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A m u c h  pub l i c i s ed  (but  rarely expla ined)  d i l e m m a  in 

empir ica l  mode l  bui lding is desc r ibed .  T e c h n i q u e s  for  

'ba lancing on its horns '  are out l ined.  In  part icular ,  it is 

argued that  one  can  get  an edge over  it by  not  going ove r  

the  edge. 

The Razor's Edge 

Many years ago when I was with an institution inhabited by 

mathematicians and astronomers, a story was making the rounds 

of the place. Once an astronomer and a mathematician went 

hiking in the western ghats and saw a black cow in profile at a 

distance. "All cows in the western ghats are black", exclaimed 

the astronomer. "No", said the mathematician, "on date such 

and such and time so and so, there existed in the Western Ghats 

a cow the left half of whose body appeared black at that time". 

Clearly, both are missing something. The astronomer makes a 

simplistic but flawed generalisation. The mathematician is 

accurate to a fault, but won't make even the obvious extrapolations. 

These might be extreme positions, but the underlying choice 

between the simple and the complex is something most model- 

builders have to contend with all the time. The problem is always 

the same. One has a finite amount of observations (data), based on 

which one has to infer something about the underlying reality 

relatively quickly. The crux of the matter then is how to avoid 

reading either too much or too little into the data. 

Let 's take a more serious example. Given a finite sample 

( x l , y l ) , . . . ,  (x ,  yn) of pairs of real numbers with a hypothesised 

relationship Yi = f (xi) + 'n~ one wants to 'learn' f(.). Figure 1 

shows one such situation where curves A, B, C are candidate f s  

fitted from the class of straight lines, quadratic functions and all 
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polynomials, respectively, by minimising over these classes the 

'least squares' error : 

_ - f ( x i ) )  2 (1) 

One look at the picture and our intuition tells us that B is about 

right. A is simple, but  too crude a fit. C is accurate but too 

complicated. How does one justify this intuition? 

Given such a multiple choice situation, a computer scientist would 

typically invoke Occam's razor. Named after William of Occam, 

this principle states that one should pick the simplest of all valid 

explanations. But this razor doesn't quite cut here, because unlike 

in the Boolean world of computer scientists, here there is no clear- 

cut dichotomy between valid and invalid. There are only degrees 

of validity. 

Naive error minimisation won't  do either, because then C is 

better than B. The fallacy lies in our use of the 'training data' 

{(xi'Yi )' 1 < i _< n}, used for fitting these f ' s ,  also for comparing 

them. The data cannot yield more information than what it already 

has. What is needed is to take fresh 'out of sample data' or 'test 

data' for comparing the fits. (In practice, one usually has a single 

data set and splits it artificially into a largish chunk - say, 70%, of 

' training data', and the remainder as 'test data'.) No matter what 

we do, the error on test data won't in general be zero due to the 

noise. In fact one cannot rule out the risk of a freak streak of 

pathological test data that gives a large error for even the true f(.). 

Typically, such pathologies are rare, i.e., of  low probability. Thus 

at best, one aspires for a good approximation with high proba- 

bility, i.e., to be 'probably, approximately correct.' 

The error on test data (Xl, -Vl),..., (s -Vm) is given by 

m 
1 _ 

mi~=l(y i _ f(~i))2 (2) 

and is called the generalisation error, to contrast  it with the 

' t raining error'  given by (1). If  we plot the two agaihst a suitable 
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complexity parameter (say, the degree of the polynomial being 

fitted), one typically gets something like Figure 2. The training 

error (T) decreases monotonically as it should, since the error 

minimisat ion is being performed over successively larger sets 

of functions. The generalisation error (G), however, first takes a 

dip and then rises again. The lowest point  (marked by a '*' in 

Figure 2) sits on the edge of underf i t t ing (simplistic models 

leading to error) and overfitting (complex models that read too 

much into the data, leading to error). It is this 'point  on the 

edge' that we are after. 

Following Occam's razor, we may dub this principle of seeking 

the point on the edge of simplicity and complexity as 'Einstein's 

razor', after the following quotation attributed to Einstein: 

"Everything should be made as simple as possible, but not 

simpler". 

Lies ,  D a m n  Lies  and Stat is t ics  

This, apparently, was the classification of lies according to 

Disraeli. But despite the misgivings of him and his ilk, 

statisticians have been plying their trade with a not inconsiderable 

success (ironically, notably so in his own country). It is this 

much maligned subject that we have to fall back upon in order to 

make sense of the foregoing. 

Ideally, we want to minimise over all f t h e  'risk' 

E[(Y-f(X))2], (3) 

where E[-] denotes the mathematical expectation (i.e., the 

probabilistic average) with respect to the joint distribution of 

(X, Y). The  op t imum is attained by f*(X)=E[Y/X], the 

conditional expectation of Y given X. Thus E[(Y-E[Y/X]) 2] is 

the 'unavoidable error'. In practice, there are two additional sources 

of error. We don't usually know the joint distribution in question, 

so that the conditional expectation cannot be evaluated. We then 

replace (3) by the 'empirical risk' (1). For each fixed f, (1) 

approximates (3) well in the large n limit, by the law of large 
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numbers. But in order that the minimisation of(3) in place of( l )  

be justified, one needs this approximation to be uniformly good 

for all f under consideration, i.e., a 'uniform law of large numbers' 

must  hold. This forces us to consider restricted classes of f f o r  

which such a result is available. Other considerations (such as 

computational, smoothness constraints on f, physical or biological 

analogies, . . . )  may restrict the class F of candidate f ' s  even fur- 

ther, e.g., to splines or feedforward neural networks. The two 

sources of error then are the finite sample size n and the restricted 

search domain F. We shall now try to quantify the error 

contribution of each. 

Let  D denote  the t raining data vector [xl, Yl, x 2 ,  Y 2 ,  �9 �9 � 9  x n ,  

y.] and fD the element  of F that minimises (1). The net  error 

then is E [ ( ~ i - f D ( ~ i ) ) 2 ] ,  which can be wri t ten as a sum of 

three terms: 

E[(y  i _ f D (-~i ))2 ] = E[(y  i _ E [ y  i/~i])2] + E l ( E l Y  i I ~i] - 

ED[fD(s E[(ED[fD(s - fD(~i))2],  (4) 

where ED[fD(xi)]  is our compact notation for E[fD(~i ) /~ i]  
(i.e., one is averaging over all possible training vectorsD, keeping 

~i fixed). 

The proof of this pudding lies in splitting. Split (Yi - fD (xi)) as 

follows, (yi - E l Y  i/~i] + (E[yi  / s - ED[fD(~i)]) + (ED[fD(~i)] 
- f D  (s complete the square, take expectation, and watch the 

cross terms drop out by virtue of being uncorrelated. (This takes a 

simple conditioning argument, exactly along the lines of the proof 

of the fact that (3) is minimised at E[Y/X].  This is standard 

textbook material.) 

The first term on the right in (4) is the unavoidable error. The 

second and the third are called respectively the bias and the variance 

terms. There is a trade-offbetween these that leads to our'Einstein's 

razor'. The popular tag for this trade-off is the 'bias-variance 

dilemma', called thus because beyond a point, one can reduce one 

only at the expense of increasing the other [3-5]. How this comes 

about is the main theme of this article. 
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Suppose we had access to i n d e p e n d e n t  and ident ica l ly  

distributed 'copies' (D i} of the training data vector D. The  

ED[fD(~i)] could  be obta ined  as the  large N l imi t  of  

1/NE~/=lfD~(~i). T h u s  the  passage  f r o m  fD(~i) to 

ED [fD (~i)] washes out the effect of  finite sample size in some 

sense, leaving an error primarily due to a restrictive choice of  F. 

This is the bias term, which decreases as one admits larger, 

more complex F. 

The variance term is indeed the averaged conditional variance 

E[E[fD (xi) - E[fD (xi) / xi ])2 / xi ]]. It makes no explicit reference 

to E[y i / xi ]. Rather, it measures the extent to which fD (xi) as a 

function o l d  fluctuates from ED[fD(~i) ] , its average over D, 

thereby pinning down the finite sample effect. Not surprisingly, 

under moderate conditions this term goes to zero as n o  oo for 

most traditional statistical schemes. We shall, however, eschew 

such 'asymptopia' and work with finite, fixed n. The claim then is 

that this error tends to grow as F becomes more complex. 

A Cursed Affair 

The culprit here is a familiar foe, the curse ofdimensionality. To get 

a feel of this, consider planting points about 1 cm apart in an interval 

of length 1 m. You need about 100. Do the same in a 1 mx lm square, 

you need about 104. For lmx lmx lm cube, around 106 and so on. 

The message is: The number of points needed to 'sample' the unit  

hypercube to a given accuracy grows exponentially with the 

dimension of the underlying space. 

Now consider minimising (1) over function classes F1 ,F2 , . . .  

where each F/ is  a family of functions parametrised by some para- 

meter vector ~(i) belonging to a subset A(i) of, say, m(i)-dimen- 

sional Euclidean space. Suppose that m(i) increases with i, 

corresponding to increasing complexity of the function class. 

Furthermore, we suppose that (1) is minimised by a recursive 

algorithm (such as recursive least squares), which is run for (say) k 

steps. The operationED[. ] implies averaging over all such 

trajectories of the algorithm. 
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The 'curse' operates in more than one way. First and foremost, 

recall the problem of packing points in A(i) with prescribed 

maximum separation between neighbours. As already seen, this 

grows exponentially with re(i). A learning algorithm typically 

makes moves of a certain order of magnitude. The above then 

suggests that it will take exponentially longer to explore the 

parameter space in higher dimensions. In other words, a fixed 

run length thereof will explore the parameter space much less 

efficiently with increasing dimension. 

In addition, the performance of the algorithm itself can deteriorate 

with dimension: A typical algorithm moves from one point to a 

nearby point 'incrementally'. In higher dimensions, there are 

more degrees of freedom and more ways in which an algorithm 

can 'curl up'. (Recall that the algorithm is 'stochastic'.) Thus 

even when it is asymptotically convergent to the 'ideal' point, its 

actual net movement in k steps will tend to be better in low 

dimensions for fixed k. 

One may think of getting around this problem by choosing a 

bigger stepsize for the algorithm. But this only reintroduces the 

bias-variance dilemma through the backdoor (see Box 1). 

The reader is invited to ponder over both these points in the 

context of the passage from fD to ED[fD] described earlier and 

convince himself that both work against lower variance if the 

dimension is higher. 

To illustrate the point further, consider the scheme of Figure 3. 
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Box 1. The Hare vs. the Tortoise 

A typical "learning" algorithm has the form 

X(n+l) = X (n ) + a (n ) ( h (X (n )) +/14 (n+l)), 

where {a (n)} is the stepsize sequence and {/14( fl)} the 'noise'. For simplicity, let a(n)= a constant ( 'a ' )  for 

all n. View 'a" as a small time step and the algorithm itself as a noisy discretisation of the differential 

equation 

d x ( / ) / d t =  h (x(t)). 

Suppose x( t )  converges to x*  for any x(O). Then X(n) may be expected to remain in a neighbourhood 

of x *  with high probability for large n. This, roughly, is what most of these algorithms do. 

Keeping in mind our picture of 'a '  as a time step, a fixed run length of, say, ~ ofthe algorithm will 'simulate' 

x(.I over a time interval of length ka, which increases with a. Thus it moves further towards its destination 

with larger a, suggesting lower bias. 

But the flip side of this is that the approximation error, even without noise, grows rapidly with a and 

worse, the total noise variance in simulating x(.) over a time interval of length T goes as ( l / a ) .  a 2, which 

increases with a. 

Thus these 'great leaps forward' do take us further, but that could be farther from the goal because they 

are so erratic. This is lhe bias-variance dilemma by any other name. 

There are other avatars of this phenomenon. For example there are variance reduction techniques based 

on averaging, either explicitly averaging the iterates or implicitly averaging the right hand side of the 

recursion above by introducing a'momentum" term. These introduce a kind of'inertia" in the dynamics that 

makes it more sluggish, increasing bias. 

You simply can't eat your dosa and have it too! 

4 6  

H e r e f  * is the ideal point in some space of functions and 

F1, F 2, F 3 , . . .  are increasing subsets of the latter. (For example, 

consider F i = the set of  polynomials of degree at most i. Then 

f3(i) is the vector o f  coefficients of the polynomials, sitting in 

A(i)  = R i + I . )  A good statistical scheme will yield, in the n-~ 

limit, points like ~ ,  )72, J~3,. - �9 respectively which are the'closest' 

to f*  in some sense (e.g., with respect to information theoretic 

divergence if we use maximum likelihood estimation). Our 

inference based on a finite sample, however, may lead us to points 
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Box 2. Portrait of the Artist as an Young Edge-detector 

Cognitive scientists recognise a kind of bias-variance dilemma in human learning. Point out a rabbit sitting 

on a lawn to a child and say 'rabbit'. The child does not interpret it as 'a white object of certain 

dimensions' and refer to a folded white towel as a rabbit. Nor does it think of it as "a certain stationary 

arrangement of two long ears, whiskers, two eyes . . . .  on a green backdrop', and fail to recognise a 

rabbit when it is running, chewing a carrot, or doing other things that rabbits do. It pitches its 

interpretation of the word 'rabbit" at the correct edge of simplicity and complexity and realises, as 

Gertrude Stein might have put it, that "a rabbit is a rabbit is a rabbit is a rabbit is a rabbit". 

How did this innate ability for'edge-d etection' come by? The answer lies in evolution. Only the brains that 

could 'get the edge' got an edge in the battle for survival. 

l ikefl ,  f2, f3," �9 - respectively. Note that there is a progressive 

improvement from ~ to fz to f i ,  but thoughf~ improves upon 

fl,f3 does not improve u p o n f  2. Our 'Einstein's razor' would then 

pick f2 as the point on the edge of the bias-variance dilemma. As 

an aside, see Box 2 for a different (but not quite) kind of dilemma. 

I close this section with the caveat that the above generalisations 

about generalisation have a large dose of heuristics, to an extent that 

one might be tempted to say, 'Lies, damn lies and heuristics!' Take 

these as aids to intuition, not as mathematical theorems (though 

there are a few of those lurking underneath. [4]). As Alexandre 

Dumas said, "All generalisations are dangerous, even this one". 

Putting Expensive Bits on Posteriors 

This still leaves out the edgy issue of  how to 'get the edge' (or 

rather,  how not to go over it). One way to aim for the 'point on 

the edge' is by r igging the error cri ter ion (1) to have a 

m i n i m u m  thereabouts.  Here we take a cue from the penalty 

funct ion method of  constrained optimisation, in which the 

constraints are accounted for by adding a 'penalty '  term to the 

funct ion being minimised,  with the provision that this term 

takes very high values at points that don' t  meet  the constraints. 

In the same spirit, one adds to (I) a 'penalty term'  that  depends 
on the model class and increases with its complexity. A 
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prominent scheme in this vein is the 'minimum description 

length' (MDL) principle of Rissanen, where one minimises 

the  total code length, i.e., the number of binary digits (bits) 

required to first encode the model and then the data. Related 

schemes are the  older 'Akaike information criterion' and its 

antecedent by Gideon Schwartz, the 'Bayesian information 

criterion' and the recent work of Andrew Barron on complexity 

regularisation [2]. We shall try to get a feel for the spirit of 
such schemes in this section. 

Specifically, consider model classesFpF2,F3,.. ,  of increasing 

complexity with associated increasing 'complexity cost' 

L(1), L(2), L(3), . . . .  One then minimises jointly over i= 1 ,2 , . . .  

and f eF i the expression 

1 ~ (Yi - f(xi)) 2 + ,~..(i) (5) 
m 

Box 3. Some Vital  Statistics 

Suppose you observe the value {say, y) of a random variable )'whose distribution you wantto estimate. 

For simplicity, let )' be discrete-valued. One may hypothesise a parametrised family Pe of probabilities 

on the range 5of Y, with the parameter 8 in some parameter space A (assumed discrete once again). 

It is implicit that some 00 in A is the 'true" parameter, i.e., probability law of )' is P%. One may estimate 

00 by 0 = the 0 that maximises Po(y). This is the maximum likelihood estimate, called non-Bayesian 

because no 'prior' probability was imposed on A as in the Bayesian framework we discuss next. 

In the Bayesian framework, 80 itself is assumed to be a realisation of some A-valued random 

variable Zwith probability law # (the 'prior'). Bayes rule then leads to 

[ z  ' 
P(Z=O/Y=yl=PolY)I~(O)I P77(y)~1771 

~eA 

the posterior probability on A given the observation y. Maximising this over 0yields the maximum a 

posteriori (MAPI estimate of 00- In the context of our discussion in section 4, it is worth noting that this is 

equivalent to maximising the logarithm of the same, which is the sum of the usual 'log-likelihood function' 

of maximum likelihood scheme given by IogIPe(yll, plus a term involving the prior that can be viewed as 

a penalty term. 

Both fall in the category of parametric statistics, because we started with a parametrised family ,~ o, 

~A, of candidate probability laws. 'Nonparametric statistics' is another, altogether different ball game. 

48 
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for a prescribed E > 0. (For example, in MDL, L(i) = (1/2)m(i)ln(n) 
with m(i) as before. This is related to the information theoretic 

'redundancy' of a code.) 

To put all this in the familiar perspective of traditional statistical 

paradigms ( See Box 3), note that minimising (1) is equivalent to 

maximising 

]-in 1 e-(yi-f(xi)) 2/2 
i=1 2"-~ (6) 

In other words, we hypothesise that yi=f(xi )+ noise, with the 

latter being an independent zero mean, unit variance, Gaussian 

random variable. Then (6) is the likelihood function andfD the 

maximum likelihood estimate of f. Correspondingly, (5) amou- 

nts to maximising 

n 1 -(yj-f(xj)) 2/2 x C(,~)e -)'L(i) 
I-I j=l 2--~ffe (7) 

where C(~.)=(Y.,e-~z~i)) -1 is the normalising factor. This does 

not have to be finite, but we assume it is. It often is, in 

particular ifL(i) has interpretation as the codelength of some 

' instantaneous'  binary code (i.e., a code that can be decoded 

without  reference to future bits).If so, Kraft's inequality of 

information theory ensures the finiteness of C(~.) : It says that 

E2 -L~i ) cannot exceed 1. The term C(~)e -~(i) can be viewed as 

the prior probability we have put  on F/. Then  (7) is 'sort of' 

proportional to the posterior probability. (The qualification 

'sort of' is inserted because we haven't  put  a prior probability 

onA(i)  given i. This can also be done, e.g., in order to build in 

any additional prior knowledge or to penalise further those 

fl(i) with, say, large I1~i)11. Thus the maximisation of (5) is 

'sort of' like the maximum a posteriori estimate, establishing 

a link with Bayesian statistics [7]. 

There are also other approaches for finding the edge. Many of 

these first overfit a very complex model, which is then pruned by 

discarding apparently un impor tan t  parameters using an 

appropriate heuristic. One such scheme in the context of neural 

networks goes by the quaint name of 'opt imum brain damage', 
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Box 4 

'BAGGing" is an acronym 
for 'Bootstrapped AGGre- 

gation', which gives away 
its antecedents from the 

bootstrap method in 

statistics. "Bootstrap', in 

statistics, refers to 

schemes which resample 

from a given data set to 

generate additional data 

sets and use them for 

inference [6]. (Thetermi- 

nology apparently comes 

from a certain Baron 

Munchausen, a fictional 

character who is 

supposed to have pulled 

himself up from the 

bottom of a lake by 

pulling at his bootstraps.) 

stretching their biological analogy perhaps a bit too far. 

In the neural network context, there are also schemes based on 
'weight sharing'. These impose a priori relationships between 

parameters, thereby bringing down the effective dimension of 

the parameter space. 

Baggers Can be Choosers 

The reader needn't go away with the impression that there is no 

way to beat down variance without increasing the bias. At the 

algorithmic level, a good compendium of variance reduction 

techniques is the book by A Davison and D Hinkley [6]. Here, 

however, we shall concentrate on a different bag of tricks, viz., 

bagging (see Box 4) and related techniques [5]. 

In bagging, one samples from D=[(xl,yl), (x2,y2),..., (xn,yn)] 
independently, with uniform probability and with replacement 

to form another data string D 1 = [(~1, Y'I), (~2, Y2), "", (x'n, Y'n)]" 
In particular, repetitions are possible. Repeat this procedure to 

form further strings D2, . . .  ,D N. Setting D o = D, find the best 

fit for each i and then let fD = (1/(N + 1))E~0 fDi" The idea 
is clear: Limited by a single data stringD, we 'simulate' additional 

data strings D i through resampling and combine the 'findings ~ 

(fDi } into an averaged ]D, which then may be hoped to be closer 

to ED[fD] than the original fD is, with a high probability. If so, 
the variance term is reduced without affecting the bias 

significantly. Empirical work supports this intuition. 

There is a further refinement which often does better. This is 

a scheme called 'arcing', once more an acronym (this time for 

'Adaptive Resampling and Combining')  [8]. The main 

difference here is that the sampling distribution, initially 

uniform, is adaptively modified to favour data points that give 
larger error. One may also play around with the weights used 

for forming J~D from { fDi ) through a weighted sum. (These 

were uniform (= 1/n) in bagging.) 

A word of caution: Bagging and related techniques work well 
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when the variance term is initially very high. But if it is low to 

start with, fD may turn out to be a worse estimate than fD! 

Intuitively, these techniques correct for sensitive (or 'non-robust') 

dependence on data of the algorithm. This roughly reflects the 

second manifestation of the curse of dimensionality mentioned 

above, viz., the data-dependent 'wandering' of  the algorithm. 

The first and the more fundamental issue - that it simply takes 

many more points to sample the space in higher dimensions - 

will not be adequately handled by these schemes. Other caveats 

regarding bootstrap schemes also apply, e.g., their problems 

with incomplete or dependent data, outliers etc. [6] for the 

'when and how' of bootstrap. 

After having waxed eloquent about the bias-variance dilemma in 

earlier sections, it may come as an anti-climax that one can escape 

it to some extent through 'boosting techniques' like bagging and 

arcing that improve the accuracy of the training procedure through 

its repeated application. But in reality, I have only replaced one 

dilemma by another. These techniques are computationally 

intensive and we have escaped (albeit partially) the bias-variance 

dilemma only to find ourselves in the dilemma of variance vs. 

computational resources. 

But then, there's no such thing as a free lunch. 
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