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Group theory revolutionized not only mathematics but 
also other sciences. A combinatorial way of describing 
groups is by what are called generators and relations. In 
this article, our purpose is to discuss this combinatorial 
way of describing groups and some of the immediate 
applications. 

Introduction 

All of us learn in school, the method of 'completing squares' 
to solve quadratic equations and perhaps the more pre­
cocious ones get to see the formulae for cubic and bi­
quadratic (Le. fourth degree) equations too. The con­
cept of groups surfaced with the fundamental works of 
the great mathematicians Evariste Galois and Niels Hen­
rik Abel who showed that there is no such general formula 
to solve equations of degree higher than four. It is no ex­
aggeration to say that their ideas revolutionized mathe­
matics and shaped the future direction of algebra. Groups 
arise in a variety of situations as the group of symmetries 
of some system. In other words, they arise as the group 
of transformations of the objects of a system which leave 
the system as a whole invariant. Fifty years after Galois 
and Abel, the mathematician Felix Klein introduced his 
Erlanger Programm on the occasion of his admission to 
the University of Erlangen in 1872, towards a realisation 
of the fact that any geometry can be characterised by its 
group of transformations. Sophus Lie, a contemporary 
of Klein sought to throw light on the solutions of an or­
dinary differential equation which was invariant under a 
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group of continuous transformations. This theory, known 
as the theory of Lie groups has applications in numerous 
branches of mathematics. The advent of group theory rev­
olutionized n~t only mathematics but also the other sci­
ences. It was not long before it was realized that if groups 
are studied for their own sake, they would pay heavy div­
idends. A combinatorial way of describing groups is by 
what are called 'generators and relations'. This was first 
developed by W Van Dyck, a student of Klein. In this 
article, our purpose is to discuss this combinatorial way 
of describing groups and some of the immediate applica­
tions. For unexplained terminology and notation in what 
is to follow, the reader is encouraged to look up any stan­
dard book, such as Herstein's book on elementary algebra 
(See Suggested Reading). 

Generators and Relations 

A group G is generated by a subset S of its elements if 
every element of G is expressible as a product of elements 
from S and their inverses i.e. has an expression of the 
form gfl ... g~1c with ai = ±1 and gi E S. 

For instance, the fact that all permutations of a set 
of objects are obtainable from successive interchanges of 
pairs of objects, can be restated as saying that a sym­
metric group is generated by its subset of transpositions. 
Obviously, any group has a trivial set of generators viz. 
itself, but this is hardly of any use; one would like to have 
a nicer set of generators, preferably a finite set, if one ex­
ists. In the latter situation, one calls the group finitely 
generated. 

Of course, a finite group is finitely g~nerated. But, 
there are also several interesting infinite groups that are 
finitely generated. An obvious example is the additive 
group 7l of integers; it is generated by the singleton {1} 
(or {-1}, if you prefer it!) 

More generally, for any n, the (so-called) free abelian 
group of rank n is the additive group 7Ln := {(aI, ... , an) : 

The fact that all 

permutations of a 

set of objects are 

obtainable from 

successive 

interchanges of 

pairs of objects, 

can be restated as 

saying that a 

symmetric group is 

generated by its 

subset of 

transpositions. 
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ai Ell}; this is generated by the usual basis vectors 
(1,0, ... ,0), ... , (0,0, ... ,1). This is an abelian groupl. 

But, there are also infinite nonabelian groups which 
are finitely generated. For example, look at the subgroup 

G generated by the matrices (~ i) and (; ~) in­

side the group of all 2 x 2 invertible matrices. G is infi-

nite as the powers (~ 2;) of (~ i) are distinct. G 

is clearly not abelian since (~ i) and (~ ~) do not 

commute(Here the group operation is matrix multiplica­
tion.). 

Note that evidently a group must, at the least, be 
countable to be finitely generated. Even then,' a finite set 
of generators is not guaranteed. 

For instance, the additive group<1J of rational numbers 
is infinitely generated. For, if Ei, ... ,1!L. is any finite set 

ql qr 

in <1J, the number -2 _1_ is not in the group generated by 
Ql· .. qr 

Ei, ... ,1!L., (Why?) 
ql qr 

Free Groups and the Ping-Pong Lemma 

Any (finite) group can be viewed as a subgroup of the 
group of permutations of a (finite) set. Another way of 
viewing a group is as a quotient group of a free group. 

What is a free group? With a given set X of symbols, 
we first associate a bijective, disjoint set X' of symbols, 
whose elements will be denoted by x-I. An expression of 
the form Xl ... Xn with Xi E X U X' is called a reduced 
word, if no X in X appears as a neighbour of x-I. The set 
of reduced words can be multiplied in a natural way to 
get a group structure (for u = Xl .. , Xn and v = YI ... Ym, 
the product u . v is obtained by writing the expression for 
v after that for u and cancelling off, successively, all pairs 
of the form xx-lor x-Ix occurring as neighbours). We 
get, then, the free group F(X) on the set X where the 
empty word is the identity element. The cardinality of 
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X is called the rank of the free group. The rank is an 
invariant of the group i.e. free groups F(X), F(Y) on sets 
X, Yare isomorphic if, and only if, the cardinalities of 
X and Y coincide, and is called the rank of the common 
group. 

Now, for any group G, start with a set X of genera­
tors. It is easy to see that G is a quotient group of F(X) 
i.e. that there is a surjective homomorphism from F(X) 
onto G. For instance, the group tln of n-tuples of inte­
gers mentioned above, is the quotient of the free group 
F n of rank n by its commutator subgroup. Recall that 
the commutator subgroup [G, G] of any group G is de­
fined as the subgroup of G generated by the commutators 
[x, y] := xyx-1y-1 of elements in G. Obviously, [G~G] is an 
abelian group; it is called the abelianisation of G. 

In the two examples of finitely generated, infinite groups 
above, the first one of tln is free only for n = 1 (as free 
groups are abelian only in rank one), while the second one 
is the free group of rank 2, on the two matrices there. 

. (1 2) (1 0) The proof that the matnces Oland 2 1 gen-

erate a free group is easy and is a consequence of the 
following trick due to Klein generally known as the Ping­
Pong lemma: 
Suppose there are two nonempty subsets 81, 82 and a point 
p outside them such that two matrices 9 and h act as 
transformations on the set 81U82U{p} in such a way that 
g(82Up) C 8 1 and h(81Up) C 82. Then, no nonempty re­
duced word in 9 and h acts trivially on p i. e. 9 and h 'play 
ping-pong with the point p' between 8 1 and 82 !. Since the 
group generated by 9 and h is free precisely when no word 
in them is the identity word, it would follow that < g, h > 
(the group generated by 9 and h )is free. 
In our case, we can take 8 1 = {z E C : -1 < Re(z) < I}, 
82 = {z E C: I z I < I} and p any point outside the unit 
circle and with real part between -1 and 1, where the 

action of any 2 x 2 matrix (: !) is by the fractional 
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linear transformation z 1-+ ~;t~. Thus, the two matrices 
above generate the free group of rank 2. 

Presentations of Groups 

We talked about generators but we did not say anything 
about the uniqueness of expressing an element in terms 
of a generating set. If 9 = gil ... g~1c = htl ... h~l are 
two different expressions in terms of elements gi, hi in· a 
generating set S, there is, obviously, a relation of the form 
S~l ••• s~ = e among some elements Si of S. Cleariy, every 
finite group has relations among any generating set viz. 
the relation sO(G) = e for any s, where a(G) denotes the 
number of elements in G. 

Let us look at a group G defined by a finite set X of 
generators and a finite set of relations among them; we 
write G =< X; R >. One has to be careful while talking 
about the set of relations. 

If w = e is a relation (where w is a word in the gen­
erators), then, so are w k = e or xwx-1 = e. But, the 
latter are consequences of the former. It is in this sense 
that we say that · a set R is a set of defining relations. In 
the language of free groups, G =< X; R > means that 
G ~ F(X)/N where N is the subgrou-p generated by all 
conjugates2 of elements of R (Le. N is called the nor­
mal subgroup generated in F(X) by the set R). We call 
< X; R > a presentation of G. If both X and R are fi­
nite, the group is said to be finitely presented. We have 
to bear in mind that there can be several presentations of 
the same group. 

Let F = F(X) be a free group on a set X. If H is a 
subgroup of F, it is also free as can be proved naturally 
by the methods of algebraic topology. It was also proved 
by combinatorial group-theoretic methods by Nielsen and 
Schreier. The proofs also show that if X is a finite set of 
n elements, and if H is of finite index m in F, then the 
rank of H is mn - (m - 1). 

If G =< X; R > is any group with X, R finite sets, 
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and H is a subgroup of G of finite index, does H have a 
finite presentation too, and, if so, how does one find it? 
Let {xi}i be a set of left-coset representatives for H in G 
i.e. G = UiXiH, a disjoint union. Write X = {S1' ... , sn} 
and R = {WI,'" ,wr } where Wi are words in the Sj. Now 
G = F(X)/N where N is the normal subgroup of F(X) 
generated by R. So, H = E/N where F(X) :) E :) N. 
Since [G : H] = [F(X) : E] = m, E is a free group of rank 
mn - (m - 1) by the Nielsen-Schreier theorem. Thus, H 
itself is generated by mn - (m - 1) elements. It is also 
obvious that H = E / M where M is the normal subgroup 
of E generated by the set {xjlwiXj;j ~ m;i ~ r} i.e. H 
has mr relations. 

There is also a beautiful algorithm due to Coxeter, 
Moser and Todd to write down a presentation for H from 
one for G. The interested reader might refer to the book 
Presentations of groups by Johnson, published as lecture 
notes by the London Math. Society (See Suggested Read­
ing). 

If G is finitely generated and is also abelian, a fun­
damental structure theorem of Dedekind says that G is 
isomorphic to the group 

where the integers di divide di +1 and are uniquely deter­
mined. 
Here we adopt the convention that if d = 1, by 7l/d we 
mean (0), and if d = 0, by 7l/d we mean 7l. In particu­
lar, if G is any finitely generated group, the abelian group 
Gob := [G~ has the structure asserted ab~ve. 

The following is a nice way to find the invariants di . 

Let G =< X;R > with X = {xt,···,xm } and R = 
{WI,'" ,wn }. Now, each Wi is a word in the XiS. Write 
M for the m x n integer matrix whose (i, j)-th entry mij 
is the sum of the powers of Xi occurring in the expression 
of Wj. Let hi(M) denote the G.C.D of all the i x i mi­
nors of M, for i ~ k:= min(m, n). Let dI = hl(M) 
and di(M) = h~~~~f) Vi > 1. Then, the invariants 

________ ,AAflAA _______ __ 
RESONANCE I November 1996 v V V V V"~ 47 



What can one say 

about a finitely 

generated group 

where each 

element has finite 

order? Is such a 

group necessarily 

finite? This is the 

famous Burnside 

problem and the 

answer is negative 

even when the 

orders of all the 

elements are 

bounded by a fixed 

number. 

3 Work on problems related 
to this earned E I Zelmanov 
the Fields Medal in 1994. 

GENERAL I ARTICLE 

of tG~G] are d1,"', dk, 0, 0, ... ,0 where k = min(m, n) 

and 0 is repeated m - k times. In other words, [G~G] ~ 
'!lm-k x '!l/d l X ... X '!l/dk. In particular, we notice that 
if m > n, then m > k and so, [G~Gl is infinite. 

This shows also that if G =< Xj R > is a finite group, 
then m ~ n i.e. the number of generators in any pre­
sentation of a finite group is at the most the number of 
relations! 

The Burnside Problem 

What can one say about a finitely generated group where 
each element has fin'ite order? Is such a group necessar­
ily finite? This is the famous Burnside problem 3 and 
the answer is negative even when the orders of all the ele­
ments are bounded by a fixed number. However, it is very 
difficult to give such an example of a finitely generated, 
infinite group all of whose elements are of orders less than 
some fixed r. 

But, there are positive results too. For instance, a 
group all of whose (nontrivial) elements are of order 2 is 
clearly abelian (because x2 = 1 for 'all x means x = X-I 

i.e. ab = (ab )-1 = b-1a-1 = ba). So, if such a group were 
finitely generated also, then all the elements of the group 
are found among the finite set xf1 ... x;l where Xl, ... , Xn 

is a set of generators for G. , 
Even those finitely generated groups all of whose eleme,nts 
have order ~ 3 are necessarily finite (although nonabelian 
in general). 
Consider a finitely generated group G consisting of matri­
ces with entries in the complex field. If all matrices in G 
have finite orders, G is necessarily finite. The proof uses 
some sophisticated methods and we don't comment on it 
here. On the other hand, if the entries of the matrices in 
G are integers, instead of complex numbers, the proof is 
quite easy as we show now. 
Note first that since det(g) and det(g-l) = (det (g) t- I are 

________ .AAAAA, ______ __ 
48 'V V V V V v RESONANCE I November 1996 



GENERAL I ARTICLE 

both integers, we have det(g) = ±I for all 9 E G. Call 
GL(n, 7l) := {g : gij E 7l, det(g) = ±I}.4 So, our group G 
is a subgroup of GL(n, 7l). Observe that if 9 E GL(n,71) 
has order r, its eigen values are r-th roots of unity and, 
so, the minimal polynomial P(X) of 9 divides the poly­
nomial xr - 1. As a result; it has distinct roots.; so 9 
can be conjugated (by some complex matrix) to a diago­
nal matrix diag(Ab . . . ,An) where Ai are r-th roots of 1. 
(Why?) Thus, the trace of 9 satisfies 

As Tr(g) is an integer, the condition 1 Tr(g) 1:5 n im­
plies that the possible values of Tr(g) are among {n, n -
1 ... 0 -1 ... -n} To summarise any matrix o1finite , " , ,. , 
order in GL(n, 7l) has trace in the finite set 
{O, ±I,·· . ,±n}. Let p be a prime not dividing (2n)!. 
Consider the finite group GL(n, 7l/p) of n x n invertible 
matrices with entries in 7l/p. Look at the natural homo­
morphism obtained by reducing each entry mod p 

¢> : GL(n, 7l) --+ GL(n, 7l/p) 

We claim that GnKer(<p) = {Id} i.e. that G ~ <p(G). 
If 9 E Ker(<p) has finite order, then gij = 8ij, where the 
'bar' denotes mod p. So, Tr(g) == n mod p. But Tr(g) - n 
takes values in {O, -1,···, -2n} since Tr(g) takes values 
in the set {O, ±I, ... , ±n}. By the choice of p, this forces 
Tr(y) = n i.e. 9 = I d. So, <p( G) ~ G and, therefore, 
I G \:5\ GL(n, 7l/p) I· 

Probability of Generating the Integers 

We end with a heuristic discussion which can be made 
rigorous. 
What is the 'probability' P that two randomly chosen in­
tegers generate 7l? Well, they generate some subgroup of 
7l, at any rate. Overlooking the case that this subgroup 
is {O} (surely an event of probability 0), this subgroup is 

4 Thus GL(n, ~ ) is the 
collection of all n x n matri­
ces with integer entries and 
detenninant either + 1 or -1. 
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of 7l, at any rate. Overlooking the case that this sub­
group is {O} (surely an event of probability 0), this sub­
group is n71 for some n > O. The probability that both 
the integers belong to n71 is ~. Since n71 ~ 7l, P is 
also the probability that two elements of n71 generate 
it;' and so 5- is the probability that two random inte­
gers generate n71. Therefore, 2:::1 5- = 1 which gives 
P 

_ 1 
- EbO 1· 

n=l ;;7 
On the other hand, two integers generate 7l exactly 
when they are coprime. Since every pth integer is di­
visible by p, the 'probability' of a 'randomly' chosen 
integer being divisible by p can be taken to be ~. Thus 
the probability that two independently chosen integers 
are both divisible by p is ~; hence the probability that 

not both are multiples of p is 1 -. ~. Therefore, the 
probability that they are coprime is the probability that 
not both of them are multiples of any prime i.e. P = 
TIp prime(1 - ~). We, thereby, get the 'Euler product 
formula' 

00 1 1 L:"2 = II (1 - 2")-1 
n=1 n p prime P 

However, we know that 2:~=1 ~ = ~2, so that we finally 
have P = ;\. 
A similar discussion can be made for any positive inte­
ger k in place of two integers. For k = 1, this prob­
ability is obviously 0 (as only ±1 generate 7l); and is 
also rIp prime(1- ~), on the other hand. This shows that 
rIp prime(l - ~)-1 diverges i.e. the number of primes is 
infinite. 
The discussion above was not rigorous as probability was 
not defined precisely. All of this can be done precisely, in 
terms of the notion of the H aar measure on a profinite 
group and (hopefully) this will be done in a follow-up 
article! 
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