini's theorem about the nonexistence 
of a 'formula' follows neatly. What is astonishing is that 
Galois theory solves with equal ease an algebraic problem 
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like the solvability by radicals of a quintic, and classical geo­
metric problems like squaring the circle, trisecting an angle 
or duplicating the cube. The geometric problems referred to 
are: (i) to construct a square whose area is that of the unit 
circle, (ii) to trisect a given angle and, (iii) to construct a 
cube whose volume is twice that of a given cube, all of which 
are to be done with the aid of a straight-edge and a compass 
(for more details, see [1]). Another important discovery by 
Galois was the determination of the finite fields - these are 
now called Galois fields. 

Epoch-making as Galois's discoveries are, they didn't get 
him recognition during his life time. His life was such a suc­
cession of misfortunes that it is indeed a miracle that his 
work came to light at all. Galois was born on the 25th of 
October, 1811. At the age of 17, he obtained the princi­
pal results of Galois theory. (It is remarkable that at that 
time, Galois had not even heard of Abel.) He submitted 
two papers on these in May and June of 1829 to Cauchy 
who promised to present them to the Academy of Sciences 
in Paris. Cauchy forgot to do so, and, in addition, lost the 
manuscripts1. Galois was so sure of his abilities and of the 
importance of his researches that he submitted his results 
for the second time in February 1830, to the Academy of 
Sciences - this time for the Grand Prize of Mathematics. 
Fourier, who was secretary then, took them home to exam­
ine but died before he could do so and no trace of Galois's 
manuscripts could be found among Fourier's papers. As a 
final attempt, Galois submitted a memoir to the Academy 
once again in January 1831 only to find it turned down by 
the referee Poisson who found it incomprehensible. Such re­
peated onslaughts of misfortune perhaps engendered in the 
youngster a hate for society as a whole and drove him to 
politics on the side of the then forbidden republicanism. He 
threw himself furiously into the revolution of 1830. He was 
arrested twice in 1831 on charges of being a radical. Here 
is a place where the problem was not solvable by radicals! 
Even- after his release from prison, he was hounded by his 
political enemies. He was challenged to a duel with pistols 
by a patriot on the 30th of May 1832. He was. shot and died 

1 This is according to Van der 

Waerden's 'History of Modern 
Algebra' and E T Bell's 'Men of 

Mathematics, for another ver­

sion, please see T Rothman's 
'The Fictionalization of £variste 

Galois' in American Mathemati­

cal Monthly, 89, 84-106, 1982. 
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Box 2. 

A group G is a set pro­

vided with a prescription 

(called group multiplica­

tion) that manufactures 

from a pair of elements a, 

b (in that order), a third 

element usually written ab 

and called their product; 

this prescription is further 

required to satisfy the fol­

lowing natural conditions 

of: 

0) Associativity: a(bc) = 

(ab)c for all a, b, c, 

(ii) Existence of an iden­

tity element e : ae = ea = a 

for all a, 

(iii)Existence of an in­

verse element: for each a, 

there is an element de­

noted by a-I such that 

aa-I = a-Ia = e. 
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early in the morning of the 31st. Realising that he might 
not survive, he had spent the previous night desperately 
scribbling down his discoveries, racing against time. He left 
these papers in the care of his friend Auguste Chevalier. In 
his letter to Chevalier, he says "Ask Jacobi or Gauss to give 
their opinion, not as to the truth, but as to the importance 
of these theorems". This clearly shows how invaluable he 
believed his work to be. Thanks to Chevalier for preserving 
the papers, the work done by 17-year old Galois, got pub­
lished eventually - 14 years after Galois died - and proved 
to be as epoch-making as Galois hoped to see. Look at the 
Article-in-the-box for more historical details. 

Groups, Rings and Fields 

The mathematical formulation of Galois theory involves the 
languages of groups and fields. We start with the first one 
which is the one that is more familiar to most people. 

Symmetry is a basic phenomenon common to all sciences 
and the concept of groups was created to understand it. 
Although the concept was already existent in some form 
before Galois, the first real place where the power of group 
theory came to the fore is the theory of equations. Therefore, 
one could say that the birth of modern group theory is due 
to Galois. Let us get down to brass tacks and say precisely 
what we are really talking about. As most of the readers 
would be aquainted with at least finite group theory, we 
start with a breezy survey of the basic concepts and results 
of general group theory relevant to us. 

The principal models of groups (see Box 2) are the familiar 
groups of numbers: the integers Z, the rational numbers 
Q, the real numbers R and the complex numbers C under 
addition. Here are some more examples: 

(i) The non-zero numbers in Q, R, C under multiplication. 

(ii) The unit circle in the complex plane under the mul­
tiplication of complex numbers - this just amounts to the 
addition of angles. 

--------~--------
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For a positive integer n, the set e2inr/n for r = 1" ,n, 
i.e., the set of n-th roots of unity, forms a subgroup of this 
group i.e., it is a subset which is a group under the same 
multiplication. One could also take all the roots of unity 
corresponding to all positive integers n - this is the torsion 
subgroup of the circle group (Le., it comprises all a such that 
an = 1 for some n). 

(iii) The set G Ln of all invertible n x n matrices with entries 
from Q, R or C under matrix multiplication. In fact, ex­
ample (i) is the special case of this corresponding to n = 1. 
Note that unlike the earlier examples, when n ~ 2, the ma­
trix group is not abelian i.e., there are invertible matrices 
A, B for which AB =1= BA. The subsets B of all upper tri­
angular matrices and T of all diagonal matrices in G Ln are 
also subgroups. The latter is abelian but the former is not 
abelian if n ~ 2. 

(iv) For a positive integer n, the set of integers modulo n 
forms a group under addition modulo n. More generally, 
if one considers the equivalence relati?n rv among rational 
numbers defined by a rv b if a - b is an integer, the equiva­
lence classes form a group (Ex. What is the group multiplica­
tion here?). These two examples are just the ones mentioned 
in (ii) under a different guise. 

(v) For any set X, the set SeX) of all bijections on X is 
a group under the composition of bijections. If X is a fi­
nite set of n elements, SeX) is usually denoted by Sn and is 
called the symmetric group on n letters. Any subgroup of 
Sn for some n is called a permutation group. If B : G ~ H 
is a homomorphism (see Box 3), its image {B(g) : g E G} 
is a subgroup of H. For example, the mapping of the cir­
cle to itself which raises each element to its n-th power (for 
some fixed n) is a homomorphism. Note that this is onto 
but not 1-1 as each n-th root of unity maps to the identity 
element. A homomorphism which is also a bijection is called 
an isomorphism. As all the properties of a group structure 
are preserved under any isomorphism, we are interested in 
only the isomorphism classes of groups. A cyclic group is 
a group generated by a single element of it. The group of 

Box 3. 

A mapping () from a group 

G to a group H which 

preserves their respective 

group multiplications is 

called a homomorphism. 

In 'other words, () (xy) = 

() (x) () (y) where the two 

sides of this equation in­

volve products in the two 

groups. 
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Box 4. 

A subgroup H of a group 

G is a subset which is a 

group in its own right un­

derthe multiplication law 

of G. One can define an 

equivalence relation on G 

given by a - b if ab-i eH. 

The equivalence classes 

are called right eosets. 

Box 5. 

It was Galois who 

recognised the importance 

of the concept of a sub­

group for which left and 

right cosets are the same. 

Such a subgroup H is said 

to be distinguished or 

normal in G. 

GENERAL I ARTICLE 

integers is an infinite cyclic group. As it is the only infinite 
cyclic group upto isomorphism (why?), one calls it the infi­
nite cyclic group. Similarly, for each positive integer n, the 
unique cyclic group with n elements is the group of integers 
modulo n. If a finite, abelian group has at most n elements 
g such that gn = e for every n, then it is cyclic. 

Exercise. Prove the same without assuming that the group 
is abelian. 

Given a subgroup H the right coset (see Box 4) correspond­
ing to an element a of G is denoted by H a; it consists of the 
subset {ha : h E H}. As the different right cosets are dis­
joint and each right coset has exactly as many elements as 
are in H if G is finite, its order is a multiple (called the in­
dex of H in G) of the order of H; this is known as Lagrange's 
theorem" One defines left cosets analogously and, in general, 
right cosets may not be left cosets. We shall soon see the role 
played by normal subgroups (see Box 5) in Galois theory. If 
G is abelian, evidently all subgroups are normal. 

Some examples of normal subgroups of nonabelian groups 
are: 

(i) the alternating group An of even permutations in Sn, 

(ii) the special linear group S Ln consisting of n x n matrices 
over rationals, reals or complex numbers with determinant 
1 and 

(iii) the subgroup U of the group B of upper triangular 
invertible rational, real or complex matrices which consists 
of l's on the diagonal. 

Given a normal subgroup N of a group G, the cosets again 
form a group called the quotient group and denoted by G / N . 
The multiplication here is (xN)(yN) = xyN The group of 
integers modulo n is just the quotient group of Z by the 
subgroup nZ consisting of all integral multiples of n. The 
torsion subgroup of the circle group is the quotient group 
Q/Z. 

If () : G ~ H is a homomorphism, the kernel of () (the ele-
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ments mapping to the identity) is a normal subgroup Ker(e) 
of G. Moreover, it is very easy to see that the quotient group 
G /Ker(e) is isomorphic to the image e(G). 

(Ex. What is the isomorphism implicit here?). 

We can now get on to the concept of rings. In our discussion 
of Galois theory, ring theory plays only a minor role and we 
shall move on to fields after a very brief interlude with rings. 
The reader interested in a more detailed study of rings may 
refer to [2]. For us, all rings (see Box 6) are commutative 
with identity. Conventionally, one writes ab instead of a.b 

and writes 0 for the additive identity. 

The principal examples of rings relevant to us are: 

(i) Z, Q, R, C under the usual addition and multiplication 
of complex numbers. More generally, consider the subring 
generated by a subset S of C; this consists of all finite sums 
of finite products of elements of S. 

For instance, for an integer d, the sets Z [Jd] = {a + bJd : 
a, b E Z} and Z[e2i7r/ d] = {L~=l are2i7rrjd : a r E Z} are 
rings. 

(ii) The set R(Xl,X2, .. ,Xn] of all polynomials in n vari­
ables Xi over any ring R is again a ring, called a polynomial 
ring over R. 

The notions of a subring, a ring homomorphism and ring 
isomorphism are defined in the obvious manner. The ring­
theoretic concept corresponding to normal subgroups is that 
of ideals (see Box .7). The integral multiples of n form an 
ideal in the ring Z It is also the kernel of the ring homo­
morphism from Z to the ring of integers modulo n. Other 
examples of ideals are given by looking more generally at the 
ideal generated by a subset n of a ring R; such an ideal con­
sists of finite linear combinations L TiWi with Ti E R, Wi E n. 
This ideal is denoted by (0). If 0 consists of just one ele­
ment, the ideal (0) is said to be principal. For instance, 
every ideal of Z is principal. So is the case with the polyno­
mial ring Q [X J as can be seen using the division algorithm -

Box 6. 

A commutative ring with 
unity 1 is a set R with two 
operations + and . (called 
addition and multiplica­
tion) such that R is an 
abelian group under addi­
tion, closed under multi­
plication and satisfies 
a . I = a, a . b = b . a, 
a. (b . c) = (a. b) . c, 

a. (b + c)= a. b + a . c. 

Box 7. 

An ideal I in a ring R is a 
subset which is a subgroup 
of the additive group of R 
and satisfies rs E I for all r 
E R, SE I. Obviously, R 
itselfisan ideal and is called 
the unit ideal. The single­
ton consisting of 0 is called 
the trivial ideal. Given any 
ring homomorphism from 
a ring R to a ring S, the 
kernel Ker(8) = {r E R: 
8(r) = 0 } is an ideal of R. 

The image 8 (R ) is a sub­

ring of S. 

Box 8. 

An ideal I of R is prime if ab 

E I => either a or b is in I. 
An ideal I of R is maximal 
if there is no ideal J:I: I, R 
such that I ~ J. An integral 
domain is a ring in which 
the trivial ideal 0 is a prime 
ideal i.e., ab = 0 <=> either a 
or b is zero. A principal 
ideal domain- PIO for short 
- is an integral domain in 
which all ideals are princi­

pal. 
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Box 9. 

Fields for which the set' 

{n . 1 : n eN } is a finite 

set are said to have finite 

characteristic and the 

characteristic is defined to 

be the cardinality of this 

set: The characteristic has 

to be a prime number 

(Why?). The other type of 

fields are said to have 

characteristic O. 
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any polynomial of least degree in an ideal generates it. The 
ideal (p) of Z generated by a prime number is a prime ideal 
as well as a maximal ideal and Z is an integral domain. The 
rings Z, Q[XJ, R[X] and C[X] are PID's (see Box 8). 

As we 'did with normal subgroups, we can define for any 
ideal I in a ring R, an equivalence relation on R : a rv b 

if a - bEl. The equivalence classes form a ring called the 
quotient ring, denoted as R/ I. One writes a + I for the class 
corresponding to a E R. 

If () : R ~ S is a ring homonl0rphism, then the rings 
R/Ker(()) and ()(R) are naturally isomorphic. 

Easy exercises: (i) An ideal I of a n:ng R is prime if, and 
only if, R/ I is an integral dom,aini (ii) An ideal I of a ring 

R is maximal if, and only if, R / I is a field. 

We have used the word field; this is nothing but a ring R in 
which all non-zero elements have multiplicative inverses. 

The premier examples of fields are Q, R, C; here are more 
examples. 

(i) The smallest field containing a subset 0 of C (i.e., the 
subfield generated by 0) consists of all the complex numbers 
L: aixdL: bjYj where both are finite sums, ai, bi E Q, Xi, Yi E 

o and L: bjYj =1= O. 

For instance, if n = {Jrn} for some integer m, the corre­
sponding field Q(Jrn) = {a + bJrn: a, bE Q}. 

(ii) The field K (X b ,X n) of rational functions 1/9, 1,9 E 

K[X b' ,Xn ], 9 =1= 0 is a field for any field K, 

(iii) The set of integers modulo p is a field if p is prime. To 
stress that one is talking about the field rather than just the 
additive group, one writes F p' 

In contrast to the number fields (i.e., subfields of C) the last 
example is different as the set {n.1 : n E N} is a finite set 
(of p elements). 

The notions of subfields, field homomorphisms and field iso-
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morphisms are once again obviously defined. 

Exercises: 

(i) Show that a field has characteristic (see Box 9) p =1= 0 
(respectively 0) if, and only if, K has a subfield isomorphic 
to F p (respectively Q). 

(ii) For any field K, the polynomial ring K [X 1, . , X n] is 
a PID if, and only if, n = l. 

Field Extensions and Galois Theory 

Let us stop for a moment to review the theory of equations 
in terms of field theory. One is given a polynomial f(X) 
in one variable; this may have for its coefficients, numbers 
like rational numbers or variables like polynomials in some 
other variables. At any rate, the coefficients are supposed to 
be known quantities from a given base field. It was tacitly 
assumed in the days of Galois that there was a bigger field 
in which the given polynomial f had all its roots i.e., f when 
thought of as a polynomial over the bigger field could be fac­
tored into linear polynomials. For polynomials over number 
fields, this was justified by a rigorous proof due to Gauss of 
the fundamental theorem of algebra. Be t,hat as it may, the 
mathematicians of those times assumed the existence of a 
unique smallest field where f had all its roots and went on 
to study that field in relation to the base field with a view to 
expressing the roots of f in terms of the base field. Without 
further ado, let us consider this as sufficient motivation to 
study field extensions (see Box 10). If K ~ L ~ M are finite 
extensions, then for any K -basis {VI, . ,vm } of Land L­
basis {WI, ,wn } of M it is straightforward to check that 
{ViWj} is a K -basis of M. Thus, the very first observation 
is that in a chain of finite extensions, the degree multiplies. 

In Galois theory, one studies algebraic elements and alge­
braic extensions (see Box 11) - possibly of infinite degree. 
For any rational number d, the two complex square roots of 
d are examples of algebraic elements of the field extension 
C/Q. The well-known constants e, 7r are not algebraic over 
Q. 

Box 10 

Afield extension is sim­

ply an inclusion of fields 

K ~ L - one writes LIK. 

This is not a quotient of L 

- a field has no nontrivial 

ideals! L can then be re­

garded as a vector space 

over K and one calls its 

dimension the degree 

[L:K]. If the degree is fi­

nite, L is said to be afinite 

extension of K. 

Box 11 

Given a field extension 

LI K, an element a of L is 

algebraic over K if there 

is a non-zero polynomial 

f eK[X] such thatf(a) = 

O. An algebraic extension 

is one in which all the 

elements are algebraic. 
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Another set of examples is provided by any finite extension 
L/K. 1ft E L, look at the set {ti: i ~ O}. Hit is a finite set, 
either t = 0 or tn = I for some n. In either case, t is evidently 
algebraic over K If it is an infinite set, it has to be linearly 
dependent ~n view of the finiteness of [L : K]. Thus, once 
again there is a non-zero polynomial over K which vanishes 
at t. We have proved therefore that: any finite extension 

L / K is algebraic. 

Look at an element t of a field extension L / K. The smallest 
su bfield K (t) of L containing K and t consists of the frac­
tions f(t)/g(t) for f,g E K[X] with get) "# 0 (Why?). We 
have the somewhat surprising fact that if t is algebraic, the 
denominators are not needed! 

Lemma. 

If L / K is a field extension, then an elem,ent t of L is al­

gebraic over K if, and only if, K(t) = K[t] := {get) : g E 

K[X]}. Equivalently, the degree [K(t): K] is finite. 

Proof. Consider, for any tEL, the ring K[t) and the ring 
homomorphism ¢ : K[X] -t K[t] defined as g ~ get). This 
maps onto K[t]. Therefore, the rings K[Xl/Ker(¢) and K[t) 
are isomorphic. As K [t) ~ L, it is an integral domain; hence 
Ker( ¢) is a prime ideal of K [X]. In other words, Ker( ¢) 
is either the zero ideal or the ideal generated by a single 
polynomial f in K[X]. Now, by the very definition, t is al­
gebraic if, and only if, Ker(¢) "# O. But (f) is a non-zero 
prime ideal in K [X] if, and only if, J is irreducible; and 
this is equivalent to the fact that the ideal (J) is a maxi­
mal ideal (Why?). Thus, t is algebraic if, and only if, K [t] 
is a field (i.e., K[t] = K(t)). This proves the first equiv­
alence stated. Now, we already know that if [K(t) : K) is 
finite, then t is algebraic over K. Conversely, if t is algebraic 
over K, we have J(t) = 0 for some non-zero J E K[X). The 
division algorithm produces such an.f with the smallest pos­
sible degree. Dividing out by the top coefficient, one may 
take f to be the unique monic polynomial of smallest degree 
with J(t) = 0; one calls J the minimal polynomial of t. If 
f = ao + alX + + X n

, then {I, t,' ,tn
-

1 } is easily seen 
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(by using again the division algorithm) to be a basis of K(t) 
over K Thus, [K(t) : K] = n = deg(/). This completes the 
proof and allows us the following useful consequence: 

Corollary. 

Given a field extension L / K, the elements of L which are 
algebraic over K form a subfield. 

Proof. If s, tEL are algebraic over K, we need to know that 
s + t, s - t, st, st-1 (if t =1= 0) are also algebraic. But, all these 
elements are in the sub field K (s, t) generated by s, t in L. 
As, obviously K (s, t) = K (s )( t), one calculates the degree 
[K(s,t) : K] = [K(s)(t) : K] = [K(s)(t) : K(s)][K(s) : K] 
which is finite. Thus, K(s, t) is algebraic over K by the first 
observation we made. 

We have now got to a point where we can justify the as­
sumption that for any field K and any 0 =1= 1 E K [X], there 
is an extension field L / K such that 1 = s I1i(X - ti) with 
s, ti E L. 

To do this, one first needs to observe: Given K, 1 as above, 
there is an extension K 0 in which J has a root. Why is this 
so? One may assume that J is irreducible in K[X]. But, 
then the ideal (J) is maximal in K[X] and taking Ko to be 
the quotient K[X]/(/), one trivially has J(t) = 0 where t 
is the image X + (I) of X in Ko. Using this observation 
along with the remainder theorem and induction on the de­
gree, one can construct an extension L which justifies the 
assumption quoted above. Moreover, any such extension L 
of K contains a smallest one called a splitting field of I. From 
our natural construction of L, it is again a simple argument 
using induction to show that any two splitting fields of J are 
isom,orphic by a K-isomorphism i.e., an isomorphism which 
is the identity on ]( 

Example. A splitting field of Xn - 2 E Q[X] is the field 
Q(2 1/ n , e2irr/ n ) ~ C where 21/n denotes a real root of this 
polynomial. 

An important discovery by Galois was the determination of 
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Box 12. 

An algebraic closure of 

K is an algebraic exten­

sion in which the only ir­

reducible polynomials are 

the linear ones. Any iso­

morphism from a field K 

to a field L extends to an 

isomorphism from any 

algebraic closure of K to 

an algebraic closure of L. 

Box 13. 

An algebraic extension 

LI K is said to be normal 

over K if every element (J 

of G(KIK) maps L into 

itself. Consequently, a fi­

nite normal extension is 

the splitting field of a 

polynomial and con­

versely. 
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the finite fields - these are now called Galois fields. As a 
finite field F has some prime p as its characteristic, it con­
tains a subfield isomorphic to the field F p viz., the subfield 
{n.1 : n EN}. If it has degree n over F P' then F has ex­
actly pn elements! What is more, it turns out that F is just 
the splitting field of the polynomial Xpn - X E F p[X); hence 
there is only one finite field (upto isomorphism) of a given 
cardinality. Moreover, the non-zero elements F* in F have 
the property that there are at the most r satisfying xr = 1 
for any r. By the group-theoretic fact noted earlier, F* is a 
cyclic group. Thus, F = F pet) for any generator t of F*. 

Given any field K, we have produced a splitting field for any 
polynomial in K [X]. However, it is still unclear whether 
one could get a single splitting field for all the polynomi­
als in K [X]. This involves certain set-theoretic difficulties 
which can be surmounted using the axiom of choice. One 
thereby gets an algebraic closure K of K. Putting together 
what we did for two splitting fields of a given polynomial, 
one shows that K is unique upto isomorphisms (see Box 12). 
One defines the group G(K /K) of all K-isomorphisms of K 
to itself. This group evidently permutes the roots of any 
given polynomial f E K[X). It is a simple exercise to show 
that a, b E K have the same minimal polynomial over K 

if, and 'only if, b = a(a) for some a E G(K / K). In other 
words, the num,ber of distinct roots of the m,inimal polyno­
mial of any a E K is the index of the subgroup G(K / K(a)) 
in G (K / K). Note that an extension L / K is norm,al (see 
Box 13) if, and only if, the subgroup G(K / L) is a norm,al 
subgroup of G(K / K). 

At this point, an important possibility needs to be pointed 
out. Even though a polynomial f E K[X) may be irre­
ducible, it could have multiple roots in a splitting field L; 
it could even be of the form (X - t)m in L[X). One calls 
an irreducible f E K [X) separable over K if all the roots 
of f in the splitting field are distinct. This is always so if 
char(K) = 0 (why?); if char(K) = p > 0, f is not separable 
over K if, and only if, f = g(XP) for some g E K[X). One 
then defines the separability of an element of Kover K in 
terms of the separability of its minimal polynomial over K. 
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Thus, t E K is separable over K if, and only if, there are 
exactly [K(t) : K] distinct K -homomorphisms from K(t) to 
K. 

Perhaps, the first important result of the theory is Galois's 
beautiful: 

Theorem of the Primitive Element 

A finite, separable extension L / K is primitive i. e., L = K (t) 
for some tEL. 

Galois's proof is the one given even today in all textbooks. 

Proof. We already noted that an extension of finite fields 
is primitive. Let us therefore assume that K is infinite 
and let [L : K] = n; by separability, there are distinct K­
homomorphisms 0"1, , 0" n from L to K. The finitely many 
proper K-vector subspaces Ker(O"i - O"j); i =I j of L cannot 
cover the whole of L (Why?). If tEL is not in any of 
these subspaces, O"i(t); i ~ n are at least n different roots 
of the minimal polynomial of t over K. This means that 
[K(t) : K] 2: n = [L : ]<]; hence L = K(t). 

Galois realised that the notions of separability and normality 
are the only relevant ones needed to study polynomials over 
any field. One defines a finite extension L / K to be a Galois 
extension if it is both separable and normal. In this case, 
the finite group G(L/ K) is called the Galois group of the 
extension. In this set-up, it is not hard to prove the so-called 
fundamental theorem of Galois theory (see Box 14). The 
crucial fact that needs to be verified is that K = L G(L/ K) := 
{x E L : g(x) = x V 9 E G(L/K)} i.e., the Galois group 
G (L / K) fixes K and no more. One also defines the Galois 
group of a separable polynomial f E K [X] to be that of the 
Galois extension defined by the splitting field. 

Galois discusses two examples of the Galois group of a poly­
nomial. 

The first one is the Galois extension K (X 1, , X n) over 
K(s1, ,sn) where Si are the elementary symmetric poly­
nomials in the variables Xi. The extension here is just the 

Box 14. 

The fundamental theorem 

of Galois theory asserts that 

given atinite Galois exten­
sion LlK, the correspon­

dences E ~ G(LIE) and 
H ~ LH between the inter­

mediate fields K s; E ~ L 
and the subgroups H of 

G(L/K) are inverses of each 
. other. Further, E is a nor­

mal extension of K if, and 

only if, G(LI E) is a normal 

subgroup of G(LIK). In 

this case the correspond­
ing quotient group can be 

identified with the Galois 

group of E over K. 
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splitting field,ofthe polynomial I1i=l (X -Xi) E K(sl,' ,sn) 
[X]. He proves that the corresponding Galois group is the 
full symmetric group Sn. 

The other example he discusses is that of the polynomial 
XP - 1 E Q[X] for some prime p. In this case, he shows that 
the Galois group is the cyclic group of order p - 1. 

In Conclusion 

In summary, what are the applications of Galois theory? 
The fundamental theorem of algebra is a simple consequence 
of Galois's theory. The ancient geometric problems alluded 
to earlier are also easily solved using this theory. However, 
the most spectacular application is to the solvability of poly­
nomials by radicals, the original motivation due to which the 
theory was developed in the first place. 

The solvability of a separable polynomial f by radicals amounts 
to getting' a tower of fields K = Ko ~ Kl ~ Km = L 
where L is the splitting field of f and each Ki+l = Ki(ti) 
for som,e e;-'i E Ki with the added proviso that the character­
istic of K does not divide mi. In term,s of Galois groups, this 
is equivalent to the Galois group of f being a solvable group 
as defined earlier. As the symmetric group Sn is not solv­
able for n ~ 5, Galois's discussion of the first example above 
shows im,m,ediately the impossibility of getting a formula for 
a general equation of degree at least 5. 

Abel died at 26, Eisenstein at 28 and Galois at 20. But, 
the work of these young giants is so fundamental as to re­
main relevant per haps for ever. It might be apt to end our 
discussion with the anagram GREAT IS SO ALIVE! 
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