1. Let G be a finite group of order 21 and let K be a finite group of order 49. Suppose that G does not have a normal subgroup of order 3. Then determine all group homomorphisms from G to K.

2. Let $\mathbb{R} = (\mathbb{R}, +)$ be the additive group of real numbers and let \mathbb{R}^{\times} be the multiplicative group of non-zero real numbers.

(a) Prove that the map $exp : \mathbb{R} \longrightarrow \mathbb{R}^{\times}$ defined by $exp(x) = e^x$ is an injective group homomorphism. (b) Prove that the additive group \mathbb{R} is isomorphic to the multiplicative group of positive real numbers. What is the inverse homomorphism?

June 5th, 2019	SWMS-2018-Follow up
Homework 2	Page 3 of 4

3. Show that a group G is cyclic if and only if there exists a surjective group homomorphism from the additive group \mathbb{Z} of integers to the group G.

- 4. Consider S_3 , the symmetric group on 3 elements.

 - (i) Find all the automorphisms $\phi: S_3 \longrightarrow S_3$. (ii) Find all subgroups of S_3 . Which ones are cyclic? (iii) Find all normal subgroups.