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One may want to 

maximize returns 

on an investment 

or minimize losses, 

or, as an engineer, 

maximize energy 

efficiency or 

minimize 

estimation errors. 

Many scienti f ic  and technological  problems involve 
f inding the lowest attainable value of  a function.  This  
article motivates,  describes,  and discusses  one powerful 
computational  strategy. It is called "simulated annealing" 
in analogy with the physical  process of  slowly cool ing a 
system to take it to its ground state. 

G e t t i n g  to  t h e  B o t t o m  o f  I t  

There are many situations where one wants to maximize or 

minimize something. For example, one may want to maximize 

returns on an investment or minimize losses, or, as an engineer, 

maximize energy efficiency or minimize estimation errors. 

Isolating the underlying mathematical problem, one then has a 

m a p f f r o m  a given domain D to the real line and the problem is 

to find the point in D (if any) where f attains its maximum or 

minimum. It helps to consider D as being laid out horizontally 
(takes some imagination if, say, D = the n-dimensional vector 

space with n _> 3) and for each x inD,  f (x )  plotted vertically to 

give a graph of f (x) vs x. Assuming f to be continuous, the 

graph can be visualized as a landscape with peaks and valleys. 

The peaks will correspond to local maxima i.e., points where f i s  

the maximum with respect to its immediate neighbourhood. 

The bottoms of the valleys are then the local minima, defined 

analogously. For the sake of  being specific, consider  the 

minimization problem. The aim then is to find the global 

minimum, the bottom of the lowest valley. 

The obvious thing to do is to keep going downhill as long as you 

can. This is what descent algorithms do. Many popular algo- 

rithms (steepest descent, conjugate gradient) are of this variety. 
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Even the other rival class, that of Newton and quasi-Newton 

algorithms, can be construed as descents modulo some mental 

gymnastics that allows the concept of  distance to vary from point 

to point. (The buzz word here is variablz metric). 

But these algorithms, which are deterministic (that is, non- 

random) and use only local information, can't tell one local 

min imum from another and can get trapped in one that is far 

from the best. How then, is one to find the global minimum? A 

naive response would be to 'get a bird's eye view of the landscape, 

spot a global min imum and make a bee-line for it'. But algorithms 

cannot do what the birds and the bees can, their proliferation 

notwithstanding. For any optimization problem worth its salt, 

using global information is not easy. So one attacks the other 

flank of these algorithms, their determinism. The trick is to add 

some random noise to the algorithm which, whenever the 

algorithm threatens to sit pretty in a local minimum (Figure la), 
gives it a gentle uphill push (Figure lb). But if you keep adding 

noise, you will be marching the algorithm up and down the hills 

forever like the proverbial grand old Duke of York. So one has to 

reduce the noise level slowly, to attain a balance between random 

exploration of the landscape a la a pure random walk, and 

exploitation of the gradient (slope) information as in descent 

methods. The algorithm described in this article, called simulated 
annealing, does precisely that. 

A naive response 

would be to 'get a 

bird's eye view of 

the landscape, 

spot a global 

minimum and 

make a bee-line for 

it ' .  But algorithms 

cannot do what the 

birds and the bees 

can. 

Figure 1 a, b. 
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A salesman has to 

visit N cities, each 

of them exactly 

once, and return to 

where he started. 

He knows the 

pairwise distances 

between these 

cities and his 

problem is to find 

the best sequence 

in which the cities 

should be visited 

so as to minimize 

the total distance 

travelled. 

F a t e  o f  a S a l e s m a n  

Before plunging into the mathematics of the algorithm, we take 

a look at an archetypical problem where this algorithm has been 

applied. This is the celebrated travelling salesman problem. A 

salesman has to visit N cities, each of them exactly once, and 

return to where he started. He knows the pairwise distances 

between these cities and his problem is to find the best sequence 

in which the cities should be visited so as to minimize the total 

distance travelled. 

Each possible ordering of the cities involving each city exactly 

once is called a tour. To each tour one assigns a cost, a positive 

number equal to the total distance the salesman would travel if he 

were to visit the cities in that order. The problem then is to 

minimize this cost over the finite set of tours. 

This may sound simple. (After all, there are only finitely many 

tours!) But  it is not. The number  of possible tours grows 

explosively with N (as N!). This rules out  simple search 

algorithms. Things still wouldn't  be too bad if there was enough 

'structure' to the problem, but  there isn't. The problem is 

provably hard, i.e., it belongs to an equivalence class of problems 

known to be hard in a precise technical sense. 

A popular heuristic algorithm for the travelling salesman problem 

is the 2-opt. Here one starts with a tour and randomly picks two 

consecutive cities on the tour. They are interchanged to obtain a 

new tour. If  the new tour has a lower cost replace the old tour by 

the new tour. This procedure is repeated until there is no further 

improvement. 

The problem with this and other similar heuristics is that they 

get  stuck in local minima. If  the number of cities is small, say, in 

tens, they still do reasonably well (in fact, often better than 

simulated annealing for a fixed finite run length of the algorithms). 

If  N exceeds a few hundreds, however, simulated annealing 
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begins to show a distinct edge over these heuristics. 

We shall return to this and related problems later after looking 

into the formal mathematical aspects of the algorithm. A reader 

uncomfortable with mathematical probability theory may skip 

the next section at a first pass. 

You Have Noth ing  to Lose  But Your Chains  

For simplicity, let D be a finite set with M elements. The 

mathematical model for our algorithm is a Markov chain. A 

Markov chain on D is a random processXn, n = 0, 1, 2, ..., taking 

values in D with the property that the probability of its moving 

from i to j at any given time does not depend on how it arrived 

at i. (Technically speaking, its future and past are conditionally 

independent given the present, a good philosophy for life in 

general.) If  this probability is also independent of the explicit 

time count (the clock), we may denote it by p (i,j). If  the proba- 

bility of the chain being in i at a given time is n (i), the proba- 

bility of its being in j at the next instant will be E n (i) p(i, j) .  

Thus if the probability vectorrc (.) satisfies i 

Evt (i) p (i , j)  = n (j) ,  j ~ D  , (1) 
J 

then we have - -  if the probability distribution of the chain is 

z (.) at some time, then it is z (.) forever. Such a n (.) is called a 

stationary distribution. If the chain is irreducible, i.e., can go from 

any i ~ D to any j  E D with positive probability, a unique such 

rt (.) exists. Also, the fraction of time the chain spends in i 

approaches n (i) in the limit for each i. 

Equation (1) is called global balance. (Think of equilibrium 

concentration at j being equal to that at i times the rate of flow 

from i to j ,  summed over i.) One also has the detailed balance 

equation 

n (i)p (i , j)  = rr ( j ) p  ( j ,  i), i, j ~  D ,  (2) 
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That is, if the 

selected move is 

downhill, it is made 

with certainty. If it 

is uphill, it is made 

with a small 

probability which 

decreases with the 

amount of climb 

involved. 

This is because the exponent 
in equation (3) becomes zero, 
from the definition of the "f" 
operation given below equation 
(3). 

which implies (1) but not vice versa. For most chains (2) may not 

be possible. Mercifully, it is so for the chain we are about to 

consider. 

Suppose we impose on D a neighbourhood structure whereby 

each iE D has N neighbours (N usually much smaller than M) 

and i, j are either neighbours or they are not. Consider a chain 

which (i) cannot go from i to j unless j is a neighbour of i, (ii) 

can with probability 

p(i, j) = (1/N) exp (-  ( f ( j )  - f ( i ) ) §  ) (3) 

if it is, and (iii) remains in i with the remaining probability. Here 

T>0 is a parameter called temperature for reasons that will 

become apparent later, andx + = max (x, 0). The expression (3) 

can be thought of as being in two parts: the 'selection probability' 

given by 1/N and the 'acceptance probability' given by the 

exponential term. The interpretation is that the chain at i picks 

a neighbour j with equal probability. It moves there with a 

probability equal to the acceptance probability and remains at i 

with the remaining probability. Note that  the acceptance 

probability is 1 if f ( j )  <f ( i )  1 and <1 otherwise, decreasing as 

f ( j )  increases. That  is, if the selected move is downhill, it is made 

with certainty. If it is uphill, it is made with a small probability 

which decreases with the amount of climb involved. 

It is easily verified that given (3), (2) is satisfied by 

rot(i) = Z -I exp ( - f ( i ) / T ) ,  i ~ D, 

where Z is the normalizing factor. Observe that f (i) > f (j) 

implies nr  (i)<nr(]')" Thus nr( ' )  assigns maximum probability 

to the i where f attains its minimum. The chain then spends the 

maximum fraction of time in these states. What's more, the 

smaller the parameter T, the larger this fraction (the more 

peaked ~r (') is at the global minimum). Note that the two 

limiting cases of T=0 and T=oo correspond respectively to pure 

descent and pure random walk. 
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To fix ideas, consider the specific case o fD = { 1, 2, 3, 4} with 

each element a neighbour of every other. Let f ( i )  = i for i in D 

and T = 1. Then we have (using e=2.71828...) = base of natural 

logarithms. 

p ( 4 , 3 ) = p ( 4 , 2 ) = p ( 4 , 1 ) = p ( 3 , 2 ) = p ( 3 , 1 ) = p ( 2 , 1 ) =  1/3, 

p (1, 2) = p (2, 3) = p (3, 4) = 1/(3e) 

p (1, 3) = p (2, 4) = 1/(3e z) 

p (1, 4) = 1/(3e3). 

This uniquely specifies p (i, i) as 1-~  p (i,j) for each i. In view of 

the foregoing, one has j ~ i 

That is, the 

probability of the 

chain being away 

from the set S of 

global minima 

goes to zero. This 

does not ensure 

that with probability 

one, the algorithm 

hits S and stays 

there. 

~r  (i) = e-~/(e-*+e-2+e-3+e-4),  

which clearly peaks at i= 1, the global minimizer of f. 

The foregoing suggests the following algorithm. Run the chain 

with a time-varying T= T(t). Decrease T(t) with time t so slowly 

that the probability distribution of the chain closely tracks ~r(ty 

thus concentrating on the global minimum in the limit. This is 

the simulated annealing algorithm, named thus by analogy with 

the eponymous slow cooling process for hardening metals. The 

function t -~T(t) is correspondingly called the cooling schedule. 

In the Long R u n . . .  

But does the algorithm work provably? Yes, if T(t) decreases 

slowly enough to ensure E, exp ( -d /T  (t)) = oo where d = the 

'depth' of the problem. This is defined as the maximum of the 

min imum one has to climb from any point in D in order to get 

to some global minimum. The convergence, however, is only in 

probability. That  is, the probability of the chain being away from 

the set S of global minima goes to zero. This does not ensure that 

with probability one, the algorithm hits S and stays there. That  

would be almost sure convergence in probabilistic jargon, a stronger 

concept. In both, the probability of the set of bad sample points 

(i.e., the set A on which X r shrinks to zero. But in the 
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Figure 2 a,b. 
former, these can wander all over the sample space while shrinking 

(Figure 2a), unlike the latter, where they do so in a more or less 

nested fashion (Figure 2b). (The outer square in these figures 

represents the underlying sample space.) Unfortunately, almost 

sure convergence to S need not hold. One can concoct situations 

wherein the algorithm leaves S infinitely often, though such 

occurrences become increasingly rare. But the fraction of time 

spent in S does go to unity. 

To get a feel for this rather subtle point, consider the sequence 

{a(n)} which is 1 when n=2  m for some m > 1, zero otherwise. It 

becomes 1 increasingly rarely and the fraction of time it spends 

in zero approaches one, though it does not converge to zero. 

While commenting 

on what happens 

in the long run, the 

economist John 

Maynard Keynes 

once quipped that 

in the long run, we 

are all dead. 

Intuitively, what is required to make the algorithm stick to a 

global minimum is that the immediate valley surrounding it be 

deep. 

But these are only asymptotic results. While commenting on 

what happens in the long run, the economist John Maynard 

Keynes once quipped that in the long run, we are all dead. A 

similar cynicism may be warranted here in the absence of good 

rate of convergence results. Few analytic results are available, 
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such as some that predict inverse polynomial (in t) decay of the 

probability of not hitting S until time t. But the constants up 

front involved in these estimates are too large to make them 

practically useful. One thus has to fall back on empirical 

observations,  which are encouraging for certain classes of  

problems. We shall discuss these in the last section. 

F r o m  Chi ld 's  Play to Stat i s t ica l  M e c h a n i c s  

We now present two interpretations of  the algorithm. The first is 

simply an analogy with a children's toy wherein a metal ball in a 

maze is to be pushed to its center by repeatedly tilting the maze 

in a suitable manner. One starts out with rather large tilts, and 

then smaller ones as the ball approaches the center. The addition 

of slowly diminishing noise to the basic descent scheme can also 

be thought of as randomly tilting the landscape, the extent of  

which diminishes with time. The algorithm trapped in a local 

minimum is thus poured out by tilting the landscape. This 

analogy is not as far fetched as it may seem. It is quite accurate for 

simulated annealing in a finite dimensional vector space (as 

opposed to a finite set D)  which, unfortunately, we will not 

consider here because of its technicalities. 

The second interpretation runs deeper and in fact, motivated the 

Monte Carlo Markov chains that preceded simulated annealing. 

(They correspond to the c~ T version thereof.) Recall that 

a thermodynamic system in equilibrium at a constant temperature 

T minimizes its (Helmholtz) free energy, which is its internal 

energy minus T times its entropy. Statistical mechanics, which 

aims to derive thermodynamics from microscopic phenomena, 

translates this into the following: Let D be a discrete set of 

possible states and f (i) the energy in state iaD. If  Pi is the 

probability of the system being in state i,E. p~ f ( i )  is the average 

energy. On the other hand, the entropy of]~ = [Pl, "" ,P,,] is given 

by -E. pi In Pl, its information content. This can be justified 
Z 

axiomatically and the readers unfamiliar with information theory 

are requested to accept it on faith. The free energy minimization 

The first is simply 

an analogy with a 

children's toy 

wherein a metal 

ball in a maze is to 

be pushed to its 

center by 

repeatedly tilting 
the maze in a 

suitable manner. 

One starts out with 

rather large tilts, 

and then smaller 

ones as the ball 

approaches the 

center. 
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principle then requires p to minimize ~Pi (f(i)+ T In Pi ) sub- 

ject to Epi = I. This is a strictly convex function (i.e., function 

with the property that the line joining any two points on its 

graph lies above the graph) on a bounded convex domain (i.e., a 

set that contains every line segment whose end points are in the 

set.) This makes it an optimization theorist's dream problem. It 

has a unique solution given byp=Tc r .  In the T--> 0 limit, the 

problem reduces to minimizing Epi f(i), which is tantamount  to 

our original problem. (Think about it! Strictly speaking, it is a 

'relaxation' of the original problem in optimization parlance.) 

The algorithm thus simulates convexification of the problem, 

with lowering of T corresponding to gradually distorting the 

convex problem to the original. There are optimization techniques 

called homatopy methods which actually do this. The difference 

here is that the convexification is not explicit. It arises through 

the average behavior of a random phenomenon. 

One may then ask: Why not do the deterministic minimization 

of free energy directly? The reason is that in most applications, 

D is very large and complex, the space of probability vectors on 

D even more so. Thus the deterministic problem is not usually 

computationally amenable. There are, however, applications 

(like image processing) where the above considerations have led 

to deterministic approximations of simulated annealing. These 

are called mean field annealing methods, after the 'mean field' 

theories of physics wherein one replaces fluctuating quantities 

by their averages. 

T h e  G o o d ,  t h e  Bad ,  a n d  t h e  U g l y  

When should one use simulated annealing? The  following 

considerations give some intuition about this. Consider successive 

blocks of a fixed, large number of iterations. The higher the value 

of T, the more the algorithm will wander in any such block. 

Thus at high T, it sees the landscape on a coarse scale, seeking 

only the broad valleys. As T is lowered, it starts seeing finer 

length scales and hence smaller valleys. 
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Figure 3 a-c. 

Keeping this in mind, consider the three functions displayed in 

Figure 3. The first is a good function, smooth, convex, with a 

unique local-cum-global minimum. Any reasonable algorithm 

will work for this. The second function is bad, but not altogether 

so. Reasonable heuristics like the multistart method (which 

initiates several descent algorithms at many randomly chosen 

initial conditions) will do well on this with a high probability. 

This is more than what one can say for the third function, which 

is really ugly. It has local minima at all length scales, making it 

tough for even the most reasonable of the traditional heuristics. 

But when things get tough, the tough get going and simulated 

annealing, which is intelligent brute force by another, is a tough 

algorithm. In fact, it is only the large and ugly problems for 

which it starts showing significant gains. 

But do we encounter such ugly problems in practice? Plenty! 

Combinatorial optimization is a real gold mine of these. (Perhaps 
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6g 

'minefield' would be a better metaphor.) Examples are: graph 

matching, graph partitioning, graph colouring, and travelling 

salesman problems. In fact, the algorithm was originally 

introduced for solving combinatorial optimization problems in 

VLSI circuit design. 

Another major area is image processing, where a noisy image 

(sometimes misleadingly called a dirty picture) is cleaned by 

optimally fitting to it a nicer image with respect to some error 

criterion. 

The reader might have heard of neural networks which are large 

networks of simple nonlinear elements whose parameters are 

adjusted to perform specific tasks like associative memory or 

pattern classification. One of these is the Boltzmann machine, 
which uses simulated annealing for optimal parameter  

adjustments. 

Condensed matter physicists encounter complex systems called 

spin glasses with really ugly energy functions. Simulated annealing 

is a useful tool for numerically analyzing these. 

The above problems have an important feature in common, 

which we illustrate in the case of the travelling salesman problem 

described in an earlier section. D then is the set of all possible 

tours. Two tours are neighbours if one is obtainable from the 

other by interchanging the placing of two cities that occur 

successively. For largeN, the tour length is difficult to compute, 

but the difference in tour length of two neighbours is not. That 

is, f (i) is hard to find, but f (i) - f  (i) is not when i, j are 

neighbours. This is another important feature of typical 

application domains of simulated annealing. In fact, if it were not 

so, simple random walk would do better simply by keeping track 

of the lowest point visited so far. 

Finally, the remarks at the beginning of this section also give a 

clue as to what T to start with. If T is too high, it is virtually a 
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random walk and we are wasting resources. I f  too low, one may 

take forever to move out of the current valley. As T decreases 

from high to low, one expects n r to go from an almost fiat 

distribution to a humped one. In many cases, the transition is 

fairly sharp around a critical temperature T .  The rule of thumb is 

to use T as the initial T. Of course, T c has to be guessed or 

estimated, which is another problem altogether. 

In practice, of course, there are many ad hoc add-on features to 

speed-up the algorithm or reduce its resource requirements, 

usually at the expense of exact optimality. After all, there is a 

science of optimization and there is also an art to it. It is the 

former that is being conveyed to you in this article. The latter 

cannot be, since one has to simply 'grow into it' through 

experience. 
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