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Mathematicallndudion - An Impresario of the Infinite 

In the natural sciences, if a certain phenomenon is observed 
to occur a number of tinles, often a general law is formu
lated. This process is called empirical induction. In gen
eral, any reasoning that draws a general conclusion based on 
verification of particular cases is known as ind.uction. But, 
in mathematics, a statement involving a natural number n 

might turn out to be erroneous even if it happens to be true 
for the first ten, or thousand, or even million natural num
bers. For instance, the numbers 22° + 1 = 3, 221 + 1 = 5, 
222 +1 = 17,223 +1 = 257,224 +1 = 65537 are all prime num
bers and the 17th century mathematician Pierre de Fermat 
suggested that 22n + 1 must be prime for every positive inte
ger n. However, a century later, another great mathemati
cian Leonhard Euler showed that 225 + 1 = 6·11 x 6700417. 
An even more convincing example is the following. If we 
evaluate the expression 991n2 + 1 for small values of n, the 
resulting number is not the square of a whole number. But, 
for n = 12055735790331359447442538767, the value is a per
fect square. Indeed, this is the smallest value of n for which 
it is a square! This tells us that, in mathematics, a lot of care 
is needed to establish an induction procedure which proves 
a l11athematical theorem for each of an infinite sequence of 
cases, without exception. The method of mathematical in
duction is such a procedure. Let us start with a simple 
eXalnple. 

Suppose we want to prove the statement that 2n > n for 
every natural number n. Clearly, this inequality holds for 
n = 1. Now, to prove the inequality for all natural numbers, 
we consider an arbitrary natural number k 2:: 1. We assume 
that the inequality 2k > k holds. Then, for the next natural 
llulnber k + 1, 2k+l = 2 x 2k > 2k by our assumption that 
2k > k. Now, 2k = k + k; 2:: k + 1, so that the inequality 
2k+l > k + 1 follows. Thus, we have proved that if the in
equality is true for any particular k, then it is also true for 
k+1. 
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The crux of the above argument rests on the points: 

(0) Given an infinite sequence of statements Pr , Pr +l, .. 
we would like to prove that there is a 'next' to any state
ment, and each particular statement can be reached in a 
finite number of steps starting from the 'first' statement Pro 

(1) There is a general method of proving that for any n ~ r, 
if Pn is true, then Pn+l is true; and 

(2) The first statement Pr is known to be true. 

It is believed that these rules of logic are as fundamental to 
mathematics as the classical rules of Aristotelian logic. 

It is necessary to verify both the steps (1) and (2) to avoid 
landing in absurdities. For example, if step (2) that 'starts 
induction' is not verified, one can 'prove' that all natural 
numbers are equal as follows. For, simply denote by Pn the 
statement 'n = n + 1'. Then, obviously, if Pn is assumed to 
be true, then n = n + 1 and so n + 1 = n + 2, which means 
that Pn+l is also true. 

Everybody has seen instances of mathematical induction be
ing applied. The summing of arithmetic and geometric pro
gressions are usually done by this method. 

An important point is in order here. Mathematical induction 
can be used to prove a statement that is given to begin with. 
As for coming up with that statement itself (as a guess, say), 
it is altogether a different matter. Therein lies the creative 
element which cannot be pinned down by any general rules. 

As we observed earlier, mathematical induction is a pro
cedure that involves such extremely 'believable' logic that 
we accept it as valid reasoning. But, interestingly, we can 
actually prove its validity if we assume another believable 
principle which is that any non-empty set of positive inte-
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gers has a least number. That this principle gives a proof of 
the validity of mathematical induction is left as an exercise 
to the reader. 

We now proceed to give instances of various guises under 
which the method of mathematical induction appears and 
proves fruitful. 

The following is a slight variant of the form in which induc
tion is used. 

To prove an infinite sequence Pk, Pk+l, .. " of assertions, one 
verifies the two steps: 

(i) Pk is true. 

(ii) For any n ~ k, if we assume that all the Pk, Pk+l, ... ,Pn 

hold good, then P n+ I also holds true. 

Induction in Geometry 

As an example, let us show that the sum of the interior 
angles of a (not necessarily convex) polygon of n sides is 
180(n ~ 2) degrees for all n ~ 3. Call this statement Pn· P3 

is true as the sum for a triangle is 180 degrees. P4 is also 
true since any quadrilateral can be split into two triangles. 

Now, let n > 4 and we assume that Pk is true for . k = 
3,4"", n - 1. Let AI, A2,"', An be the vertices of a poly
gon with n sides. We first notice that there is always a 
diagonal (i.e., a segment AiA j that is not aside) that splits 
the polygon into two with smaller numbers of sides. To see 
this, consider three neighbouring vertices A, B, C. Consider 
all the rays emanating from B and filling the interior angle 
ABC. We terminate any ray when it first meets a side or 
vertex of the polygon. Either all these rays intersect only 
one side (Figure 1) or they intersect more than one side 
(Figure 2). In the first case, AC is a diagonal that splits the 
original polygon into a triangle and a polygon with n - 1 

B 

Fig"re'. 

--------------------------------~--------------------------------



1 That we have interchanged 

the roles of girls and boys in 

our version is a miracle of 
modern genetics! 
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sides. In the second case at least one ray terminates on 
a vertex other than A or C. Call such a vertex D. Then, 
B D is a diagonal splitting the polygon into two with smaller 
numbers of sides. 

Therefore, in general, let AIAk denote a diagonal which 
splits the polygon AIA2 . An into the polygons AIA2' . Ak 
and AkAk+l . AnA 1 of k and n - k + 2 sides respectively. 
By the induction hypothesis, Pk and Pn-k+2 are true i.e., the 
SUln of the interior angles of the original polygon AIA2' . An 
is lS0(k - 2) + lS0(n - k) = lS0(n - 2) degrees. So, Pn is 
true, which proves by induction that Pr is true for every 
T ~ 3. 

After this standard exainple, we look at an example where 
it may not be quite apparent that induction can be used. 

The Marriage Problem 

The classical 'marriage problem' can be stated as follows. 
Suppose that each of a set of girls is acquainted with a sub
set fronl a given set of boys. Is it possible for each girl 
to marry one of her acquaintances? 1 Obviously, a neces
sary condition is that every set of m girls be collectively 
acquainted with at least m boys. That this suffices is the 
assertion. Here is a proof by induction. 

Let n denote the number of girls. If n = 1, the assertion is 
trivial. If n > 1 and if it is true that every set of Tn girls, 
1 ~ Tn < n, has at least rn + 1 acquaintances, then an arbi
trary girl is allowed her choice and the rest are referred to 
the induction hypothesis. If, on the other hand, some group 
of m girls, 1 ~ m < n, has precisely rn collective acquain
tances, then this set of m girls is married off by induction 
and, it is indeed true that the rest of the n - m girls -sat
isfy the necessary condition with respect to the remaining 
boys. If this were not so, then some set of s spinsters with 
1 ~ s ~ n - m know fewer than s bachelors, and this set 
of .'; spinsters together with the rn just-married girls would 
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have known fewer than s + m boys. 

The reader is invited to apply induction to solve the follow
ing two problems: 

Exercise: (Consecutive Number Problem) 

Agatha and Beula are 'given' two consecutive natural num
bers nand n + 1. Both know that the numbers are consecu
tive but neither knows whose number is bigger. After every 
minute a beep is heard and each is asked to sinlultaneously 
say out aloud whether she knows the other's number. Prove 
by induction on the smaller number n that the person who 
has the number n guesses correctly after precisely the n-th 
beep. 

Exercise: (Macaulay Expansion) 

Given a natural number d ~ 2, let us write down the d

tuples of positive integers in a strictly decreasing order. Or
der the tuples lexicographically. Prove that the number of 
tuples appearing prior to a particular tuple (kd, kd-b , k1) 

. . I ( kd ) ( kd-1 ) ( k1 ) IS preCIse y d + d - 1 +. . l' 

This proves that any n has an unique expansion n = (~) + 

(::-~) + en where kd > kd-l > . kl. Here C) 
denotes the binomial coefficient which is 0 when n < T. 

Induction incognito - Use of a 'Dummy' Element 

Look at the following statement: 

If 0.1 < 0.2 < < Q,n+1 are integers from the set {1, 2, . , 2n}, 
then Q,i divides aj for some i < j. 

This can be solved by the 'pigeon-hole principle' as follows. 
Write Q,i = 2kili with li odd. Then, iI, ,In+1 being n + 1 
odd nUInbers between 1 and 2n cannot be different. If 
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li = 1 j = l with i < j, then, clearly ai = 2ki 1 divides 
aj = 2kil. 

In terms of economy and elegance, this is unbeatable. How
ever, we find to our surprise that even induction works and, 
in fact, proves the following more general statement: 

[]] Let r ~ 1, and let A C {1,2, , 2T n} be a subset of car
dinality (2T - l)n + 1. Then, there exists a chain of T + 1 
elements of A with each dividing the next. 

Let us prove the original statement (corresponding to r = 1). 
Note that it is clearly true for n = 1. Assume it is true for 
n. Consider now n + 2 numbers a 1 < < an +2 among 1 
to 2n + 2. If an+l ~ 2n, we are done by the induction hy
pothesis. In the contrary case, we must have an+l = 2n + 1 
and an+2 = 2n + 2. If one of the ai's is n + 1, we are done 
as it divides an+2. So, suppose ai =1= n + 1 for any i. We 
may also assume that none of the n numbers aI, . ,an di
vides another or else we have nothing to prove. Now, we 
put in this new number n + 1 (as a 'dummy element') to get 
n + 1 numbers between 1 and 2n. By induction hypothesis, 
one of these n + 1 numbers divides another. Since this has 
happened only after the advent of the new number n + 1, 
it must be that either: (i) some ai (i ~ n) divides n + 1 or 
(ii) n + 1 divides some ai (i ~ n). But, clearly (ii) can not 
happen as n + 1 -1= an ~ 2n. Thus, some ai (i ~ n) divides 
n + 1 and, therefore, divides 2n + 2 = an+2 also. Thus, we 
used n + 1 as a 'dummy element' in this proof. 

The reader is urged to complete the proof of the general 
statement along the same lines. 

Now, we come to a final example where induction appears 
in a different guise. 

Backward Induction 

If a statement is easily proved for a particular infinite sub-
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sequence of positive integers, it might be worthwhile to try 
whether 'backward induction' works. By this, we lnean the 
following. Suppose we want to prove statements Pn . for all 
positive integers n. Suppose, further, it is easy to check the 
veracity of Pn for all n in an infinite sequence of natural 
numbers. Then, if we check that for any m 2: 2, the truth 
of Pm implies the truth of Pm-I, the statements Pn follow 
for all positive integers n. 

An instance is the familiar arithmetic mean· - geometric 
mean inequality 

Pn (I:: ai)n 2: n n II ai 

i::;n i::;n 

for arbitrary non-negative real numbers ai, where equality 
holds if, and only if, all the numbers are equal. 

On the one hand, we prove this for n = 2k by induction on 
k. Let k = 1. Then, (al +a2)2 2: 4ala'2 with equality exactly 
when al = a2, since the difference (al +a2? - 4ala2 = (al -

a2)2. Assume that Pn is true for n = 2T r::; k. Let ai, i ::; 

2k+1, be non-negative real numbers. Then, Ei::;2k+1 ai = 
2:i::;2k bi where bi = a2i-l + a2i. Therefore, 

( L ai)2
k
+

1 = (L bi)2
k
+

1 = (( L bi)2k)2 

i::;2k+1 i::;2k i::;2k 

2: ((2k)2k IT bi)2 = 2
k2k

+
1 IT b; 2: 2

k2k
+

1 II (4a2i-la 2i) 

i::;2k i::;2k i::;2k 

= 2k2k+142k II ai = 2(k+l)2
k
+

1 II ai 

i::;2k+1 i::;2k+1 

which proves that P2k+l is true. Hence, by induction, P2r is 
valid for all r 2: 1. Moreover, note that the above proof also 
shows that equality (Ei<2k+1 ai)2

k
+

1 = 2(k+l)2
k
+l Ili<2k+1 ai 

implies that all the inequalities occurring on the ';ay are 
equalities which again proves by induction that equality can 
hold in P2r if, and only if, all the ai are equal. 
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On the other hand, for any m, the validity of Pm implies 
the validity of Pm -1 as follows. Let 0.1, ... ,am-l be given. 
Consider am = m~l Eism-l ai· Then, 

Once again, by induction, equality implies that, all the num
bers are equal. 

To end our discussion, the reader is invited to apply induc
tion on the positive integer p below to prove the following 
result which solves an interesting two-player game called Eu
clid. 

Let (p, q) be a pair of positive integ.ers satisfying p > q. Each 
player subtracts a multiple of the smaller number from the 
bigger one without making the result negative. The winner 
is the ,one first hitting the highest common factor of p and 
q. Then, there is a winning strategy for the first player if, 
and only if, q < ~(J5 - l)p, 

Hot Water Freezes Faster! 

How is it possible for hot water to freeze more quickly than cold? This 
peculiar phenomenon, first noticed by Aristotle in the 4th century 
Be, has baffled scientists for generations. The phenomenon is today 
known as the Mpemba effect, after the Tanzanian schoolboy Erasto 
Mpemba. In the 1960s, Mpemba became a laughing stock after telling 
his science teacher he could make ice-cream mixture freeze faster by 
warming it before putting it into the freezer. 

From: New Scientist, December 1995. 

--------~--------
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