1. Decide (from definition) whether the following sequence $\{y_n\}_{n=1}^{\infty}$ is Cauchy or not:

$$y_n = \sum_{k=1}^n \frac{1}{k!}$$

Name _____

2. Suppose $\{z_n\}_{n\geq 1}$ is a sequence of real numbers. Without using the ratio or root test decide whether the series $\sum_{n=1}^{\infty} z_n$ converges when

$$z_n = \frac{\sqrt{n}}{2n^3 - 1}$$

June 6th, 2019	Name	
SWMS-2018-Followup-Homework in Series		Page 3 of 5

3. Let $\{a_n\}_{n\geq 1}$ be a sequence of non-negative numbers and $\{a_{n_k}\}_{k\geq 1}$ be a subsequence of the same. Suppose $\sum_{n=1}^{\infty} a_n$ converges. Does it imply that $\sum_{k=1}^{\infty} a_{n_k}$ converges?

Name _____

Page 4 of 5

4. Let $p \in \mathbb{R}$. Decide whether $\sum_{n=1}^{\infty} (-1)^n \frac{\sqrt{n}}{(n+1)^p}$ converges.

June 7th, 2019	Name	
SWMS-2018-Followup-Homework in Series	Page 5	5 of 5

5. Let $x \in \mathbb{R}$. Decide the range of $x \in \mathbb{R}$ where $\sum_{n=1}^{\infty} \frac{(4x-12)^n}{(-3)^{2+n}(n^2+1)}$ converges and diverges.