1. (Reverse Odd town) Let $X = \{1, 2, ..., n\}$, and $A_1, A_2..., A_m$ be subsets of X with the property that for all $i, |A_i| =$ even, and $|A_i \cap A_j| =$ odd, for all $i \neq j$. Prove that $m \leq n$ (as usual |A| denotes cardinality of the set A).

2. Let X be as in problem 1, and $A_1, A_2..., A_m$ be subsets of X with the property that $|A_i \cap A_j| = k$, for all $i \neq j$, where $1 \leq k < n$. Let v_i be the incidence vector of A_i . Show directly from the definition that $\{v_1, v_2..., v_m\}$ is a linearly independent set over \mathbb{R} , hence giving another proof that $m \leq n$.

3. Prove that in *any* coloring of the edges of K_6 by red or blue, one can always find a red K_3 , or a blue K_3 . Prove that K_6 cannot be replaced by K_5 . You have just shown that R(3,3) = 6.

4.Demonstrate the inequality that $R(t,t) > (t-1)^2$ by explicitly constructing a two-coloring.

- 5. Fix a $z \in \mathbb{C}$. Consider $x_t = z^t$ for all $t \in \mathbb{Z}$.
 - (a) Show that for any sequence $\{a_t\}_{t\in\mathbb{Z}}$, we have

$$a_t * x_t = \sum_{s \in \mathbb{Z}} a_s x_{t-s} = c x_t$$

for all $t \in \mathbb{Z}$ with c being a constant. What would you call x to be ?

(b) If $\tilde{x}_t = z^t u_t$ for all $t \in \mathbb{Z}$ then does \tilde{x} have the same property that x has ?