
GENERAL I ARTICLE 

Why Do Clocks Move Clockwise? 
The Dynamics of Collective Learning 

Vivek S Borkar 

A m a t h e m a t i c a l  m o d e l  for col lect ive l ea rn ing  by sev-  
eral  a u t o n o m o u s  agen t s  is descr ibed .  This  is a s tocha-  
s t ic  recurs ion  t h a t  ar ises  in several  d i s p a r a t e  fields 
like s tat is t ics ,  eng inee r ing  and  economics .  

A Li t t le  L e a r n i n g  is a D a n g e r o u s  T h i n g  

Why do clocks move clockwise? In other words, how did we 
learn to build and read clocks in one particular way without 
any collective decision to do so? The answer is not obvious, 
because 'counterclockwise' clocks did exist a few centuries 
ago. 

There are other similar questions. How did we agree to 
drive on the right (i.e., left) side of the road? How did 
we learn various customs and conventions, social protocols, 
dressing codes, etc.? How do certain standards get adopted 
in industry? Why do people sometimes go overwhelmingly 
to one particular restaurant or for one particular brand of 
shoes rather than another comparable one? 

The common feature in these phenomena is that through 
purely individual 'learning' by several autonomous agents, 
a common focus has emerged. To borrow a paradigm from 
economics, it is as though an invisible hand has ordained a 
particular outcome. 

This, of course, does not imply that the resulting outcome 
is always the best possible. The two possible conventions 
for clocks or for driving are completely equivalent, but this 
need not be the case in social conventions or technological 
standards. Examples abound, my own favourite being the 
old British system of measurements my generation had to 
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But whether good, 

bad or ugly, how 

was a particular 

behaviour learnt by 

these autonomous 

agents? The one 

line answer is: 
They 'urn'-ed it. 

suffer through in school. Economics provides further exam- 
ples. (Economists are quick to point out that  their usage of 
the word 'equilibrium' does not imply approval of the same. 
As one of them puts it, a corpse is more at equilibrium than  
us, but we wouldn' t  t rade places with it.) 

But whether  good, bad or ugly, how was a particular be- 
haviour learnt by these autonomous agents? The one line 
answer is: They  'urn '-ed it. 

Le r o u g e  e t  le n o i r  

A simple mathemat ical  model for such phenomena is the  
nonlinear urn. One adds to an empty urn one ball at a 
time, either red or black. The probability of the ( n + 1)-st 
ball being red is p(xn) ,  where Xn is the fraction of red balls 
at t ime n and p :  [0, 1] ~ [0, 1] is a 'nice' (say, differentiable) 
function. If yn = the number of red balls at t ime n, Xn = 

y n / n  and 
Yn+l : Yn "b ~n+l 

where ~n+l is a {0, 1}-valued random variable whose (con- 
ditional) probability of being 1 given the history up to t ime 
n is p( zn ) .  Let Mn+l  = ~n+l - p(xn) ,  an = (n + 1) -1. Then  
a little algebra leads to 

Xn+l = Xn + an(p(xn)  - Xn) + anMn+l ,  (1) 

where {an}  satisfies 

Z an = oo, Z a2n < oo. (2) 
n lq, 

{ M n }  are uncorrelated random variables. In fact, the con- 
ditional expectat ion of Mn+I given the past up to t ime n 
is zero. Thus it acts like a 'noise' sequence added to the 
discrete i teration 

Xn-1-1 = Xn "4- an(P(Xn) - -  Xn). ( 3 )  

We can view (3) as a discretization of the ordinary differen- 
tial equation (o.d.e.) 

= p( Ct)) - (4) 
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with decreasing stepsize {an}. Thus it approximates (3) 
be t ter  and bet ter  with t ime and may be expected to mim- 
ick the asymptot ic  behaviour of the l~tter. But we have the 
noise {Mn} to contend with. The total  noise contribution 

~"~k=l akMk+l, whose variance is uniformly up to t ime n is n 
bounded by 4 Y]n a2 which is finite. Thus the total  noise 
contribution till e terni ty remains bounded. To be precise, 
the series ~n  anMn+l can be shown to converge with prob- 
ability one. Hence its 'tail ' ~'~m=n amMm+l goes to zero, 
making the noise contribution to the above approximation 
asymptotically negligible. 

This can be made rigorous (see Box 1), with the conclusion 
tha t  (1) and (4) have the same asymptot ic  behaviour with 
probability one. As a well-posed scalar o.d.e, with bounded 
trajectories, (4) must  converge to a point. (Figure out why!) 
This point must be an equilibrium point where the right 
hand side of (4) is zero, i.e., p(x) = x. This equation has at 
least one solution (why?). Figure 1 gives instances with one 
and three solutions resp. Thus (4) and therefore (1) must 
converge to one of these points with probability one, though 
one cannot say to which. 

The  way to tie this up with our opening remarks is to view 
the  population share of a particular behaviour as the frac- 
tion of balls of a part icular  colour. In many interesting cases 
(such as clocks), the p(.) is such that  after some initial ran- 
domness, one colour gets an edge and then it feeds on itself 
till it completely dominates  the population (success breeds 
success, money a t t racts  money, etc.). 

One colour gets an 
edge and then it 
feeds on itself till it 
completely 
dominates the 
population. 

Figure 1. 
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B o x  1. A Dicy~ but  D i s c r e t e  Affair. 

Einstein did not believe that  God plays dice with the universe. We lesser mor- 
tals, however, often find it convenient to pretend that  he does, because some natural  
processes are easier to model and analyse as random than otherwise. One such pro- 
cess is the 'martingale' ,  a sequence of real-valued random variables {Xn} such that  
the conditional average of Xn+l given 'past '  up to n equals Xn with probabil i ty one. 
(Think of the net capital after n plays of a fair game, wherein one gains or loses noth- 
ing on average. The term 'martingale'  itself originates from gambling.) Among other 
nice things these processes do, one is that  they converge with probabil i ty one under 
suitable conditions (such as uniformly bounded absolute moments). Our 'net noise' 

n--1 x-" ,N+k a ~ process ~m=O a m M r n +  1 is one such, leading to the conclusion Z-,m=N m~v~m+l --+ 0 

with probabili ty one, i.e., noise input is 'asymptotical ly negligible'. 

Changing tracks, consider the discretization of the o.d.e. (4) given by 

x n + l  = + a ( p ( x n )  - 

Define 7(t), t > O, by -~(an) = Xn, with linear interpolation in between. A s tandard  
application of the celebrated Gronwall inequality (see Coddington and Levinson, 
Theory of Ordinary Differential Equations, Tara McGraw Hill, 1955) leads to, for 
T > O ,  

max liT(t) - x(t){l < n(T)O(a) 
0 < t < T  

where ~,(T) is a constant depending on T and O(a) stands for 'of the order of a'. 
(Thus the right hand side tends to zero as 'a'  does.) In our problem, however, 
there are two differences: The decreasing (hence nonconstant)  stepsize an and the 
'noise'. Nevertheles, Gronwall comes to the rescue with an est imate of the type  given 
below: Let t(n) : ~ "  v,=0 am and 2(t(n)) Xn (as in (1)) with linear interpolation 
in between. Then for T > 0, 

t ( n )<_ t<t (n )+T  m : n  

As before, the r.h.s ~ 0 as n -~ ec. 

The final leg of the argument is in general hard, so only a sketch is given for the 

special case when (4) has a single 'asymptotical ly stable'  (see Box 2) equilibrium 
z*. Then (4) has an associated 'Lyapunov function' Y(.), a nonnegative function 
that strictly decreases along trajectories of (4), away from x*. It must then do so 
for 2(.) as well 'eventually'  in view of the foregoing, ensuring that  2(.) (and hence 
{x~}) also converge to x*. 
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More generally one considers a vector i teration 

= x .  + . . ( h ( x . )  + (5) 

with positive scalars {an}  satisfying (2), h(.) a 'nice' function 
and { M n }  a 'noise' sequence as before. This arose in statis- 
tics in the early fifties and was dubbed the 'stochastic ap- 
proximation algorithm'. It has since been used variously in 
statistics (nonlinear regression, . . . )  and electrical engineer- 
ing (adaptive control and filtering). Its recent resurgence 
is as a paradigm for learning algorithms in artificial neural 
networks and as models of learning by economic agents. In 
these, the at tractive feature of (5) has been its usually low re- 
source requirement per iteration and its incremental nature  
- it makes only small changes at each time. For economists, 
the former captures 'bounded rationality'  of the economic 
agents, the latter their inertia. For engineers, the former is 
an engineering reality, the latter a way to buy stability of 
the algorithm at the expense of its speed. B o x  2 displays 
some mathematical  details about (5). 

B o x  2. F ive  E a s y  P i e c e s  

Here are some further mathematical  tidbits about (5). All hold under 'suitable 
conditions' that  shall remain unmentioned. 

An equilibrium point is asymptotically stable if nearby trajectories remain 
nearby and converge to it. The algorithm converges to any such point with 
a strictly positive probability, whereas it avoids an unstable equilibrium with 
probability one. 

In higher dimensions, an equilibrium point is not the only possible a t t rac tor  
(or limiting set) for the o.d.e, associated with (5), therefore for (5). (In 
fact, these at tractors can be quite 'strange'.) An at t ractor  is said to be chain 
recurrent if it consists of chain recurrent points defined as follows: A point 
x is chain recurrent if for each e > 0 there is a finite chain of points y0 = 
x, yl, y2 , . . ,  yn = x such that  the t rajectory start ing at yi ends up within e 
of yi+l for each i. (Intuitively, these are points that  would be mistaken for 
periodic if exact measurement  were not possible). With  probability one, (5) 
converges to some chain recurrent set. 

Box 2 continued... 
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�9 If (5) is implemented in a distr ibuted manner, different processors compute  
different components  of (5). Then only a few components  may get upda ted  at 
each step and there can be communication delays among processors. Worse, 
the processors may have different clocks (asynehronism) and may choose dif- 
ferent stepsizes {an}. (These are very realistic conditions in economic models.) 
Nevertheless, one can show that  the algorithm tracks the o.d.e. 

x , ( t )  -= Q ( t ) h ( x ( t ) )  

where Q (t) is a diagonal matrix with nonnegative diagonal entries that  add to 
one. The latter can be viewed in a sense as relative frequencies of updates  of 
the component  in question. 

If some components  use stepsizes {an} and others use {bn} with bn/an -~  O, 
the former move 'faster' than the latter. The limiting behaviour mimicks a 
'singular o.d.e.' with two time scales. The faster component  sees the slower 
one as almost static while the latter sees the former as essentially equilibrated. 
This can be used to advantage for algorithms that  have two loops, the outer  
one requiring the near-convergence of the inner one for each iteration (e.g., 
algorithms that alternate between optimization and averaging). 

Though we summarily dismissed the noise, it does contr ibute fluctuations that  
can be analysed. While the o.d.e, gives the average or ' typical '  behaviour,  
the fluctuations, on suitable rescaling, approximate a stochastic differential 
equation (s.d.e.) which then gives us useful information about  the fluctuations. 
One may also add external noise to improve the algorithm, as in simulated 
annealing. If so, the original o.d.e, should be replaced by an appropriate  s.d.e. 

Games People Play 

An important  arena for learning models has been game the- 
ory. One considers a populat ion of agents who interact ( 'play 
games') with each other, receiving payoffs as a function of 
their own and others '  strategies. Based on the observed 
payoffs, each agent makes incremental changes in his own 
strategy. 
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The oldest of such models is 'fictitious play' for two person 
games, wherein each agent plays the best response to the 
current (time) average behaviour of the other. This fits the 
above framework and leads to an o.d.e. 

~(t) = f(x(t)) - x(t) 
where f( .)  is the so called 'best response' map. 

More recently, a more popular paradigm has been the 'repli- 
cator dynamics'. Here x(t) = [Xl(1),.. . ,  xd(t)] satisfies the 
o.d.e. 

xi(t)=xi(t) [~j aijxj(t)-Zxj(t)ajkxk(t)l " j , k  J 

One views xi(t) as the population share of strategy i at time 
t and aij, the payoff on playing i if the adversary plays j. 
Thus the rate of increase of xi(t) is proportional to its cur- 
rent payoff ~j  aijxj(t) minus the population average of the 
payoff ~-~j,kxj(t)ajkxk(t). This equation originates in evo- 
lutionary biology, where it models 'phylogenetic learning', 
i.e., the (passive) adaptation of species under selection pres- 
sure. Economists have adopted it as a model of 'ontogenetic 
learning', i.e., aggregate behaviour due to individual (active) 
learning by the agents and recovered it as a limiting case of 
appropriate models of individual learning. 

There are other models in similar vein. The interest is due 
to a classic problem in economics. The economists have long 
accepted Nash equilibrium as being the natural equilibrium 
concept. This is an equilibrium where no agent can unilater- 
ally improve his lot by a strategy change, all else remaining 
the same. The problem usually is that there are too many 
candidate equilibria. After years of 'static' refinements of 
the equilibrium concept, the economists have moved to the 
dynamic models of disequilibrium, viz., the aforementioned 
models of learning, hoping to narrow down the choice to 
those equilibria that arise as an asymptotically stable equi- 
librium for the same. A further refinement is to add noise 
to these dynamics and take the small noise limit to identify 
equilibria that are stable under stochastic perturbations. 

After years of 
'static' refinements 
of the equilibrium 
concept, the 
economists have 
moved to the 
dynamic models of 
disequilibrium. 
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Many 
controversies 

dissolve away 
once the problem 

is couched in 
mathematical 

terms. 

A n d  N o w  for  S o m e t h i n g  C o m p l e t e l y  D i f f e r e n t  .... 

Let us now leave aside mathematics  a n d  engineering and 
look at the role of (5), or more generally of mathemat ica l  
models, in social sciences. At best crude caricatures of real- 
ity, are they worth anything? 

Let me start by quoting the noted economist Frank Hahn 
who has observed that  many controversies dissolve away 
once the problem is couched in mathemat ical  terms. Being 
forced to precisely tag the variables and lay down their hy- 
pothesised relationships, either the logical outcome becomes 
apparent,  or an inherent contradiction in the premises gets 

exposed. 

Another  advantage is being able to tag specific qualitative 
phenomena which then become recognisable across the board, 
in different contexts and in different disciplines. One such 
instance is the phenomenon of 'locking in'. We have seen 
that  (5) can get 'locked into' an equilibrium from which it 
will not budge. In economics, this leads to the phenomenon 
of 'increasing returns '  wherein the more you invest, the more 
you gain, with a spiralling effect. This goes against the con- 
ventional wisdom of diminishing returns. Loosely speaking, 
the latter still applies to the traditional sectors of economy 
like agriculture, while the former comes to the fore in certain 
fast moving sectors of modern 'high tech' industry. 

An important  qualitative insight here is the following: A 
system locked into an undesirable equilibrium cannot just  
be nudged away from it, but will have to be forced out, 
because one is working against restoring forces pulling it 
back to that  equilibrium. If this seems obvious to you, t ry  
applying it to your favourite social or technological ill and 
see if it still looks obvious. 

Hahn goes on to suggest that  the hostility to mathemat i -  
sation is a 'sour grapes' syndrome displayed by the mathe-  
matically diffident. Tha t  is perhaps being a bit harsh, for 
there are genuine causes of concern. One is the overselling of 
models by overzealous supporters, who read more into them 
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than  what they really have to offer. (Just  think of the var- 
ious 'isms' floating around.) In particular, any quantitative 
inference must be t reated with care. 

Another  problem is tha t  of having the model  display the 
behaviour you want it to, having subconsciously built it in. 
For models of learning, yet another potential  pitfall is best 
described by the quote: One learns to itch only where one 
can scratch. Our models may do the same, leading to a false 
sense of complacency. 

To conclude, my aim has been to give you a glimpse of the 
exciting interdisciplinary area of learning systems. Granting 
tha t  they are imperfect models of imperfect systems, one 
does learn something from them. Exercised with caution, 
this little learning need not be a dangerous thing. With  the 
intense ongoing activity in this area, one can look forward to 
an improved unders tanding of these dynamics in the coming 
years. Till that  happens, we may share the sentiments of 
the great 20th century philosopher George Harrison, when 
he said: 

With every mistake we must  surely be learning 

still my guitar gently weeps 
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Ernst G Straus relates the following anecdote about Albert Einstein: 

We had finished the preparation of a paper and we were looking for 

a paper clip. After opening a lot of drawers we finally found one 

which turned out to be too badly bent for use. So we were looking for 

a tool to straighten it. Opening a lot more drawers we came on a box 

of unused paper clips, Einstein immediately starting to shape one of 

them into a tool to straighten the bent one. When I asked him what 

he was doing, he said, "When I am set on a goal, it becomes difficult 

to deflect me." 

The Mathematical Intelligencer. Vol.17.No.2., 1995 
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