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The aim of this expository article is to introduce the reader
to some of the fundamental milestones in the study of prime
numbers across several centuries. Among the important de-
velopments in the study of prime numbers, we review the his-
tory of the prime number theorem, the Riemann zeta func-
tion (in relation to prime number theory), and some recent
investigations into spacings between consecutive primes. We
also present an important application of prime numbers in
safe data transmission, namely the ‘RSA public key cryp-
tosystem’.

Introduction

In 300 BCE, Euclid of Alexandria wrote a series of 13 volumes
under the title Elements. These volumes contain a systematic pre-
sentation of several mathematical concepts through precise def-
initions, theorems, and their deductive proofs. They form the
structural foundation of logic and mathematics as we study it to-
day; in fact, much of what we learn in high school mathematics
today goes back to the contents of these volumes. The topic of
this article is a fundamental notion in Book 7 of Elements, which
has fascinated humanity for the last 2300 years, namely prime
numbers.

Euclid defined a prime number as “that which is measured by
the unit alone”. In modern parlance, a prime number is a natural
number n > 1 which is not divisible by any natural number other
than 1 and itself. School textbooks typically make a passing ref- Keywords

Prime numbers, sieve methods,

Riemann zeta function, cryptogra-

phy.

erence to the notion of prime numbers, with some computational
exercises on deriving prime factors of ‘large’ numbers (which, by
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real-world standards, are not that large!).

It is only in college that a mathematics student revisits prime
numbers in some detail. We learn, for instance, the fundamen-
tal theorem of arithmetic which states that “every natural num-
ber other than 1 is either a prime or can be uniquely written as a
product of primes”. We also learn that there are infinitely many
primes. Both these theorems go back to Euclid’s Elements. At
this stage, a student is naturally led to ask further questions about
primes. How are primes distributed on the number line? Are
they distributed in some sort of uniform pattern or not? Do they
become sparse as one proceeds on the number line?

OneHow do we recognize a
prime when we see it? If

we are given a large
number, how long could

it take to determine
whether it is prime? If
we need a large prime
for some reason, how

quickly can we generate
it? If a number is not a
prime, do we have nice
(and efficient) methods

to break a number down
into its prime factors?

can also ask some explicit questions. How do we recognize
a prime when we see it? If we are given a large number, how
long could it take to determine whether it is prime? If we need a
large prime for some reason, how quickly can we generate it? If a
number is not a prime, do we have nice (and efficient) methods to
break a number down into its prime factors? Such questions and
more about prime numbers have interested and inspired several
seekers of knowledge over the last three millennia.

Answers to these questions are not immediate and in many cases,
are known partially after several centuries of deep thought. Ad-
vancement in the study of prime numbers has less to do with
answers and more to do with questions; questions that progres-
sively reveal what prime numbers meant to seekers at every stage.
The journey from Euclid’s discovery that there are infinitely many
primes to the sophisticated investigation of prime numbers in the
twenty-first century has many important milestones, and we hope
to describe some of them in this article. This article does not
claim to contain a complete history of primes. Instead, we review
some key developments and provide useful references with the
hope that an interested student will explore the world of primes
in greater detail.
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Organization of the Article

In Section 1, we summarise some classical developments that en-
hance our perspective of prime numbers. This section culminates
in a fundamental 1859 article of Riemann which provided a ‘vi-
sion document’ to answer questions about prime numbers with
the help of what is called the Riemann zeta function. Section
2 takes forward the study of distribution of primes and describes
questions about spacings between prime numbers. Many interest-
ing developments in this aspect have taken place within the last
15 years, and we describe some of them. Finally, in Section 3,
we shift gears and turn towards an important application of prime
numbers – security in our online transactions. These applications,
developed in the 20th century, use properties of primes that were
discovered more than 200 years ago.

1. Prime Counting: From Arithmetic to Analysis

In this section, we describe four important milestones, which
take us from Euclid’s demonstration of the infinity of primes to a
more refined study of primes using modern tools of mathematics.
These also mark the conversion of arithmetic counting questions
about prime numbers into the language of real and complex anal-
ysis. This is the language in which various problems about primes
are currently studied.

Roughly speaking, the four developments that we touch upon in
this section are as follows:

1. The sieve of Eratosthenes: This refers to an idea described by
the Greek scholar Eratosthenes in the third century BCE to deter-
mine if a number is prime. This method is more efficient than the
trivial method of checking divisibility by every number smaller
than a given number. All the way until the 19th century, pro-
gressively larger records of prime numbers were built by several
people using this sieve and its variants. This is described in Sec-
tion 1.1.

2. Gauss and the prime counting function: A major shift in the
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study of primes occurred when the German teenager Gauss, with
a penchant for observing patterns in extensive data, made a con-
jecture in the 1790s about the asymptotic density of prime num-
bers. A big chunk of modern number theory was developed to
understand and prove the conjecture of Gauss. This conjecture,
also known as the prime number theorem, forms the content of
Section 1.2.

3. Chebyshev and the smooth analogue of prime number the-
orem: In the early 1850s, Chebyshev defined some functions
which ‘smoothen’ out the prime counting function and make way
for the application of calculus to study what was heretofore seen
as an arithmetic problem. Developments around this theme are
described in Section 1.3.

4. The zeta function of Riemann: The introduction and study of
zeta functions mark a very important development in the prime
number theory. A breakthrough article written in 1859 by Rie-
mann on this topic became the foundation for much of the num-
ber theory as we know it today. A brief overview of this function
and relation to the prime number theorem is provided in Section
1.4.

1.1 Sieves: The Earliest Tools to Capture Primes

How does one determine if a number n is prime? The first method
that comes to mind to determine primality is, of course, trial di-
vision. We simply attempt division by all the numbers between 2
and n − 1, and if neither of them divides n, we declare it a prime.
But, in this method, the number of steps needed is equal to the
size of n. Some timeSome time in the third

century BCE, the Greek
scholar Eratosthenes had
a clever idea. If n is not a

prime number, then it
must have a factor not
bigger than the square

root of n.

in the third century BCE, the Greek scholar
Eratosthenes had a clever idea. If n is not a prime number, then
it must have a factor not bigger than the square root of n. There-
fore, to test the primality of n, it would be sufficient to check the
divisibility by all the primes less than or equal to the square root
of n. Take, for example, n = 101. We just need to check if n is
divisible by all the primes up to 10, that is, 2, 3, 5 and 7. This
reduces the number of steps to check the primality of 101 from
99 to 4. What’s more, among the numbers 2 to 100, if we cross
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out all the multiples of 2, 3, 5 and 7, we will be left with a ta-
ble of all the prime numbers up to 100. This method is famously
called the ‘sieve of Eratosthenes’. Early records of primes were
created through a systematic use of this sieve. Mathematicians
used physical tools like adjustable sliders and stencils to locate
and eliminate multiples of primes by this method (see [1] for a
detailed description of how early tables of primes were created).

The simple sieve method of Eratosthenes has now evolved into
more sophisticated sieves developed in the 19th century and af-
terward. However, the fundamental insight of Eratosthenes re-
mained a primary tool for tabulating primes for a long time until
the advent of computers.

1.2 Counting the Primes: Beyond Prime Tables

Several centuries after the observation of Eratosthenes, the study
of prime numbers received a new impetus. In the 1790s, a young
German teenager by the name of Johann Carl Friedrich Gauss,
who would later earn the title of the “prince of mathematics”,
wanted to understand the distribution of primes. He made some
interesting guesses by looking carefully at existing records of
prime numbers. He asked a fundamental question that brought a
fresh perspective to the study of primes: Can we count the number
of primes up to a number x? More precisely, can we approximate
the function

π(x) = #{p ≤ x, p prime}?
Based on existing data, Gauss conjectured that

lim
x→∞

π(x) log x
x

= 1.

That is, as x takes larger and larger values, the value of the prime
counting function π(x) comes closer to x

log x , and the error margin
between π(x) and x/ log x decreases. The journey of this con-
jecture to become a theorem (now famously known as the prime
number theorem) was to take a 100 more years, and it gave birth
to a beautiful amalgamation of analysis and number theory.
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1.3 Logging the Primes: Interface Between Analysis and
Number Theory

Questions in the theory of numbers often attract attention from
amateurs as well as professional mathematicians. Many of these
problems can be explained in simple language and look appeal-
ing for this reason. Unfortunately, the ‘elementary’ approach of-
ten does not go far, and it could take decades, or even centuries
of concerted efforts before new light is shed on such problems.
In some cases, this new light comes simply by reinterpreting the
problem in a different language, which opens it up to the use of
other tools.

InWe often study the prime
counting function by

attaching suitable
weights at the primes.

This approach allows us
to bring in analytic tools

to study primes.

the case of the conjecture of Gauss on the prime counting func-
tion π(x), this new interpretation came when the French math-
ematician Joseph Bertrand went through the table of primes up
to 3 × 106 and conjectured in 1845 that for any natural number
n ≥ 2, one can find a prime number lying between n and 2n.
That is, π(2n) − π(n) > 0 for any n ≥ 2. This conjecture was
soon proved by the Russian mathematician Pafnuty Chebyshev in
1852. While studying the primes, Chebyshev modified the prime
counting function by attaching logarithmic weights to the primes.
That is, he replaced the function

π(x) =
∑
p≤x

1,

by what is called the first Chebyshev function,

ϑ(x) =
∑
p≤x

log p.

Bertrand’s conjecture is equivalent to saying that ϑ(2n)−ϑ(n) > 0
for all n ≥ 2. This logarithmically weighted function yields itself
to readily available tools in analysis. Therefore, it is natural to try
and state the conjecture of Gauss in terms of this function. In fact,
using an important tool from an analysis that was independently
discovered by Leonhard Euler and Colin Maclaurin in the 1730s,
one can approximate the sums

∑
p≤x log p by integrals of appro-

priate functions. In terms of this new function, the conjecture of
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Gauss is equivalent to the assertion that

lim
x→∞

ϑ(x)
x
= 1.

Another related function is one in which we isolate, not just the
primes, but all the prime powers less than or equal to x. The
second Chebyshev function is defined as

ψ(x) =
∑

p

∑
m≥1

pm≤x

log p.

For large values of x, the functions ϑ(x) and ψ(x) are very close to
each other. Moreover, for reasons described in Section 1.4, ψ(x)
is better suited to study the prime numbers. In fact, the prime
number theorem is also equivalent to the assertion that

lim
x→∞

ψ(x)
x
= 1,

and it is in this new form that the prime counting function was
henceforth studied.

1.4 Prime Numbers and the Zeta Function of Euler and Rie-
mann

The fundamental theorem of arithmetic, which says that every
natural number n ≥ 2 can be uniquely written as a product of
prime powers, can be restated in terms of infinite series. Let us
consider the infinite series, also known as Euler’s zeta function,

ζ(s) =
∞∑

n=1

1
ns ,

which converges for a real number s > 1. By unique factorization
of every n into a product of prime powers, we see that for s > 1,

∞∑
n=1

1
ns =

∏
p prime

(
1 +

1
ps +

1
p2s + . . .

1
pms + . . .

)
=

∏
p prime

(
1 − 1

ps

)−1

.

This analytic restatement of the fundamental theorem is due to
Leonhard Euler and is called the ‘Euler product formula’. It gives
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an indication that the study of primes is linked to the behaviour
of the series ζ(s), which in turn can be studied using standard
tools of calculus, since it is an (absolutely) convergent series in
the interval (1,∞).

In fact, since 1
ps < 1 for s > 1, using the Taylor series expansion:

− log(1 − x) =
∞∑

n=1

xn

n
for |x| < 1,

we deduce,

log ζ(s) = −
∑

p

log
(
1 − 1

ps

)
=

∑
p

∞∑
m=1

1
mpms .

Since lims→1+ ζ(s) = ∞, we have, lims→1+ log ζ(s) = ∞. Thus,

lim
s→1+

log ζ(s) = lim
s→1+

⎛⎜⎜⎜⎜⎜⎜⎝
∑

p

1
ps +

∑
p

∑
m≥2

1
mpms

⎞⎟⎟⎟⎟⎟⎟⎠ = ∞.
But, for s ≥ 1, the second series on the right hand side,

∑
p

∑
m≥2

1
mpms ≤

∑
p

∑
m≥2

1
pm =

∑
p

1
p(p − 1)

< ∞,

Therefore,

lim
s→1+

∑
p

1
ps = ∞.

This shows that there are infinitely many primes; otherwise, the
above limit would be finite.

The above calculation can be refined as follows. Differentiating
the identity,

log ζ(s) = −
∑

p

log
(
1 − 1

ps

)
,

we get,

−ζ
′(s)
ζ(s)

= − d
ds

log ζ(s) =
∑

p

d
ds

log
(
1 − 1

ps

)
.

Further, applying the chain rule for diffentiation,
∑

p

d
ds

log
(
1 − 1

ps

)
=

log p
ps − 1

.
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Thus,

−ζ
′(s)
ζ(s)

=
∑

p

log p
ps − 1

=
∑

p

∞∑
m=1

log p
pms .

This explains the use of the function

ψ(x) =
∑

p

∑
m≥1

pm≤x

log p,

in the study of the prime number theorem. This is a prototypical
example of an important point of view in number theory first elu-
cidated by Dirichlet – the study of arithmetic sums

∑
n≤x a(n) by

investigating the analytic properties of the Dirichlet series,

∞∑
n=1

a(n)
ns ,

in the region where it converges. In the case of the prime
numbers, the relevant function that needs to be investigated is∑

n≤x Λ(n) where the von Mangoldt function Λ(n) is defined as:

Λ(n) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
log p if n = pm, m ≥ 1

0 otherwise
.

Note that the partial sum
∑

n≤x Λ(n) equals ψ(x) and the associ-
ated series to be investigated is:

−ζ
′(s)
ζ(s)

=

∞∑
n=1

Λ(n)
ns , Re(s) > 1. (1)

Henceforth, the zeta function was to be a primary tool to study
prime numbers.

In 1859, Bernhard Riemann wrote a
breakthrough paper on
the prime counting
function and linked it to
the study of the Riemann
zeta function.

Riemann built on this point of view and wrote
a famous nine-page article whose title can be translated into En-
glish as ‘On the Number of Primes Less Than a Given Magnitude’
[2]. The fundamental innovation in this work was to view Euler’s
zeta function as a function of a complex variable. That is, the zeta
function of Riemann is a complex-valued function defined as:

ζ(s) =
∞∑

n=1

1
ns ,
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for complex numbers s with the real part Re(s) > 1. Since this
series converges absolutely in the region {s ∈ C : Re(s) > 1} and
uniformly in all compact subsets therein, it can be viewed as a
complex-analytic function in this region.

Riemann’s paper describes an idea that lies at the heart of what
is called the analytic number theory today, namely analytic con-
tinuation. He derives a function on a larger domain of complex
numbers, which is equal to

∑∞
n=1

1
ns when Re(s) > 1. This new

function is complex-analytic on all points of the complex plane
except s = 1. This extension of the zeta function to C \ {1}, is
called Riemann’s zeta function.

Riemann then goes on to provide a ‘vision document’ that has
guided research on this topic in the last two centuries. Owing to
(1), the function ψ(x) and therefore, the prime counting function
π(x) are inherently linked with the analytic properties of the func-
tion ζ′(s)

ζ(s) , and this naturally leads to questions about the complex
zeroes of the zeta function, that is, those points s on the complex
plane where ζ(s) = 0. Riemann stated all these connections pre-
cisely and one of the key statements in his paper is the explicit
formula, an explicit description of the relation between ψ(x), and
the location of the complex zeroes of the zeta function.

An important observation of Riemann was that the prime num-
ber theorem is equivalent to showing that all non-trivial zeroes of
ζ(s), (that is, zeroes of the form s = ρ + it with the imaginary
part t > 0) must lie inside the critical strip, that is, the region
{s ∈ C : 0 < ρ < 1}. This idea was independently used by
Hadamard and de la Vallée Poussin to prove the prime number
theorem in 1896.

EvenProperties of the prime
counting function can be

translated into explicit
complex-analytic

properties of the zeta
function.

more refined estimates about ψ(x) and π(x) can be made
with better knowledge about the location of the zeta zeroes inside
the critical strip. In fact, in his paper, Riemann makes a conjecture
that all zeta zeroes lying in the critical strip must have real part
1/2. This conjecture is famously known as the ‘Riemann hypoth-
esis’ and remains unproven till date. It is in the list of Millennium
Prize Problems announced by the Clay Mathematics Institute that
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promises an award of 1 million US dollars for a correct resolution.

Further explanation of Riemann’s article will take us well beyond
the scope of this article. Hence, we conclude this section by refer-
ring the reader to an excellent exposition [3] of Andrew Granville
on the techniques and ideas in Riemann’s work. For further read-
ing, we also refer the reader to the 1974 book Riemann’s Zeta
Function by H M Edwards [4] which contains an English trans-
lation of Riemann’s original German paper and a chapter-wise
description of its contents.

2. Gaps Between Primes

In this section, we focus on another statistical aspect of the dis-
tribution of prime numbers, namely, gaps between consecutive
primes. This is an exciting topic in the study of prime numbers,
and some of the most important advances in this theme have come
about within the last 15 years.

How far apart can two consecutive primes be? For starters, we
observe that for any natural number n,

n! + 2, n! + 3, n! + 4, . . . n! + n,

is a string of consecutive composite numbers. That is, for any
number n ≥ 2, we can find consecutive primes which are apart by
at least n numbers. Thus, the gaps between consecutive primes
can be arbitrarily large. What about small gaps? Do we have
infinitely many pairs of primes with gaps below a fixed bound?

Let us start with listing the first few primes: 2, 3, 5, 7, 11, 13, 17,
19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89,
97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157,
163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229,
233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307,
311, 313, 317, 331, 337, 347, 349 and so on.

In this listing, we immediately observe that the gaps between con-
secutive primes seem to oscillate. For several pairs, we have a
gap of 2, they gradually increase to 4, 6, 8, 10 and so on, but keep
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jumping back to 2. This pattern seems to repeat several times
even in the limited list we have above. Similar observations for
much larger sets of primes motivate the following questions.

1. AsAs the primes grow
larger and larger, do we

have infinitely many
pairs of consecutive
primes with gap 2?

the primes grow larger and larger, do we have infinitely many
pairs of consecutive primes with gap 2?

2. Does there come a stage beyond which the gaps between consec-
utive primes increase and do not fall back to smaller numbers?

3. Can we predict how large the gaps can be at any stage? How
much can these gaps differ from the average?

The twin prime conjecture is the assertion that there are infinitely
many pairs of consecutive primes with gap 2. This is a special
case of a more general 1849 conjecture of the French mathemati-
cian Alphonse de Polignac. This general conjecture states that
for any even number K, there are infinitely many pairs of con-
secutive primes with gap K. This conjecture, if proved, would
immediately address the first two questions (yes to the first and
no to the second). The third question ‘averages out’ the first two
questions: What is the variation among gaps between consecutive
primes with respect to the average gap? An underlying question
behind the above questions is whether the prime numbers are dis-
tributed among the natural numbers in a discernible pattern.

To check the infinity of twin primes, an immediate ‘analytic’ idea
that comes to mind (inspired by Euler’s use of zeta function) is to
check if the series ∑

p
p, p+2 prime

1
p

diverges. In 1919, Viggo Brun showed that this sum is finite,
which, unfortunately, tells us nothing about the finiteness or in-
finity of twin primes.

Mathematicians continued to grapple with the above questions in
various ways. It was only in 2005 that three mathematicians –
Dan Goldston, János Pintz and Cem Yildirim – made a remark-
able observation that brought us a little closer to the twin prime
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conjecture. They showed that there are infinitely many pairs of
consecutive primes with gap arbitrarily small relative to the av-
erage gaps between consecutive primes. The question that now
remained was if we could have infinitely many pairs with the ab-
solutely smallest possible gap, namely, 2.

In 2013, Yitang Zhang Yitang Zhang showed
that there are infinitely
many consecutive prime
pairs with a gap bounded
by 70 million.

made a giant stride in this direction. He
announced that there is a number N less than 70 million such that
there are infinitely many pairs of consecutive primes with gap
N. At first sight (to the layman), 70 million may come across
as a ridiculously large bound. But that is not how the experts
saw Zhang’s theorem; instead, they recognized it as the first in-
stance of a finite and explicit bound for infinitely many consec-
utive prime gaps. This is sufficient to see that the answer to the
second question listed above is no. Stunned and impressed by
Zhang’s work, the mathematical community challenged itself to
reduce the gap from 70 million to 2. Thus started the international
Polymath Project with several contributors, some of the notable
names being James Maynard and Terence Tao. As of today, the
bound has been reduced to 246. Is it just a matter of time be-
fore 246 can be taken down to 2? Or does 246 represent the limit
that can be obtained by current knowledge? We do not know. It
is, however, widely believed that further reduction of gaps will
require completely new insights.

We now make some comments on how the third question men-
tioned above is interpreted. We start by recalling the prime num-
ber theorem, which predicts that the number of primes up to x is
asymptotic to

x
log x

,

as x→ ∞. We now arrange the primes in an ascending order and
let pn denote the n-th prime number. We leave it as an exercise for
the interested reader to deduce from the prime number theorem
that:

pn ∼ n log n as n→ ∞.
That is,

lim
n→∞

pn

n log n
= 1.
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Furthermore, if we list out the gaps between consecutive primes
up to pN+1 as:

p2 − p1, p3 − p2, . . . pN+1 − pN ,

the prime number theorem also tells us that the ‘expected’ or the
‘average’ gap

pn+1 − pn

is asymptotically log pn. That is,

lim
N→∞

1
N

N∑
n=1

pn+1 − pn

log pn
= 1.

For large values of N, one wonders whether, one can predict the
proportion of values among

{
pn+1 − pn

log pn
: n ≤ N

}

that lie in a fixed interval [a, b] of positive real numbers as N →
∞. The answer is believed to be yes. In fact, it is conjectured that
the ‘normalized’ gaps

pn+1 − pn

log pn

can be modelled by the Poisson distribution. That is, for any two
positive real numbers a < b,

lim
N→∞

1
N

#
{

1 ≤ n ≤ N : a ≤ pn+1 − pn

log pn
≤ b

}
=

∫ b

a
e−tdt.

An investigationIn recent developments,
building upon the ideas

of Riemann, connections
have also been made

between the distribution
of gaps among

consecutive primes and
gaps among consecutive
zeroes s of the Riemann

zeta function lying on
the line Re(s) = 1/2.

of this conjecture and its implications is a foun-
dational theme in the subject of probabilistic number theory. We
are nowhere near a resolution of this conjecture, but once again,
we see how a difficult question about twin primes has evolved
into a related question about the distribution of all consecutive
prime gaps. In recent developments, building upon the ideas of
Riemann, connections have also been made between the distri-
bution of gaps among consecutive primes and gaps among con-
secutive zeroes s of the Riemann zeta function lying on the line
Re(s) = 1/2.
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A comprehensive and detailed discussion of the probabilistic
models that can predict the distribution of gaps between con-
secutive primes is present in the expository article [5] of K
Soundararajan. We also refer the interested reader to the survey
article [6] of M R Murty for an explanation of the recent devel-
opments around the twin prime problem, particularly the strategy
of Zhang and how it was improved upon by Maynard and Tao.

3. Big Prime Numbers and Big Secrets

The Prime numbers help in
the safe digital transfer
of information between
two parties.

study of prime numbers is not all about ‘data analysis’ of
records of prime numbers. Prime numbers also have a very im-
portant use for us in the real world. They help us to transfer sen-
sitive information over the internet between valid parties without
being intercepted by an unauthorised third party. We describe this
application below.

To begin with, imagine walking on the hour points of a clock. You
may walk millions of steps, and yet, you will find yourself among
the 12 points. In effect, therefore, the ‘net’ result of your walk is
between 1 and 12. This is an example of a circular form of count-
ing called ‘counting modulo 12’. One can, of course, replace 12
with any number N and count modulo N. In this sense, each time
we walk over N points on an N-hour clock, we find ourselves at
the same point where we started. That is, any multiple of N steps
amounts to a walk with zero change.

In October 1640, the French lawyer-mathematician Pierre de Fer-
mat made an observation in a letter to a friend.

Let p be a prime number. If we take any number A of our choice
and walk Ap steps on a p-hour clock, we will find ourselves at the
same point as if we had merely walked A steps. For example, on
a 13-hour clock, whether you walk 11 steps or a whopping 1113

steps from the same starting point, you will find yourself at the
same end point. In mathematical language,

Ap ≡ A (mod p).

Equivalently, p divides Ap − A.

RESONANCE | March 2019 353



GENERAL ARTICLE

This theorem, at the heart of number theory, is famously known
as ‘Fermat’s little theorem’, even though it was proved almost a
hundred years later by Leonhard Euler.

Theorem. [Fermat–Euler Theorem]: Let N be a natural num-
ber and A be an integer such that A and N are coprime, that is,
the greatest common divisor of A and N is 1. Let φ(N) denote the
number of integers lying between 1 and N which are coprime to
N. Then,

Aφ(N) ≡ 1 (mod N).

Thus,
Aφ(N)+1 ≡ A (mod N).

AroundThe RSA cryptosystem
depends on the

fundamental
Fermat–Euler theorem

discovered three
centuries ago.

two hundred and forty years later, in 1978, Ron Rivest,
Adi Shamir, and Leonard Adleman, three computer scientists at
the Massachusetts Institute of Technology (USA), exploited the
Fermat–Euler theorem and developed a method to share informa-
tion between two parties safely. Typically, when a message is
sent from a sender to a receiver, the sender has to disguise or ‘en-
crypt’ the message and the receiver has to decipher or ‘decrypt’
it. The method (or key) for the encryption and decryption is dis-
cussed privately between these parties or is shared between them
through other safe sources. The RSA method (named after its
creators) is set up in such a way that the key to encrypt a message
is made public. While anyone can encrypt a message, sign it and
send it across, only the intended receiver has the knowledge to
decrypt a message and deduce whether it comes from a genuine
sender. Such a system is called a public key cryptosystem.

The method is easy to understand and we attempt to present it
below in a simple form.

1. Instead of a prime p, an online merchant takes a semi-prime
number N, which is a product of two primes p and q, roughly
of equal size. The reader can quickly check that for this chosen
N, φ(N) equals (p − 1)(q − 1). Thus, the Fermat–Euler theorem
tells us that for any number A,

A(p−1)(q−1)+1 ≡ A (mod pq).
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The merchant then chooses two numbers E and D, so that (p −
1)(q − 1) + 1 = ED. The merchant makes N and E public and
keeps D private.

2. You, the buyer, will typically take your credit card number A
(which will be smaller than N) and encrypt it as the net value of
AE (mod N). You don’t do it yourself, of course. You enter the
number and the website does it for you since the encryption key
E is public.

3. The number D is not public. It is known privately to the mer-
chant. On receiving the encrypted message AE (mod N), the mer-
chant raises it again to the power D and calculates AED (mod N).
By basic congruence arithmetic and by the Fermat–Euler theo-
rem,

(AE)D ≡ AED ≡ A(p−1)(q−1)+1 (mod N)

≡ A (mod N).

This gives back the number A to the merchant. The credit card
number (or intended message) therefore gets decrypted back to
A.

But, you may ask: If N and E are public, can D really stay secret?
The answer is an emphatic yes.

The safety of the RSA algorithm lies in the fact that it is very,
very difficult to break down or to factorise a large number N into
its prime factors p and q. Thus, even if the ‘encryption’ key E
is public, to find out D, an unscrupulous third party will have to
know the value of φ(N) = (p − 1)(q − 1), and this is not possible
unless one is able to factor N into its constituent primes p and q.
This makes it practically infeasible to find out the decryption key
D (which only the intended receiver knows) within a reasonable
time.

In their 1978 paper [7] on the RSA algorithm, the authors es-
timated that the computing resources of those days could take,
for example, 74 years to factor a number with 100 decimal digits
and 38,00000000 years to factor a number with 200 decimal dig-
its! Today, we have more sophisticated computing resources and
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methods to factor numbers of this size. These methods originate
from abstract ideas in mathematics like the number field sieve and
elliptic curves. But, we now use even larger numbers for encryp-
tion with unfeasible factoring times using current technology.

AA lot of research has
gone into factoring large

numbers. For example,
between 1991 and 2007,
the RSA Laboratories, a

company formed by
Rivest, Shamir, and

Adleman, ran the
factoring challenge.

They listed out
semi-primes of various

sizes with cash prizes for
those who could factor

them.

lot of research has gone into factoring large numbers. For ex-
ample, between 1991 and 2007, the RSA Laboratories, a com-
pany formed by Rivest, Shamir, and Adleman, ran the factoring
challenge. They listed out semi-primes of various sizes with cash
prizes for those who could factor them. One of the numbers in
their list, RSA-768, a 232-digit number of bit length 768 was fac-
torised as late as December 2009 after two years of work on sev-
eral computers. Numbers of higher sizes on this list still remain
unfactored.

The fact that it takes much longer to factorise numbers than to
generate primes and multiply them keeps our information safe.
In fact, the interested reader can go to secure websites (for exam-
ple their email provider) and check the digital certificates. These
clearly state the encryption algorithm (most likely, the RSA al-
gorithm), the public key as well as the key sizes. The certificate
also mentions its expiry dates. This is to ensure that the keys
are updated before an unscrupulous party gets hold of an existing
private key.

Conclusion

Prime numbers have fascinated us for a long time. We saw in
this article that developments in this study are rather abruptly dis-
tributed over the last three millennia. Sometimes, centuries would
elapse before any new development would take place. On the
other hand, occasionally there would be intense periods of activ-
ity when in a matter of decades, breakthrough ideas would appear
and create a major impact on prime number theory. In retrospect,
some of these ideas may look simple to us, but to discover them
from scratch requires great intellectual power and ingenuity in
thinking. Sometimes, ideas would be expressed in letters among
friends and would motivate people with fresh points of view to
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jump into the subject. Last, but not the least, even though the
study of some of these ideas would appear to be theoretical in the
short term, a few centuries down the line, they would lead to in-
novations with a major impact on how the world functions today,
for example, Fermat’s little theorem and its use in safe internet
transactions without which many of us cannot imagine a life . We
hope that we could give a small flavour of some of these ideas
in this article and hope that the interested reader will find at least
one of them interesting enough to pursue in greater detail.
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